31
Overview EM counterparts Sources Precursors Prompt Emission Trojan Analogs Next Steps/Conclusion Black Hole Coalescence: The Gravitational Wave Driven Phase Jeremy Schnittman NASA Goddard UM Black Holes Augest 24, 2011 Black Hole Coalescence: The Gravitational Wave Driven Phase Jeremy Schnittman

Black Hole Coalescence: The Gravitational Wave Driven Phasemctp/SciPrgPgs/events/2011/Blackholes/...Black Hole Coalescence: The Gravitational Wave Driven Phase Jeremy Schnittman Overview

  • Upload
    others

  • View
    1

  • Download
    0

Embed Size (px)

Citation preview

Page 1: Black Hole Coalescence: The Gravitational Wave Driven Phasemctp/SciPrgPgs/events/2011/Blackholes/...Black Hole Coalescence: The Gravitational Wave Driven Phase Jeremy Schnittman Overview

Overview EM counterparts Sources Precursors Prompt Emission Trojan Analogs Next Steps/Conclusion

Black Hole Coalescence: The Gravitational WaveDriven Phase

Jeremy Schnittman

NASA Goddard

UM Black HolesAugest 24, 2011

Black Hole Coalescence: The Gravitational Wave Driven Phase Jeremy Schnittman

Page 2: Black Hole Coalescence: The Gravitational Wave Driven Phasemctp/SciPrgPgs/events/2011/Blackholes/...Black Hole Coalescence: The Gravitational Wave Driven Phase Jeremy Schnittman Overview

Overview EM counterparts Sources Precursors Prompt Emission Trojan Analogs Next Steps/Conclusion

Motivation

Observing supermassive black hole mergers will teach us about

Relativity

High-energy Astrophysics

RadiationHydrodynamics

Cosmology

Galaxy Formation andEvolution

Stellar Evolution

Dark Matter

Black Hole Coalescence: The Gravitational Wave Driven Phase Jeremy Schnittman

Page 3: Black Hole Coalescence: The Gravitational Wave Driven Phasemctp/SciPrgPgs/events/2011/Blackholes/...Black Hole Coalescence: The Gravitational Wave Driven Phase Jeremy Schnittman Overview

Overview EM counterparts Sources Precursors Prompt Emission Trojan Analogs Next Steps/Conclusion

Motivation

Observing supermassive black hole mergers will teach us about

Relativity

High-energy Astrophysics

RadiationHydrodynamics

Cosmology

Galaxy Formation andEvolution

Stellar Evolution

Dark Matter

Black Hole Coalescence: The Gravitational Wave Driven Phase Jeremy Schnittman

Page 4: Black Hole Coalescence: The Gravitational Wave Driven Phasemctp/SciPrgPgs/events/2011/Blackholes/...Black Hole Coalescence: The Gravitational Wave Driven Phase Jeremy Schnittman Overview

Overview EM counterparts Sources Precursors Prompt Emission Trojan Analogs Next Steps/Conclusion

Time scales

“final parsec” problem (maybe) not such a big problem after all

triaxial galaxies e.g., Merritt & Poon 04, Preto+ 11

massive perturbers Perets & Alexander 08

high eccentricities Quinlan 96, Preto+ 11

circumbinary gas disk Callegari, Cuadra, Dotti, Van Wassenhove, ...

Black Hole Coalescence: The Gravitational Wave Driven Phase Jeremy Schnittman

Page 5: Black Hole Coalescence: The Gravitational Wave Driven Phasemctp/SciPrgPgs/events/2011/Blackholes/...Black Hole Coalescence: The Gravitational Wave Driven Phase Jeremy Schnittman Overview

Overview EM counterparts Sources Precursors Prompt Emission Trojan Analogs Next Steps/Conclusion

Time scales, con’t

Tanaka+ 11

101 102 103 104 105

disk radius (M)

101

102

103

104

105

106

107

time

(yr)

tGW

~R4

tinflow

~R5/4 (gas)

tinflow

~R7/2 (rad)

JS & Krolik 08

Black Hole Coalescence: The Gravitational Wave Driven Phase Jeremy Schnittman

Page 6: Black Hole Coalescence: The Gravitational Wave Driven Phasemctp/SciPrgPgs/events/2011/Blackholes/...Black Hole Coalescence: The Gravitational Wave Driven Phase Jeremy Schnittman Overview

Overview EM counterparts Sources Precursors Prompt Emission Trojan Analogs Next Steps/Conclusion

Time scales, con’t

vaccuum binary merger is basically a solved problemt < 2005: “Kip diagram”

Black Hole Coalescence: The Gravitational Wave Driven Phase Jeremy Schnittman

Page 7: Black Hole Coalescence: The Gravitational Wave Driven Phasemctp/SciPrgPgs/events/2011/Blackholes/...Black Hole Coalescence: The Gravitational Wave Driven Phase Jeremy Schnittman Overview

Overview EM counterparts Sources Precursors Prompt Emission Trojan Analogs Next Steps/Conclusion

Time scales, con’t

vaccuum binary merger is basically a solved problemt > 2005: “Joan diagram”

Black Hole Coalescence: The Gravitational Wave Driven Phase Jeremy Schnittman

Page 8: Black Hole Coalescence: The Gravitational Wave Driven Phasemctp/SciPrgPgs/events/2011/Blackholes/...Black Hole Coalescence: The Gravitational Wave Driven Phase Jeremy Schnittman Overview

Overview EM counterparts Sources Precursors Prompt Emission Trojan Analogs Next Steps/Conclusion

EM counterparts – What do we know?

galaxy mergers + ubiquitous SMBHs

remarkably few AGN pairs, no triples

phases of BH binary evolution

stellar dynamical frictiongas dynamical frictionGW loss

post-Newtonian + numerical relativity

kick formula for known masses, spins

Black Hole Coalescence: The Gravitational Wave Driven Phase Jeremy Schnittman

Page 9: Black Hole Coalescence: The Gravitational Wave Driven Phasemctp/SciPrgPgs/events/2011/Blackholes/...Black Hole Coalescence: The Gravitational Wave Driven Phase Jeremy Schnittman Overview

Overview EM counterparts Sources Precursors Prompt Emission Trojan Analogs Next Steps/Conclusion

EM counterparts – What do we need to know?

galaxy merger rates (dependence on masses, mass ratio, gasfraction, etc.)

BH parameters

BH massesBH spins: amplitude and orientation

BH environment prior to merger

quantity and quality of gasstellar distribution and age/metallicityproperties of circumbinary disk

Black Hole Coalescence: The Gravitational Wave Driven Phase Jeremy Schnittman

Page 10: Black Hole Coalescence: The Gravitational Wave Driven Phasemctp/SciPrgPgs/events/2011/Blackholes/...Black Hole Coalescence: The Gravitational Wave Driven Phase Jeremy Schnittman Overview

Overview EM counterparts Sources Precursors Prompt Emission Trojan Analogs Next Steps/Conclusion

What we will learn

galaxy environs: gas vs stars

high-velocity end of kick distribution

time delay between galaxy, BH merger

w/ PTA: merger rates for M & 108M, z . 1

w/ LISA: rates, masses, spins for M . 106−7M, z .∞LD vs z out to z ∼ 1

w/ LIGO: rates, masses, spins for M . 102M, z . 0.3

Black Hole Coalescence: The Gravitational Wave Driven Phase Jeremy Schnittman

Page 11: Black Hole Coalescence: The Gravitational Wave Driven Phasemctp/SciPrgPgs/events/2011/Blackholes/...Black Hole Coalescence: The Gravitational Wave Driven Phase Jeremy Schnittman Overview

Overview EM counterparts Sources Precursors Prompt Emission Trojan Analogs Next Steps/Conclusion

Diversity of Sources (theorist)

−10 yr 9 10 yr9−10 yr 3 10 yr3 10 yr6−10 yr 6 0 yr

HCSSs

off−centered/Doppler−shiftedquasars

suppressedaccretion

X−ray/UV/IR afterglows

DM annihilationBondi accretion

delayed quasar

106

103

100

10−3

10−6

galaxy mergers

M−sigma

occup. fractiondiffuse gas

X−shapedradio lobes

galaxy cores (scouring) galaxy cores (recoil)

enhancedaccretion

(pulsar timing)GW’s variable

accretion tidal disruption

diskscircumbinary

R(pc

)

time since merger

GRMHD

dual AGN

binary quasars

accretiondisks

darkmatter

stars

hot gas

GWs

LISA

Black Hole Coalescence: The Gravitational Wave Driven Phase Jeremy Schnittman

Page 12: Black Hole Coalescence: The Gravitational Wave Driven Phasemctp/SciPrgPgs/events/2011/Blackholes/...Black Hole Coalescence: The Gravitational Wave Driven Phase Jeremy Schnittman Overview

Overview EM counterparts Sources Precursors Prompt Emission Trojan Analogs Next Steps/Conclusion

Diversity of Sources (observer)

−10 yr 9 10 yr9−10 yr 3 10 yr3 10 yr6−10 yr 6 0 yr

102

100

10−2

10−4

10−6

10−10

GRMHD

dual AGN

angu

lar s

ize

(arc

sec)

(pulsar timing)GW’s

binary quasars

delayed quasar

X−ray/UV/IR afterglows

diskscircumbinary

variableaccretion enhanced

accretionsuppressedaccretion

tidal disruptionDM annihilation

Bondi accretion

off−centered/Doppler−shiftedquasars

HCSSs

galaxy cores (scouring) galaxy cores (recoil)

M−sigmadiffuse gas

occup. fractiongalaxy mergers

time since merger (lifetime of source)

X−shapedradio lobes

LISA

gam−ray

GW

X−ray

O/UV

IR

radio

Black Hole Coalescence: The Gravitational Wave Driven Phase Jeremy Schnittman

Page 13: Black Hole Coalescence: The Gravitational Wave Driven Phasemctp/SciPrgPgs/events/2011/Blackholes/...Black Hole Coalescence: The Gravitational Wave Driven Phase Jeremy Schnittman Overview

Overview EM counterparts Sources Precursors Prompt Emission Trojan Analogs Next Steps/Conclusion

Pulsar timing arrays

Hobbs+ 10

Black Hole Coalescence: The Gravitational Wave Driven Phase Jeremy Schnittman

Page 14: Black Hole Coalescence: The Gravitational Wave Driven Phasemctp/SciPrgPgs/events/2011/Blackholes/...Black Hole Coalescence: The Gravitational Wave Driven Phase Jeremy Schnittman Overview

Overview EM counterparts Sources Precursors Prompt Emission Trojan Analogs Next Steps/Conclusion

PTA sources

Sesana+ 11

Black Hole Coalescence: The Gravitational Wave Driven Phase Jeremy Schnittman

Page 15: Black Hole Coalescence: The Gravitational Wave Driven Phasemctp/SciPrgPgs/events/2011/Blackholes/...Black Hole Coalescence: The Gravitational Wave Driven Phase Jeremy Schnittman Overview

Overview EM counterparts Sources Precursors Prompt Emission Trojan Analogs Next Steps/Conclusion

Future wide-field surveys

LOFAR → SKA

PanSTARRS → LSST

eROSITA → WFXT/LOBSTER

UKIDSS → ?

all need massive efforts at automated, real-time data analysis andcoordination

Black Hole Coalescence: The Gravitational Wave Driven Phase Jeremy Schnittman

Page 16: Black Hole Coalescence: The Gravitational Wave Driven Phasemctp/SciPrgPgs/events/2011/Blackholes/...Black Hole Coalescence: The Gravitational Wave Driven Phase Jeremy Schnittman Overview

Overview EM counterparts Sources Precursors Prompt Emission Trojan Analogs Next Steps/Conclusion

GW counterparts

NS mergers:Rasio & Shapiro (1992)Rasio & Shapiro (1994)

Janka et al. (1999)

Anderson et al. (2008ab)...

Zhuge et al. (1994)Ruffert et al. (1996)

Faber & Rasio (2000)Faber & Rasio (2001)Shibata et al. (2003)

Analytic Newtonian hydro Relativistic hydro

Bloom et al. (2009)

O’Neill et al. (2009)Megevand et al. (2009)

Demorest et al. (2009)Jenet et al. (2009)Madau et al. (2009)Miller et al. (2009)Nandra et al. (2009)Owen (2009)

Phinney (2009)Prince (2009)Schutz et al. (2009)Stamatikos et al. (2009)

Astro 2010 white papers

Corrales et al. (2009)

MacFadyen & Milos. (2008)

Armitage & Natarajan (2002)Hayasaki et al. (2008)

Shields & Bonning (2008)JS & Krolik (2008)Lippai et al. (2008)Kocsis & Loeb (2008)Krolik (2010)Chang et al. (2009)

Anderson et al. (2010)

Palenzuela et al. (2009)Bode et al. (2009)van Meter et al. (2010)Farris et al. (2010)

Shapiro (2010)Haiman et al. (2010)Tanaka & Menou (2010)

Rossi et al. (2010) Palenzuela et al. (2010)Mosta et al. (2010)Zanotti et al. (2010)

Black Hole Coalescence: The Gravitational Wave Driven Phase Jeremy Schnittman

Page 17: Black Hole Coalescence: The Gravitational Wave Driven Phasemctp/SciPrgPgs/events/2011/Blackholes/...Black Hole Coalescence: The Gravitational Wave Driven Phase Jeremy Schnittman Overview

Overview EM counterparts Sources Precursors Prompt Emission Trojan Analogs Next Steps/Conclusion

Even small amount of gas leads to bright EM signal

energy content of gas dominated by gravitational potential:

Egas ∼ εΣR2 (ε ≈ 0.01− 0.1)

cooling time for optically thick gas:

tcool =τh

c∼ ε1/2ΣR3/2,

giving “universal” luminosity:

dL

d lnR≈ ε1/2R1/2LEdd ∼ 1044 M6 erg/s

Krolik (2010)

Black Hole Coalescence: The Gravitational Wave Driven Phase Jeremy Schnittman

Page 18: Black Hole Coalescence: The Gravitational Wave Driven Phasemctp/SciPrgPgs/events/2011/Blackholes/...Black Hole Coalescence: The Gravitational Wave Driven Phase Jeremy Schnittman Overview

Overview EM counterparts Sources Precursors Prompt Emission Trojan Analogs Next Steps/Conclusion

Test particle simulations ⇒ ultra-relativistic flows

234567

234567

Max

imum

Lor

entz

Fac

tor

-600 -500 -400 -300 -200 -100 0 100Time [M]

234567

Isolated, Nonrotating

Nonrotating, 5 orbits to merger

Rotating, 5 orbits to merger

10-5

10-4

10-3

10-2

IsolatedNonrotatingRotating

10-5

10-4

10-3

10-2

Frac

tion

of P

artic

les

with

Out

flows

γ >

γ c

-700 -600 -500 -400 -300 -200 -100 0 100Time [M]

10-5

10-4

10-3

10-2

γc = 1.2

γc = 1.4

γc = 1.5

10-510-410-310-210-1100

10-510-410-310-210-1100

Frac

tion

of P

artic

les

with

Out

flow

γ > γ c

10-510-410-310-210-1100

-700 -600 -500 -400 -300 -200 -100 0 100Time [M]

10-510-410-310-210-1100 Isolated

NonrotatingRotating

γc = 1.2

γc = 1.5

γc = 2

γc = 3

van Meter et al.(2010)

Black Hole Coalescence: The Gravitational Wave Driven Phase Jeremy Schnittman

Page 19: Black Hole Coalescence: The Gravitational Wave Driven Phasemctp/SciPrgPgs/events/2011/Blackholes/...Black Hole Coalescence: The Gravitational Wave Driven Phase Jeremy Schnittman Overview

Overview EM counterparts Sources Precursors Prompt Emission Trojan Analogs Next Steps/Conclusion

Hydro plus NR ⇒ strong shocks, heating

Bode et al.(2010)

Black Hole Coalescence: The Gravitational Wave Driven Phase Jeremy Schnittman

Page 20: Black Hole Coalescence: The Gravitational Wave Driven Phasemctp/SciPrgPgs/events/2011/Blackholes/...Black Hole Coalescence: The Gravitational Wave Driven Phase Jeremy Schnittman Overview

Overview EM counterparts Sources Precursors Prompt Emission Trojan Analogs Next Steps/Conclusion

Hydro plus NR ⇒ strong shocks, heating

Bode et al.(2010)

Black Hole Coalescence: The Gravitational Wave Driven Phase Jeremy Schnittman

Page 21: Black Hole Coalescence: The Gravitational Wave Driven Phasemctp/SciPrgPgs/events/2011/Blackholes/...Black Hole Coalescence: The Gravitational Wave Driven Phase Jeremy Schnittman Overview

Overview EM counterparts Sources Precursors Prompt Emission Trojan Analogs Next Steps/Conclusion

but just one question...

Black Hole Coalescence: The Gravitational Wave Driven Phase Jeremy Schnittman

Page 22: Black Hole Coalescence: The Gravitational Wave Driven Phasemctp/SciPrgPgs/events/2011/Blackholes/...Black Hole Coalescence: The Gravitational Wave Driven Phase Jeremy Schnittman Overview

Overview EM counterparts Sources Precursors Prompt Emission Trojan Analogs Next Steps/Conclusion

...will there be any gas?

circumbinary disk clears out a gap around the BHs:

MacFadyen & Milosavljevic (2008)

after disk decouples (tGW < tinflow), could be even less gas

Black Hole Coalescence: The Gravitational Wave Driven Phase Jeremy Schnittman

Page 23: Black Hole Coalescence: The Gravitational Wave Driven Phasemctp/SciPrgPgs/events/2011/Blackholes/...Black Hole Coalescence: The Gravitational Wave Driven Phase Jeremy Schnittman Overview

Overview EM counterparts Sources Precursors Prompt Emission Trojan Analogs Next Steps/Conclusion

Need grid-based 3D MHD simulations

−2 −1 0 1 2

−2

−1

0

1

2

−4

−3

−2

−1

0

t=300.5

Shi, Krolik, & Lubow (2011)

Black Hole Coalescence: The Gravitational Wave Driven Phase Jeremy Schnittman

Page 24: Black Hole Coalescence: The Gravitational Wave Driven Phasemctp/SciPrgPgs/events/2011/Blackholes/...Black Hole Coalescence: The Gravitational Wave Driven Phase Jeremy Schnittman Overview

Overview EM counterparts Sources Precursors Prompt Emission Trojan Analogs Next Steps/Conclusion

Clear periodic accretion

360 380 400 420 440 460 480t(Ωbin

−1 )

0.00

0.01

0.02

0.03

0.04

0.05

−dM

/dt(

(GM

a)1/

2 Σ 0)

0.5 1.0 1.5 2.0 2.5 3.0ω(Ωbin )

0.000

0.005

0.010

0.015

0.020

0.025

0.030

pow

er s

pect

ral d

ensi

ty

Shi, Krolik, & Lubow (2011)

Black Hole Coalescence: The Gravitational Wave Driven Phase Jeremy Schnittman

Page 25: Black Hole Coalescence: The Gravitational Wave Driven Phasemctp/SciPrgPgs/events/2011/Blackholes/...Black Hole Coalescence: The Gravitational Wave Driven Phase Jeremy Schnittman Overview

Overview EM counterparts Sources Precursors Prompt Emission Trojan Analogs Next Steps/Conclusion

Classical Lagrange points in restricted 3-body problem

µ2 = m2/M = 0.2 µ2 = m2/M = 0.02

µcrit ≈ 0.0385JS 2010

Black Hole Coalescence: The Gravitational Wave Driven Phase Jeremy Schnittman

Page 26: Black Hole Coalescence: The Gravitational Wave Driven Phasemctp/SciPrgPgs/events/2011/Blackholes/...Black Hole Coalescence: The Gravitational Wave Driven Phase Jeremy Schnittman Overview

Overview EM counterparts Sources Precursors Prompt Emission Trojan Analogs Next Steps/Conclusion

Applications

formation mechanisms:

tidal capture of GC+IMBHsupermassive star formation in accretion diskgas leaking from circumbinary diskIMBH+MS star

observables:

tidal disruption eventshyper-velocity starsenhanced star formationhighly-shifted emission linesaccretion burst prior to mergereffect on gravitational waveforms

Black Hole Coalescence: The Gravitational Wave Driven Phase Jeremy Schnittman

Page 27: Black Hole Coalescence: The Gravitational Wave Driven Phasemctp/SciPrgPgs/events/2011/Blackholes/...Black Hole Coalescence: The Gravitational Wave Driven Phase Jeremy Schnittman Overview

Overview EM counterparts Sources Precursors Prompt Emission Trojan Analogs Next Steps/Conclusion

Tidal disruption of stars during inspiral

Rtd,∗ = 2R∗(

MBHM∗

)1/3

M1 = 106M, µ2 = 1/50 M1 = 107M, µ2 = 1/50

0.01 0.10 1.00 10.00 100.00 1000.0010000.00days before merger

1011

1012

1013

1014

a (c

m)

Rtd, O/B

Rtd, sun

Rtd, WD

0.01 0.10 1.00 10.00 100.00 1000.0010000.00days before merger

1011

1012

1013

1014

a (c

m)

Rtd, O/B

Rtd, sun

Rtd, WD

Black Hole Coalescence: The Gravitational Wave Driven Phase Jeremy Schnittman

Page 28: Black Hole Coalescence: The Gravitational Wave Driven Phasemctp/SciPrgPgs/events/2011/Blackholes/...Black Hole Coalescence: The Gravitational Wave Driven Phase Jeremy Schnittman Overview

Overview EM counterparts Sources Precursors Prompt Emission Trojan Analogs Next Steps/Conclusion

What do we do next—theory

cosmological N-body plus hydro

high-resolution N-body simulations of galactic nuclei

Newtonian regime: grid-based code vs. geodesics/SPH

good initial conditions for circumbinary disk

full NR+MHD

radiation post-processing

Black Hole Coalescence: The Gravitational Wave Driven Phase Jeremy Schnittman

Page 29: Black Hole Coalescence: The Gravitational Wave Driven Phasemctp/SciPrgPgs/events/2011/Blackholes/...Black Hole Coalescence: The Gravitational Wave Driven Phase Jeremy Schnittman Overview

Overview EM counterparts Sources Precursors Prompt Emission Trojan Analogs Next Steps/Conclusion

What do we do next—observations

dual AGN: HST imaging, field integral spectroscopy

binary AGN: SDSS + long-term spectroscopic followups

pulsar timing: more pulsars, ∼ 10 ns resolution

afterglows: wide-field multi-band surveys

cores/star clusters: HST imaging + hires spectra

LISA counterparts/precursors: wide-field time domain surveys(Pan-STARRS, LSST, MAXI, WFXT, etc.)

Black Hole Coalescence: The Gravitational Wave Driven Phase Jeremy Schnittman

Page 30: Black Hole Coalescence: The Gravitational Wave Driven Phasemctp/SciPrgPgs/events/2011/Blackholes/...Black Hole Coalescence: The Gravitational Wave Driven Phase Jeremy Schnittman Overview

Overview EM counterparts Sources Precursors Prompt Emission Trojan Analogs Next Steps/Conclusion

Summary/Conclusions

EM signatures of BH mergers are valuable as:

Probes of strong-field GR (mass loss, kicks)

Probes of accretion disk properties

Cosmological observationsMBH, Mbulge, σbulge relationshipsgalaxy formation and evolutionSMBH growth (mergers vs. accretion)mass/spin distribution functions

PTA counterpartsnearby, massive, brightextensive follow-up on human timescales

LISA counterpartsdistance ladder in a single stepluminosity-redshift to . 1%

LIGO counterparts: GW confirmation

Black Hole Coalescence: The Gravitational Wave Driven Phase Jeremy Schnittman

Page 31: Black Hole Coalescence: The Gravitational Wave Driven Phasemctp/SciPrgPgs/events/2011/Blackholes/...Black Hole Coalescence: The Gravitational Wave Driven Phase Jeremy Schnittman Overview

Overview EM counterparts Sources Precursors Prompt Emission Trojan Analogs Next Steps/Conclusion

Discussion Questions

is there gas?

can we see it?

Black Hole Coalescence: The Gravitational Wave Driven Phase Jeremy Schnittman