16
Platzhalter fรผr Bild, Bild auf Titelfolie hinter das Logo einsetzen Dr. Noemi Friedman, 20,27. 01. 2016. Introduction to PDEs and Numerical Methods Lecture 11-12. The finite element method: assembling the matrices, isoparametric mapping

Introduction to PDEs and Numerical Methods Lecture 11 โ€ฆ of lower order: subparametric functions of higher order: superparametric ๐œ‰= ๐‘1๐œ‰+ +1๐‘2๐œ‰=๐‘1๐œ‰ ๐‘2๐œ‰

Embed Size (px)

Citation preview

Platzhalter fรผr Bild, Bild auf Titelfolie hinter das Logo einsetzen

Dr. Noemi Friedman, 20,27. 01. 2016.

Introduction to PDEs and Numerical Methods

Lecture 11-12.

The finite element method: assembling the matrices,

isoparametric mapping

20,27. 01 2016. | Dr. Noemi Friedman | PDE lecture| Seite 2

RECAP: How to solve PDE with

FEM with nodal basis, piecewise linear shape functions

Finite Element method with piecewise linear functions in 1D, hom DBC

1) Weak formulation of the PDE, definition of the โ€šenergyโ€™ inner product (the bilinear

functional, ๐‘Ž) and and the linear functional (๐น)๐‘Ž ๐‘ข, ๐‘ฃ = ๐น ๐‘ฃ

2) Define approximating subspace by definition of a mesh (nodes 0,1,..N, with coordinates,

elements) and setup the hat functions on them

3) Compute the elements of the stiffness matrix (Grammian) โ€“ evaluation of integrals

๐พ๐‘–๐‘— = ๐‘Ž ๐‘๐‘–(๐‘ฅ), ๐‘๐‘—(๐‘ฅ) = ๐‘๐‘–(๐‘ฅ), ๐‘๐‘—(๐‘ฅ) ๐ธ๐‘–, ๐‘— = 1. . ๐‘ โˆ’ 1

4) Compute the elements of the vector of the right hand side โ€“ evaluation of integrals

๐‘“๐‘– = ๐น ๐‘๐‘– , ๐‘– = 1. . ๐‘ โˆ’ 15) Solve the system of equations:

for ๐ฎ, which gives the solution at the nodes.

The solution in between the nodes can be calculated from:

ฮฆ๐‘– ๐‘ฅ = Ni x =

๐‘ฅ โˆ’ ๐‘ฅ๐‘–โˆ’1๐‘™

๐‘ฅ โˆˆ [๐‘ฅ๐‘–โˆ’1, ๐‘ฅ๐‘–]

๐‘ฅ๐‘–+1 + ๐‘ฅ

๐‘™๐‘ฅ โˆˆ [๐‘ฅ๐‘– , ๐‘ฅ๐‘–+1]

0 else

๐Š๐ฎ = ๐Ÿ

๐‘ข x โ‰ˆ

๐‘–=1

๐‘

๐‘ข๐‘– ๐‘๐‘–(x)

๐‘– = 1. . ๐‘ โˆ’ 1

20,27. 01 2016. | Dr. Noemi Friedman | PDE lecture | Seite 3

1D Example with linear nodal basis

๐‘ข ๐ฑ โ‰ˆ

๐‘–=1

4

๐‘ข๐‘– ๐œ“๐‘–(๐ฑ)

๐‘ ๐‘ฅ = ๐‘Ž๐‘ฅ

Strong form:

๐‘(๐‘ฅ)

๐‘™

๐‘™/5 ๐‘™/5 ๐‘™/5

๐‘ข 0 = ๐‘ข ๐‘™ = 0

Weak form:

0

๐‘™

๐ธ๐ด๐‘‘๐‘ข

๐‘‘๐‘ฅ

๐‘‘๐œ“

๐‘‘๐‘ฅ๐‘‘๐‘ฅ =

0

๐‘™

๐‘ ๐‘ฅ ๐œ“ ๐‘ฅ ๐‘‘๐‘ฅ

Discretisation of the weak form:

๐‘–=1

4

๐‘ข๐‘— ๐ธ๐ด ๐‘™

๐œ•๐œ“๐‘–(๐‘ฅ)

๐œ•๐‘ฅ

๐œ•๐œ“๐‘—(๐‘ฅ)

๐œ•๐‘ฅ๐‘‘๐‘ฅ =

๐‘™

๐‘(๐‘ฅ)๐œ“๐‘—(๐‘ฅ)๐‘‘๐‘ฅ

๐พ๐‘–๐‘— ๐‘“๐‘—

๐‘™/5 ๐‘™/5

Not efficient to calculate all the

elements of the stiffness

matrix one by one!

Calculate element stiffness matrices and assemble

๐œ“4 ๐œ“5๐œ“3๐œ“2

20,27. 01 2016. | Dr. Noemi Friedman | PDE lecture | Seite 4

1D Example with linear nodal basis

๐‘(๐‘ฅ)

๐‘™

๐‘™/5 ๐‘™/5 ๐‘™/5๐‘™/5 ๐‘™/5

instead:

Compute stiffness matrix elementwisely and

then assemble

๐Š ๐Ÿ๐ฎ

Global stiffness matrix

1 2 3 4 5 6

๐พ4๐‘’ =

1 2 3 4 5 6

1

2

3

4

5

6

๐‘ข1

๐‘ข2

๐‘ข3

๐‘ข4

๐‘ข5

๐‘ข6

0

๐‘“2

๐‘“3

๐‘“4

๐‘“5

0

=

4 5

4

5

๐พ4๐‘’ 1,1 = ๐ธ๐ด

ฮฉ4

๐œ•๐œ“4(๐‘ฅ)

๐œ•๐‘ฅ

๐œ•๐œ“4(๐‘ฅ)

๐œ•๐‘ฅ๐‘‘๐‘ฅ

๐พ4๐‘’(1,1) ๐พ4

๐‘’(1,2)

๐พ4๐‘’(2,1) ๐พ4

๐‘’(2,2)

๐œ“4 ๐œ“5๐œ“3๐œ“2

๐พ4๐‘’ 1,2 = ๐ธ๐ด

ฮฉ4

๐œ•๐œ“4(๐‘ฅ)

๐œ•๐‘ฅ

๐œ•๐œ“5(๐‘ฅ)

๐œ•๐‘ฅ๐‘‘๐‘ฅ

๐พ4๐‘’ 2,1 = ๐ธ๐ด

ฮฉ4

๐œ•๐œ“5(๐‘ฅ)

๐œ•๐‘ฅ

๐œ•๐œ“4(๐‘ฅ)

๐œ•๐‘ฅ๐‘‘๐‘ฅ

๐พ4๐‘’ 2,2 = ๐ธ๐ด

ฮฉ4

๐œ•๐œ“5(๐‘ฅ)

๐œ•๐‘ฅ

๐œ•๐œ“5(๐‘ฅ)

๐œ•๐‘ฅ๐‘‘๐‘ฅ

๐พ4๐‘’(1,2)๐พ4

๐‘’(1,1)

๐พ4๐‘’(2,1) ๐พ4

๐‘’(2,2)๐พ5๐‘’(1,1)

๐พ3๐‘’(2,2)

๐พ3๐‘’ 1,1๐พ2๐‘’(2,2)

๐พ2๐‘’ 1,1๐พ1๐‘’(2,2)

1

1

๐พ3๐‘’(1,2)

๐พ2๐‘’(1,2)

๐พ3๐‘’(2,1)

๐พ2๐‘’(2,1)

20,27. 01 2016. | Dr. Noemi Friedman | PDE lecture | Seite 5

1D Example with linear nodal basis

๐‘(๐‘ฅ)

๐‘™

๐‘™/5 ๐‘™/5 ๐‘™/5๐‘™/5 ๐‘™/5

instead:

Compute stiffness matrix elementwisely and

then assemble

๐Š ๐Ÿ๐ฎ

1 2 3 4 5 6

๐‘“4๐‘’ =

1 2 3 4 5 6

1

2

3

4

5

6

๐‘ข1

๐‘ข2

๐‘ข3

๐‘ข4

๐‘ข5

๐‘ข6

0

0

=

4

5

๐‘“4๐‘’ 1 =

ฮฉ4

๐‘(๐‘ฅ)๐œ“4(๐‘ฅ)๐‘‘๐‘ฅ

๐‘“4๐‘’ 1

๐‘“4๐‘’ 2

๐œ“4 ๐œ“5๐œ“3๐œ“2

๐‘“4๐‘’ 2 =

ฮฉ4

๐‘(๐‘ฅ)๐œ“5(๐‘ฅ)๐‘‘๐‘ฅ

๐พ4๐‘’(1,2)๐พ4

๐‘’(1,1)

๐พ4๐‘’(2,1) ๐พ4

๐‘’(2,2)๐พ5๐‘’(1,1)

๐พ3๐‘’(2,2)

๐พ3๐‘’ 1,1๐พ2๐‘’(2,2)

๐พ2๐‘’ 1,1๐พ1๐‘’(2,2)

1

1

๐พ3๐‘’(1,2)

๐พ2๐‘’(1,2)

๐พ3๐‘’(2,1)

๐พ2๐‘’(2,1)

๐‘“4๐‘’ 1

๐‘“4๐‘’ 2

๐‘“2๐‘’ 1

๐‘“1๐‘’ 2

๐‘“3๐‘’ 1

๐‘“2๐‘’ 2

๐‘“3๐‘’ 2

๐‘“5๐‘’ 1

20,27. 01 2016. | Dr. Noemi Friedman | PDE lecture| Seite 6

The same but elementwisely: How to solve PDE with

FEM with nodal basis, piecewise linear shape functions

Finite Element method with piecewise linear functions in 1D, hom DBC

1) Weak formulation of the PDE, definition of the โ€šenergyโ€™ inner product (the bilinear

functional, ๐‘Ž) and and the linear functional (๐น)๐‘Ž ๐‘ข, ๐‘ฃ = ๐น ๐‘ฃ

2) a.) Define reference element, define maping between global and local coordinate systems

ฮพ ๐‘ฅ ๐‘ฅ(๐œ‰)

b.) Define reference linear shape functions

3) Compute the โ€šelement stiffnessโ€™ matrix โ€“ evaluation of integrals

๐พ๐‘–๐‘— = ๐‘Ž ๐‘๐‘–(๐‘ฅ), ๐‘๐‘—(๐‘ฅ) = ๐‘๐‘–(๐‘ฅ), ๐‘๐‘—(๐‘ฅ) ๐ธ๐‘–, ๐‘— = 1. . 2

4) Compute the right hand side elementwisely ๐‘“๐‘–๐‘’ = ๐น ๐‘๐‘– , ๐‘– = 1,2

5) Compile โ€šglobal stiffnessโ€™ matrix

6) Solve the system of equations:

for ๐ฎ, which gives the solution at the nodes.

The solution in between the nodes can be calculated from:

๐Š๐ฎ = ๐Ÿ

๐‘ข x โ‰ˆ

๐‘–=1

๐‘

๐‘ข๐‘– ๐‘๐‘–(x)

N1 ฮพ = 1 โˆ’ ฮพ N2 ฮพ = ฮพ

๐พ ๐‘’ = ๐พ4๐‘’(1,1) ๐พ4๐‘’(1,2)

๐พ4๐‘’(2,1) ๐พ4

๐‘’(2,2)

๐‘“4๐‘’ = ๐‘“4

๐‘’ 1

๐‘“4๐‘’ 2

20,27. 01 2016. | Dr. Noemi Friedman | PDE lecture | Seite 7

Local/global coordinate system 1D

๐พ4๐‘’ ๐‘˜, ๐‘™ = ๐ธ๐ด

ฮฉ4

๐œ•๐‘๐‘˜(๐œ‰)

๐œ•๐œ‰

๐œ•๐œ‰

๐œ•๐‘ฅ

๐œ•๐‘๐‘™(๐œ‰)

๐œ•๐œ‰

๐œ•๐œ‰

๐œ•๐‘ฅ๐‘‘๐‘ฅ =

๐ธ๐ด

๐‘™4๐‘’ 2

ฮฉ4

๐œ•๐‘๐‘˜(๐œ‰)

๐œ•๐œ‰

๐œ•๐‘๐‘™(๐œ‰)

๐œ•๐œ‰๐‘‘๐‘ฅ

๐œ‰ = [0,1]

1

๐‘™๐‘’

1

๐‘™๐‘’

๐พ4๐‘’ ๐‘˜, ๐‘™ =

๐ธ๐ด

๐‘™ ๐‘’ 2 0

1 ๐œ•๐‘๐‘˜(๐œ‰)

๐œ•๐œ‰

๐œ•๐‘๐‘™(๐œ‰)

๐œ•๐œ‰

๐‘‘๐‘ฅ(๐œ‰)

๐‘‘๐œ‰๐‘‘๐œ‰ =๐ธ๐ด

๐‘™ ๐‘’ 0

1 ๐œ•๐‘๐‘˜(๐œ‰)

๐œ•๐œ‰

๐œ•๐‘๐‘™(๐œ‰)

๐œ•๐œ‰๐‘‘๐œ‰

๐‘™ ๐‘’

Idea:

coordinate transformation to have unit length elements element stiffnes matrix is the same for each element

๐œ•๐œ‰

๐œ•๐‘ฅ=1

๐‘™ ๐‘’

๐พ4๐‘’ ๐‘˜, ๐‘™ = ๐ธ๐ด

ฮฉ4

๐œ•๐œ“4(๐‘ฅ)

๐‘ฅ

๐œ•๐œ“5(๐‘ฅ)

๐œ•๐‘ฅ๐‘‘๐‘ฅ

๐‘˜, ๐‘™ โˆˆ [1,2]

๐‘–, ๐‘— โˆˆ [4,5]

20,27. 01 2016. | Dr. Noemi Friedman | PDE lecture | Seite 8

Local/global coordinate system 1D

๐‘“4๐‘’ ๐‘™ =

ฮฉ4

๐‘(๐‘ฅ)๐œ“4(๐‘ฅ)๐‘‘๐‘ฅ

ฮฉ4

๐‘(๐‘ฅ)๐œ“5(๐‘ฅ)๐‘‘๐‘ฅ= 0

1

๐‘(๐œ‰)๐‘๐‘™(๐œ‰)๐‘‘๐‘ฅ(๐œ‰)

๐‘‘๐œ‰๐‘‘๐œ‰ = ๐‘™ ๐‘’

0

1

๐‘(๐œ‰)๐‘๐‘™(๐œ‰)๐‘‘๐œ‰

๐‘™ โˆˆ [1,2]

20,27. 01 2016. | Dr. Noemi Friedman | PDE lecture | Seite 9

Local/ coordinate system, isoparametric mapping 1D

coordinate transformation

using the ansatzfunctions isoparametric mapping

functions of lower order: subparametric

functions of higher order: superparametric

๐‘ฅ ๐œ‰ = ๐‘ฅ๐‘–๐‘1 ๐œ‰ + ๐‘ฅ๐‘–+1๐‘2 ๐œ‰ = ๐‘1 ๐œ‰ ๐‘2 ๐œ‰๐‘ฅ๐‘–๐‘ฅ๐‘–+1

local coordinate

global coordinate

๐œ‰ = 0 ๐œ‰ = 1

๐‘ฅ๐‘– ๐‘ฅ2

Shape functions:

Transformation from local to global coordinates:

Stiffness matrix with isoparametric elements:

๐œ‰ = [0,1]๐‘ฅ

๐‘1 ๐œ‰ = 1 โˆ’ ๐œ‰

๐‘2 ๐œ‰ = ๐œ‰

๐พ4๐‘’ ๐‘˜, ๐‘™ = ๐ธ๐ด

ฮฉ4

๐œ•๐œ“๐‘–(๐‘ฅ)

๐‘ฅ

๐œ•๐œ“๐‘—(๐‘ฅ)

๐œ•๐‘ฅ๐‘‘๐‘ฅ = ๐ธ๐ด

ฮฉ4

๐œ•๐‘๐‘˜(๐œ‰)

๐œ•๐œ‰

๐œ•๐œ‰

๐œ•๐‘ฅ

๐œ•๐‘๐‘™(๐œ‰)

๐œ•๐œ‰

๐œ•๐œ‰

๐œ•๐‘ฅ๐‘‘๐‘ฅ

๐‘˜, ๐‘™ โˆˆ [1,2]

๐‘–, ๐‘— โˆˆ [4,5]

๐พ4๐‘’ ๐‘˜, ๐‘™ = ๐ธ๐ด

0

1 ๐œ•๐‘๐‘˜(๐œ‰)

๐œ•๐œ‰

๐‘‘๐‘ฅ

๐‘‘๐œ‰

โˆ’1๐œ•๐‘๐‘™(๐œ‰)

๐œ•๐œ‰

๐‘‘๐‘ฅ

๐‘‘๐œ‰

โˆ’1๐‘‘๐‘ฅ(๐œ‰)

๐‘‘๐œ‰๐‘‘๐œ‰

๐‘‘๐‘ฅ

๐‘‘๐œ‰= ๐‘ฅ๐‘–๐‘‘๐‘1 ๐œ‰

๐‘‘๐œ‰+ ๐‘ฅ๐‘–+1

๐‘‘๐‘2 ๐œ‰

๐‘‘๐œ‰

๐‘‘๐‘ฅ

๐‘‘๐œ‰=๐‘‘๐‘1 ๐œ‰

๐‘‘๐œ‰

๐‘‘๐‘2 ๐œ‰

๐‘‘๐œ‰

๐‘ฅ๐‘–๐‘ฅ๐‘–+1

๐‘‘๐‘ฅ

๐‘‘๐œ‰

โˆ’1 ๐‘‘๐‘ฅ

๐‘‘๐œ‰

โˆ’1

20,27. 01 2016. | Dr. Noemi Friedman | PDE lecture | Seite 10

Isoparametric linear mapping 2D

triangular elements

Basis functions:

Transformation from local to global coordinates:

Stiffness matrix:

1

๐‘–, ๐‘— โˆˆ [1,2,3]

๐‘ฅ๐‘”๐‘™๐‘œ๐‘ ๐œ‰, ๐œ‚

๐‘ฆ๐‘”๐‘™๐‘œ๐‘ ๐œ‰, ๐œ‚=๐‘1 ๐œ‰, ๐œ‚ ๐‘2 ๐œ‰, ๐œ‚

๐‘1 ๐œ‰, ๐œ‚

๐‘3 ๐œ‰, ๐œ‚

๐‘2 ๐œ‰, ๐œ‚ ๐‘3 ๐œ‰, ๐œ‚

๐‘ฅ1๐‘ฆ1๐‘ฅ2๐‘ฆ2๐‘ฅ3๐‘ฆ3

20,27. 01 2016. | Dr. Noemi Friedman | PDE lecture | Seite 11

Isoparametric linear mapping 2D

triangular elements

Stiffness matrix:

Stiffness matrix with local coordinates:

where:

substitution rule

determinant should not be negative or zero!

๐‰ =

๐‘–=1

3๐œ•๐‘๐‘– ๐œ‰, ๐œ‚

๐œ•๐œ‰๐‘ฅ๐‘–

๐‘–=1

3๐œ•๐‘๐‘– ๐œ‰, ๐œ‚

๐œ•๐œ‚๐‘ฅ๐‘–

๐‘–=1

3๐œ•๐‘๐‘– ๐œ‰, ๐œ‚

๐œ•๐œ‰๐‘ฆ๐‘–

๐‘–=1

3๐œ•๐‘๐‘– ๐œ‰, ๐œ‚

๐œ•๐œ‚๐‘ฆ๐‘–

๐‘–, ๐‘— โˆˆ [1,2,3]

๐‘–, ๐‘— โˆˆ [1,2,3]๐‘ฒ๐‘–๐‘— =

0

1

0

1โˆ’๐œ‚

๐‘ฑโˆ’๐‘ป

๐œ•๐‘๐‘—

๐œ•๐œ‰๐œ•๐‘๐‘—

๐œ•๐œ‚

โˆ™ ๐‘ฑโˆ’๐‘ป

๐œ•๐‘๐‘–๐œ•๐œ‰๐œ•๐‘๐‘–๐œ•๐œ‚

๐‘ฑ ๐‘‘๐œ‰๐‘‘๐œ‚

20,27. 01 2016. | Dr. Noemi Friedman | PDE lecture | Seite 12

Isoparametric linear mapping 2D

triangular elements, example

๐‘ฅ ๐œ‰, ๐œ‚

๐‘ฆ ๐œ‰, ๐œ‚=1 โˆ’ ๐œ‰ โˆ’ ๐œ‚ ๐œ‰

1 โˆ’ ๐œ‰ โˆ’ ๐œ‚

๐œ‚๐œ‰ ๐œ‚

237197

Transformation from local to global coordinates (isoparametric mapping):

๐‘ฅ๐‘”๐‘™๐‘œ๐‘ ๐œ‰, ๐œ‚

๐‘ฆ๐‘”๐‘™๐‘œ๐‘ ๐œ‰, ๐œ‚=๐‘1 ๐œ‰, ๐œ‚ ๐‘2 ๐œ‰, ๐œ‚

๐‘1 ๐œ‰, ๐œ‚

๐‘3 ๐œ‰, ๐œ‚

๐‘2 ๐œ‰, ๐œ‚ ๐‘3 ๐œ‰, ๐œ‚

๐‘ฅ1๐‘ฆ1๐‘ฅ2๐‘ฆ2๐‘ฅ3๐‘ฆ3

1 2

3

4

5 6

20,27. 01 2016. | Dr. Noemi Friedman | PDE lecture | Seite 13

Local/ coordinate system, isoparametric mapping 2D

triangular elements, example

Stiffness matrix with local coordinates:

๐‘–, ๐‘— โˆˆ [1,2,3]๐‘ฒ๐‘–๐‘— = 0

1

0

1โˆ’๐œ‚

๐‘ฑโˆ’๐‘ป

๐œ•๐‘๐‘—

๐œ•๐œ‰๐œ•๐‘๐‘—

๐œ•๐œ‚

โˆ™ ๐‘ฑโˆ’๐‘ป

๐œ•๐‘๐‘–๐œ•๐œ‰๐œ•๐‘๐‘–๐œ•๐œ‚

๐‘ฑ ๐‘‘๐œ‰๐‘‘๐œ‚

20,27. 01 2016. | Dr. Noemi Friedman | PDE lecture | Seite 14

Local/ coordinate system, isoparametric mapping 2D

triangular elements, example

๐‘ฑ๐‘ป = ๐‘ฑ๐‘ป = ๐‘ฑ = 34๐‘ฑ =๐Ÿ“ ๐Ÿ•โˆ’๐Ÿ ๐Ÿ’

๐‘ฑโˆ’๐‘ป =๐Ÿ

๐‘ฑ๐‘ป๐Ÿ’ ๐Ÿโˆ’๐Ÿ• ๐Ÿ“

๐‘ฒ๐‘–๐‘—๐‘’= 0

1

0

1โˆ’๐œ‚ 1

344 2โˆ’7 5

๐œ•๐‘๐‘—

๐œ•๐œ‰๐œ•๐‘๐‘—

๐œ•๐œ‚

โˆ™1

344 2โˆ’7 5

๐œ•๐‘๐‘–๐œ•๐œ‰๐œ•๐‘๐‘–๐œ•๐œ‚

34๐‘‘๐œ‰๐‘‘๐œ‚

๐‘ฒ21๐‘’= 01 01โˆ’๐œ‚ 1

34

4 2โˆ’7 5

โˆ’1โˆ’1โˆ™1

34

4 2โˆ’7 5

1034๐‘‘๐œ‰๐‘‘๐œ‚ == 0

1 โˆ’11โˆ’๐œ‚ 1

34

โˆ’62โˆ™4โˆ’7๐‘‘๐œ‰๐‘‘๐œ‚

๐‘ฒ21๐‘’==โˆ’1.118 0

1 01โˆ’๐œ‚๐‘‘๐œ‰๐‘‘๐œ‚ = โˆ’1.118 โ‹…

1

2= โˆ’0.559

๐‘ฒ๐‘–๐‘—๐‘’= 0

1

0

1โˆ’๐œ‚

๐‘ฑโˆ’๐‘ป

๐œ•๐‘๐‘—

๐œ•๐œ‰๐œ•๐‘๐‘—

๐œ•๐œ‚

โˆ™ ๐‘ฑโˆ’๐‘ป

๐œ•๐‘๐‘–๐œ•๐œ‰๐œ•๐‘๐‘–๐œ•๐œ‚

๐‘ฑ ๐‘‘๐œ‰๐‘‘๐œ‚

๐‘ฒ11๐‘’๐‘ฒ12๐‘’๐‘ฒ13๐‘’

๐‘ฒ21๐‘’๐‘ฒ22๐‘’๐‘ฒ23๐‘’

๐‘ฒ13๐‘’๐‘ฒ23๐‘’๐‘ฒ33๐‘’

20,27. 01 2016. | Dr. Noemi Friedman | PDE lecture | Seite 15

Local/ coordinate system, isoparametric mapping 2D

triangular elements, example

๐‘ฑ๐‘ป = ๐‘ฑ = 34๐‘ฒ11๐‘’๐‘ฒ12๐‘’๐‘ฒ13๐‘’

๐‘ฒ21๐‘’๐‘ฒ22๐‘’๐‘ฒ23๐‘’

๐‘ฒ13๐‘’๐‘ฒ23๐‘’๐‘ฒ33๐‘’

๐‘“๐‘’ =

ฮฉ๐‘’

๐‘(๐‘ฅ)๐‘1(๐‘ฅ, ๐‘ฆ)๐‘‘๐‘ฅ

ฮฉ๐‘’

๐‘(๐‘ฅ)๐‘2(๐‘ฅ, ๐‘ฆ)๐‘‘๐‘ฅ

ฮฉ๐‘’

๐‘(๐‘ฅ)๐‘3(๐‘ฅ, ๐‘ฆ)๐‘‘๐‘ฅ

=

0

1

0

1โˆ’๐œ‚

๐‘(๐œ‰)๐‘1(๐œ‰, ๐œ‚) ๐‘ฑ ๐‘‘๐œ‰๐‘‘๐œ‚

0

1

0

1โˆ’๐œ‚

๐‘(๐œ‰)๐‘2(๐œ‰, ๐œ‚) ๐‘ฑ ๐‘‘๐œ‰๐‘‘๐œ‚

0

1

0

1โˆ’๐œ‚

๐‘(๐œ‰)๐‘3(๐œ‰, ๐œ‚) ๐‘ฑ ๐‘‘๐œ‰๐‘‘๐œ‚

๐‘ข1๐‘’

๐‘ข2๐‘’

๐‘ข3๐‘’

๐‘“1๐‘’

๐‘“2๐‘’

๐‘“3๐‘’

=

20,27. 01 2016. | Dr. Noemi Friedman | PDE lecture | Seite 16

Local/ coordinate system, isoparametric mapping 2D

triangular elements, example

๐‘ฒ11๐‘’๐‘ฒ12๐‘’๐‘ฒ13๐‘’

๐‘ฒ21๐‘’๐‘ฒ22๐‘’๐‘ฒ23๐‘’

๐‘ฒ31๐‘’๐‘ฒ32๐‘’๐‘ฒ33๐‘’

๐‘ข1๐‘’

๐‘ข2๐‘’

๐‘ข3๐‘’

๐‘“1๐‘’

๐‘“2๐‘’

๐‘“3๐‘’

=

1 2

3

4

5

local 1 2 3global 4 3 6

6

๐‘ฒ22๐‘’๐‘ฒ21๐‘’

๐‘ฒ23๐‘’

๐‘ฒ12๐‘’๐‘ฒ11๐‘’

๐‘ฒ13๐‘’

๐‘ฒ32๐‘’๐‘ฒ31๐‘’

๐‘ฒ33๐‘’

๐‘ข1

๐‘ข2

๐‘ข3

๐‘ข4

๐‘ข5

๐‘ข6

๐‘“2๐‘’

๐‘“1๐‘’

๐‘“3๐‘’

4

3

6

1

2

3

4

5

6

1

2

3

1 2 3 4 5 6

=

4

3

6