19
PHYS 6610: Graduate Nuclear and Particle Physics I H. W. Grießhammer Institute for Nuclear Studies The George Washington University Spring 2018 INS Institute for Nuclear Studies III. Descriptions 2. Perturbative QCD Or: Why we Believe References: [PRSZR 8.1-3, 14; HM 2.15, 10.3-9, 11.4/6-7; Tho 10.7/8; Ryd 3, end of 9.6; HG 12.3; PS 16.7; Per 6.5; lots more. . . ] PHYS 6610: Graduate Nuclear and Particle Physics I, Spring 2018 H. W. Grießhammer, INS, George Washington University III.2.0

INS 2. Perturbative QCDhgrie/lectures/nupa-script...PHYS 6610: Graduate Nuclear and Particle Physics I, Spring 2018 H. W. Grießhammer, INS, George Washington University III.2.10 (g)Perturbative

  • Upload
    others

  • View
    3

  • Download
    0

Embed Size (px)

Citation preview

Page 1: INS 2. Perturbative QCDhgrie/lectures/nupa-script...PHYS 6610: Graduate Nuclear and Particle Physics I, Spring 2018 H. W. Grießhammer, INS, George Washington University III.2.10 (g)Perturbative

PHYS 6610: Graduate Nuclear and Particle Physics I

H. W. Grießhammer

Institute for Nuclear StudiesThe George Washington University

Spring 2018

INS

Institute for Nuclear Studies

III. Descriptions

2. Perturbative QCDOr: Why we Believe

References: [PRSZR 8.1-3, 14; HM 2.15, 10.3-9, 11.4/6-7; Tho 10.7/8;

Ryd 3, end of 9.6; HG 12.3; PS 16.7; Per 6.5; lots more. . . ]

PHYS 6610: Graduate Nuclear and Particle Physics I, Spring 2018 H. W. Grießhammer, INS, George Washington University III.2.0

Page 2: INS 2. Perturbative QCDhgrie/lectures/nupa-script...PHYS 6610: Graduate Nuclear and Particle Physics I, Spring 2018 H. W. Grießhammer, INS, George Washington University III.2.10 (g)Perturbative

(a) An Ideal World: QCD With Small Coupling Constant

(b) From Colours to Potentials

(c)Running Coupling & Asymptotic FreedomQED: [Ryd, end of 9.6]QCD: [PS 16.7, Per 6.5]

PHYS 6610: Graduate Nuclear and Particle Physics I, Spring 2018 H. W. Grießhammer, INS, George Washington University III.2.1

Page 3: INS 2. Perturbative QCDhgrie/lectures/nupa-script...PHYS 6610: Graduate Nuclear and Particle Physics I, Spring 2018 H. W. Grießhammer, INS, George Washington University III.2.10 (g)Perturbative

Running Coupling in QCD: Now Known to O(α4s )=3-Loop

SU(Nc) Gauge Theory at LO (1-loop)

Nf quark flavours with m2q < q2

[Gross, Politzer/Wilczek, ’t Hooft 1973]

: αs(q2) =4π

[11Nc−2Nf ] ln(q2/Λ2QCD)

(for mq = 0)

Today calculated up to & includingO(α3s ) relative to LO: horrific diagrams, beautifully agrees with data.

=⇒ QCD has only one parameter. Data: αs(Mz) = 0.1181±0.0013 or ΛQCD ≈ 250 MeV.

[PDG 2015]

This Confirms: • perturbative renormalisation procedure • gauge group is SUc(Nc), and Nc = 3• flavour Nf = (uds)+(c)+(b) increases like R-factor with

√s

charmthreshold←

bottomthreshold↓

PHYS 6610: Graduate Nuclear and Particle Physics I, Spring 2018 H. W. Grießhammer, INS, George Washington University III.2.2

Page 4: INS 2. Perturbative QCDhgrie/lectures/nupa-script...PHYS 6610: Graduate Nuclear and Particle Physics I, Spring 2018 H. W. Grießhammer, INS, George Washington University III.2.10 (g)Perturbative

The Low-q2 Regime: Infrared Slavery

αs(q2) =4π

[11Nc−2Nf ] ln(q2/Λ2QCD)

+O(α3s )

[Deur/. . . Phys. Lett. B665 (2008) 349]Naïvely apply running =⇒αs > 1 at some

√s≈ 1GeV

=⇒ Perturbation theory

breaks down at low s.

=⇒ Must resort to

non-perturbative methods!

Infrared Slavery

offers chanceof confinement.

Is typical size of

charge-smearing set by1

ΛQCD ≈ 250MeV≈ 1fm?

=⇒ Hadron size, confinement?

PHYS 6610: Graduate Nuclear and Particle Physics I, Spring 2018 H. W. Grießhammer, INS, George Washington University III.2.3

Page 5: INS 2. Perturbative QCDhgrie/lectures/nupa-script...PHYS 6610: Graduate Nuclear and Particle Physics I, Spring 2018 H. W. Grießhammer, INS, George Washington University III.2.10 (g)Perturbative

(d) Quarkonia and Perturbative QCD

LO QCD = QEDN2c−1 for αs(q2) 1 =⇒ Test on positronium-like qq at large s = q2.

Positronium: H-atom with reduced mass µ =me→me

2positronium e+e− quarkonium qq

pot. V(r) −α

r γ−4

3αs

r glue

binding En −α2 µe

2n2 −(

43

αs

)2µq

2n2

Should work best for heaviest system: Bottomonium bb

=⇒ If truly Coulombic, thenE1−E2

E2−E3=

1− 122

122 − 1

32

=275

.

=⇒ Long-range part not really Coulombic!

=⇒ Add phenom. QCD String Potential

V(r) =−4αs

3r+σ r

String constant σ ≈ 1GeVfm≈ 105 N

fmby fit to spectra, universal in bb,cc, . . . .

PHYS 6610: Graduate Nuclear and Particle Physics I, Spring 2018 H. W. Grießhammer, INS, George Washington University III.2.4

Page 6: INS 2. Perturbative QCDhgrie/lectures/nupa-script...PHYS 6610: Graduate Nuclear and Particle Physics I, Spring 2018 H. W. Grießhammer, INS, George Washington University III.2.10 (g)Perturbative

(e) QCD-Inspired, Phenomenological Potentials

How Non-Relativistic are Quarkonia?

Typical velocities: vtyp =

√Ekin ∼ Ebind

systemmass

Positronium: vtyp =

√α2

2n2 ∼ α =1

137 1

=⇒ very non-relativistic.

Bottomonium: vtyp ≈√

1GeV10GeV

≈ 0.3

=⇒ Relativistic effects will be large:

– kin. energy√

m2q +~p2 =mq+

~p2

2mq− ~p4

8m3q+ . . .

=⇒ Lamb shift lowers 1S state.

– Hypefine Splitting: Positronium spin-spin int. like for mag. dipoles HHFS =2π

3m2e

α ~σ1 ·~σ2 δ(3)(~r)

→ Quarkonium: chromo-magnetic interaction between spins HHFS =2π

3m2q

4αs

3~σ1 ·~σ2 δ

(3)(~r)

– Fine Structure: HFS =1

2m2r∂V(r)

∂ r~L ·~S splits P-wave states with same J but different L,S.

– Darwin Term/Zitterbewegung HDarwin =1

8m2~∇2V(r)∝ δ

(3)(~r) in Coulombic potential.PHYS 6610: Graduate Nuclear and Particle Physics I, Spring 2018 H. W. Grießhammer, INS, George Washington University III.2.5

Page 7: INS 2. Perturbative QCDhgrie/lectures/nupa-script...PHYS 6610: Graduate Nuclear and Particle Physics I, Spring 2018 H. W. Grießhammer, INS, George Washington University III.2.10 (g)Perturbative

Phenomenological Potentials: Constituent Quark Model

[PRSZR]

– Take perturbative QCD results for colour factors etc.

– Fit string constant σ , quark (constituent) mass mq, αs.

– Non-relativistic potential with some retardation effects:

HFS, FS (LS coupling), Darwin, Lamb,. . .

Results Bottom: mb ≈ 5GeV, αs(ϒ)≈ 0.2, σϒ ≈ 1GeVfm

Charm: mc ≈ 1.5GeV, αs(J/ψ)≈ 0.25, σJ/ψ ≈ 1GeVfm

– Constituent quark masses of b and c slightly larger than

their QCD (current quark) masses: small “dressing”.

– QCD string constant same for b and c: universal

– Charmonium less Coulombic; more relativistic;

more sensitive to QCD string.

– Confirms perturbative colour factors. =⇒ SU(Nc = 3).

– But usually HFS somewhat small, LS somewhat big.

Neglects many relativistic radiative/retardation effects.

QCD-inspired Constituent Quark Model was important to boost confidence in QCD.

– Now we need to go beyond and do “true” QCD!

PHYS 6610: Graduate Nuclear and Particle Physics I, Spring 2018 H. W. Grießhammer, INS, George Washington University III.2.6

Page 8: INS 2. Perturbative QCDhgrie/lectures/nupa-script...PHYS 6610: Graduate Nuclear and Particle Physics I, Spring 2018 H. W. Grießhammer, INS, George Washington University III.2.10 (g)Perturbative

(f) QCD for Quarkonium DecayPerturbative QCD needs αs(q2→∞) 1. =⇒ Focus again on lowest quarkonium states.

Kinematics forbids strong decay: Mϒ ≈ 2Mb−Eϒbind<2MB (B/B-meson: b/b + light quark, e.g. bu)

=⇒ EBbind−Eϒ

bind<2meffu

eff. mass of light quark in B meson is large.

=⇒ Bottomonium & Charmonium only decay

by qq annihilation into gluons or photons.

Parity determines gluon/photon number (HW).

Translate positronium: charge Zq, Nc=3 colours.

|Ψ(0)|2 probability of qq at same place (S-wave).

Γ[11S0→ γγ] = 34π(Z2

qα)2

m2q

|Ψ(0)|2

Γ[11S0→ gg] =23︸︷︷︸

colour factor

4π α2s

m2q|Ψ(0)|2

=⇒ RatioΓ[qq→ γγ]

Γ[qq→ gg]=

92

Z4qα2

α2s (qq)

[1+O(αs) QCD corrections] independent of |Ψ(0)|2 and mq.

Experimental signal: gg hadronises into 2 hadron jets over longer timescale (factorisation assumption).PHYS 6610: Graduate Nuclear and Particle Physics I, Spring 2018 H. W. Grießhammer, INS, George Washington University III.2.9

Page 9: INS 2. Perturbative QCDhgrie/lectures/nupa-script...PHYS 6610: Graduate Nuclear and Particle Physics I, Spring 2018 H. W. Grießhammer, INS, George Washington University III.2.10 (g)Perturbative

Determining αs(q2) in Quarkonia

Bottomonium: γγ decay not yet seen.

Charmonium:Γ[ηc→ γγ]

Γ[ηc→ gg]=

89

α2

α2s (J/ψ)

= [3.1±1.2]×10−4 =⇒ αs(J/ψ) = 0.25±0.05

J/ψ and ϒ are 3S1 states: =⇒ Only decay into odd number of gauge bosons (parity, see HW).

virtualγq

q

lepton

lepton

=⇒ Γ[leptons]Γ[3jets]

∝(Zqα)2

α3s

;Γ[leptons]

Γ[γ +2jets]∝

(Zqα)2

Z2qαα2

s=

α

α2s

;Γ[3jets]

Γ[γ +2jets]∝ α3

sZ2

qαα2s=

αs

Z2qα

[PDG 2015]

Include QCD corrections to high orders.

Lots of experimental information,

many bb states & decays not yet seen.

αs(ϒ) = 0.163±0.016αs(J/ψ) = 0.25±0.05

But only one datum on plot.

=⇒ Can do even better.

PHYS 6610: Graduate Nuclear and Particle Physics I, Spring 2018 H. W. Grießhammer, INS, George Washington University III.2.10

Page 10: INS 2. Perturbative QCDhgrie/lectures/nupa-script...PHYS 6610: Graduate Nuclear and Particle Physics I, Spring 2018 H. W. Grießhammer, INS, George Washington University III.2.10 (g)Perturbative

(g) Perturbative QCD Corrections in e+e− Annihilation

[PDG 2012 46.7]

LO: 2-jet eventvirtualγ

q

q

Leading QCD correction: 3-jet event

( )

R = Nc ∑q

Z2q

(1+

αs(q2)

π

)

[Mar 5.12]

Includes mq 6= 0 corrections of QCD.

PHYS 6610: Graduate Nuclear and Particle Physics I, Spring 2018 H. W. Grießhammer, INS, George Washington University III.2.11

Page 11: INS 2. Perturbative QCDhgrie/lectures/nupa-script...PHYS 6610: Graduate Nuclear and Particle Physics I, Spring 2018 H. W. Grießhammer, INS, George Washington University III.2.10 (g)Perturbative

2 & 3 Jet Events: Evidence of Gluons at Large√

s PETRA 1979

If third jet, its total charge is often zero. Ratio3 jets

2 jets' αs(s)< 1 for large

√s.

[PRSZR]

PHYS 6610: Graduate Nuclear and Particle Physics I, Spring 2018 H. W. Grießhammer, INS, George Washington University III.2.12

Page 12: INS 2. Perturbative QCDhgrie/lectures/nupa-script...PHYS 6610: Graduate Nuclear and Particle Physics I, Spring 2018 H. W. Grießhammer, INS, George Washington University III.2.10 (g)Perturbative

Angular Distribution of 3- and 4-Jet Events from QCD PETRA at DESY

[Tho 10.19]

[Per 6.9]

3-Jet Events: angular distribution tests gluon spin: JP = 1−.

You could calculate this with what we learned.

4-Jet Events: test ggg vertex⇐⇒ local SU(3) gauge symmetry.

PHYS 6610: Graduate Nuclear and Particle Physics I, Spring 2018 H. W. Grießhammer, INS, George Washington University III.2.13

Page 13: INS 2. Perturbative QCDhgrie/lectures/nupa-script...PHYS 6610: Graduate Nuclear and Particle Physics I, Spring 2018 H. W. Grießhammer, INS, George Washington University III.2.10 (g)Perturbative

(h) QCD in Proton-Antiproton Processes CERN, ongoing

Interactions and colour factors in pp

[Per 6.4][Per 6.5]

Rutherford’s gold foil data

QCD data

Consider scattering on partons under small angles =⇒ sparton tparton = (kparton− k′parton)2→ 0

=⇒ Rutherford-likedσ

dΩ≈ 9

8︸︷︷︸colour

α2s (q

2)

4E20 sin4 θ

2

+ corrections from 3-gluon vertex

This Confirms:

• Short-distance potential∝ 1r

. • Gluon massless J− = 1− particle. • Colour factors: SU(Nc = 3).

PHYS 6610: Graduate Nuclear and Particle Physics I, Spring 2018 H. W. Grießhammer, INS, George Washington University III.2.14

Page 14: INS 2. Perturbative QCDhgrie/lectures/nupa-script...PHYS 6610: Graduate Nuclear and Particle Physics I, Spring 2018 H. W. Grießhammer, INS, George Washington University III.2.10 (g)Perturbative

(i) Perturbative QCD in Parton Distribution Functions

Reminder of II.4: PDFs in DIS limit Q2→∞ depend only on Bjorken-x =−q2

2p ·q∈ [0;1].

PDFs q(x) smeared by interactions:

Especially the sea-quark distributions

depend on details of QCD!

Strike valence: Strike sea:

depends on

interaction

1/3 1 x

sea

valence

total

x q(x)~1/5 in exp

[PDG 2012 18.4]

max. at 0.2, not 13 !

PHYS 6610: Graduate Nuclear and Particle Physics I, Spring 2018 H. W. Grießhammer, INS, George Washington University III.2.15

Page 15: INS 2. Perturbative QCDhgrie/lectures/nupa-script...PHYS 6610: Graduate Nuclear and Particle Physics I, Spring 2018 H. W. Grießhammer, INS, George Washington University III.2.10 (g)Perturbative

Quark-Gluon Interactions Introduce Q2-Dependence: q(x,Q2)

[HM 10.9]

q(y)

q(x = zy) g(y− x)

Probability to find quark with

mom. fraction x = ξ : q(x,Q20)

Quark with fraction y emits gluon with mom. fraction y− x,

so now quark carries x, or fraction z =xy< 1 of its original mom.

[Per 6.13]

Resolution increase can also create new quark with fraction x from gluon with fraction y:Uncovers previously hidden momentum fraction, now seen by photon.

PHYS 6610: Graduate Nuclear and Particle Physics I, Spring 2018 H. W. Grießhammer, INS, George Washington University III.2.16

Page 16: INS 2. Perturbative QCDhgrie/lectures/nupa-script...PHYS 6610: Graduate Nuclear and Particle Physics I, Spring 2018 H. W. Grießhammer, INS, George Washington University III.2.10 (g)Perturbative

QCD Splitting Functions and DGLAP-WW

PB←A(z): (prop. to) probability that parton A emits parton B with fraction z of A’s momentum, seen by γ .

Bremsstrahlung: Pq←q(z) = Pg←q(1− z) =43

1+ z2

1− z

y

z= yx

ory z= y

x

Gluon Annihilation: Pq←g(z) = Pq←g(1− z) =12[z2 +(1− z)2]

y z= yx

Gluon Scattering/Bremsstrahlung: Pg←g(z) = 6[

1− zz

+z

1− z+ z(1− z)

]y z= y

x

=⇒ Change of Resolution leads to by DGLAP-WW Evolution Equations:

∂ lnQ2

(qi(x,Q2)

g(x,Q2)

)=

αs(Q2)

1∫x

dyy

Pq←q

(xy

)Pq←g

(xy

)Pg←q

(xy

)Pg←g

(xy

)(qi(y,Q2)

g(y,Q2)

)

Coupled integro-differential equations at LO in αs < 1.

Need initial condition: Complete set of PDFs at one value of Q2. Rest prediction.

Test running of αs(Q2) and QCD Splitting Functions (colour factors, interactions).

Changes in g(x,Q2) ricochet into/ties together all quark flavours. =⇒ Find g(x,Q2).

Splitting functions get large as z→ 0 =⇒ Test with sea-quarks (x→ 0)!

[Dokshitzer/Gribov/Lipatov 1972-5; Altarelli-Parisi 1977; Weizsäcker/Williams 1934 for QED]

Extension to α2s includes gggg interaction.

PHYS 6610: Graduate Nuclear and Particle Physics I, Spring 2018 H. W. Grießhammer, INS, George Washington University III.2.17

Page 17: INS 2. Perturbative QCDhgrie/lectures/nupa-script...PHYS 6610: Graduate Nuclear and Particle Physics I, Spring 2018 H. W. Grießhammer, INS, George Washington University III.2.10 (g)Perturbative

Parton Distribution Functions: Scaling Violations by QCD

[PRSZR]PHYS 6610: Graduate Nuclear and Particle Physics I, Spring 2018 H. W. Grießhammer, INS, George Washington University III.2.18

Page 18: INS 2. Perturbative QCDhgrie/lectures/nupa-script...PHYS 6610: Graduate Nuclear and Particle Physics I, Spring 2018 H. W. Grießhammer, INS, George Washington University III.2.10 (g)Perturbative

Scaling Violation by QCD in F2 e.g. HERA at DESY

[PRSZR]

Results:

– Excellent agreement with QCD.

– Extract gluon-PDFs and αs(Q2).

– x > 0.2 (valence dominate):

F2(x = const.,Q2) as Q2:

Gluon radiation sucks momentum

from valence quarks, gives to sea.

=⇒ x < 0.2 (sea & glue dominate):

F2(x = const.,Q2) as Q2.

– Lattice QCD starts to solve for

PDFs=⇒ Provides initial condition

& evolution into confinement region

αs ≥ 1 beyond perturbation theory.

PHYS 6610: Graduate Nuclear and Particle Physics I, Spring 2018 H. W. Grießhammer, INS, George Washington University III.2.19

Page 19: INS 2. Perturbative QCDhgrie/lectures/nupa-script...PHYS 6610: Graduate Nuclear and Particle Physics I, Spring 2018 H. W. Grießhammer, INS, George Washington University III.2.10 (g)Perturbative

Next: 3. Lattice QCD

Familiarise yourself with: [(Path Integral: Ryd 5; Sakurai: Modern QM 2.5); CL10.5; PDG 18; Wagner arXiv 1310.1760 [hep-lat]; Alexandru, Lee, Freeman,

Lujan, Guo;. . . ]

PHYS 6610: Graduate Nuclear and Particle Physics I, Spring 2018 H. W. Grießhammer, INS, George Washington University III.2.20