52
Industrial Applications Industrial Applications Electronics Electronics Gate oxide films for LSI Gate oxide films for LSI Thin films for storage devices, etc Thin films for storage devices, etc materials materials Safety tire, fibers Safety tire, fibers Metal coats, etc Metal coats, etc Energy & environments Energy & environments Detection of metals in human hair Detection of metals in human hair battery battery JASRI Satoshi Komiya 01

Industrial Applications - KEKconference.kek.jp/JASS02/PDF_PPT/29_komiya.pdf · Industrial Applications •Electronics •Gate oxide films for LSI •Thin films for storage devices,

  • Upload
    others

  • View
    2

  • Download
    0

Embed Size (px)

Citation preview

  • Industrial ApplicationsIndustrial Applications••ElectronicsElectronics

    ••Gate oxide films for LSIGate oxide films for LSI••Thin films for storage devices, etcThin films for storage devices, etc

    ••materialsmaterials••Safety tire, fibersSafety tire, fibers••Metal coats, etcMetal coats, etc

    ••Energy & environmentsEnergy & environments••Detection of metals in human hairDetection of metals in human hair••batterybattery

    JASRI Satoshi Komiya

    01

  • Industrial Applications of SR Industrial Applications of SR Characterization of materials

    Production technology

    –Structure, Chemical state, Contamination, etc.thin films for electronic devices;LSI, HDD, lasersmetals、polymers, batteries,catalyses

    –high brilliant source, x-ray;big machine

    –lithography, photo-assisted etching or deposition–high flux source, ultra-violet-soft x-ray;

    small machine

    02

  • Synchrotron radiation

    Industrial ApplicationsIndustrial Applications

    electronics Metals & Soft materials

    Energy & Environment

    •Batteries: fuel cell & Li-ion •Analysis of contamination elements•Catalysts for environment

    •Tires•Fibers

    Others•Building materials•Catalysis •Insects

    •Films for ULSI, semiconductors•HDD, DVD•Semiconductor laser

    •Steel & Coats on steel •Al included bubbles

    Life science

    •medicine

    03

  • CMOS StructureCMOS Structure

    gate oxidessilicide contacts

    lines barrier metals

    Isolated oxides

    cross section

    key points for R&D:gate & lineskey points for R&D:gate & lines

    04

  • Grazing incident xGrazing incident x--ray reflection and diffractionray reflection and diffraction

    Incidence Reflection

    High brilliant x-ray

    Structural analysis of thin films

    Diffractionthin films

    incident

    Detector

    Sample

    Reflection

    θ‐ 2θ

    Diffraction

    ψ‐ 2ψ

    05

  • XX--ray reflectivity analysisray reflectivity analysis

    Information obtainedby reflectivity analysis

    Reflectivity Information•Period Thickness•Amplitude Density•Damping Roughness

    I n c i d e n c e a n g l e ( θ )

    Reflection Intensity

    0 1 2 3 4 5 6

    100

    10-2

    10-4

    10-5

    10-6

    10-7

    10-8

    10-9

    10-1

    10-3

    ψ

    reflection(

    incidence

    TaOx/Si

    06

  • XX--ray reflectivity profiles of oxide films ray reflectivity profiles of oxide films on silicon substrateson silicon substrates

    Native oxide

    Incidence Angle (deg)Ref

    lect

    ion

    inte

    nsity

    Bare Si

    AccuracyThickness:0.01nmDensity:0.01g/cm3Roughness:0.02nm

    Si substrate

    SiO2

    07

  • XX--ray reflectivity profile and interference ray reflectivity profile and interference components (calculation)components (calculation)

    SiO2 on Sithickness:4nmρSi=2.33 g/cm3Interference components

    Subtraction technique of the interference component derive easy analysis.

    ρSiO2 > ρSi

    ρSiO2 < ρSi

    ΔR=log10(R/Rave)Rave:reference

    08

  • Analysis with the interference componentAnalysis with the interference component

    4nm thin SiO2 on Si fabricated by thermal oxidation

    Single layer model

    Double layer model

    Interfacial layer

    09

  • Generation of high dense interfacial layerGeneration of high dense interfacial layeron thermal oxidation process on thermal oxidation process

    Temperature(℃) Temperature(℃)

    wet

    dry

    SiO2Si

    Interfacial layerhigh dense, ~1nm thickN.Awaji et al., JJAP 35(1996)L67.

    10

  • Development of measurement techniqueDevelopment of measurement technique

    N.Awaji in Fujitsu Labs.

    Si(002)

    0 5 10 15 20 25 30 35 40 45 50-1

    0

    1

    2

    3

    4

    5

    6

    7

    8

    9

    10

    11

    12

    13

    log 1

    0I (c

    ps)

    2θ (deg)

    SiO2 1.0 nm

    BL16XU

    BL16B2

    Accurate evaluation of ultra-thin films

    BL16XU:undulator beamlineBL16B2:bending magnet beamline

    Same region

    11

  • X-ray Crystal Truncation Rod Scattering

    Si(1

    11)

    SiO2/Si

    crystalline SiO2

    Observation of crystalline SiOObservation of crystalline SiO22 in thermal oxides in thermal oxides

    a-SiO2

    Si

    I.Takahashi et al., Physica B245(1998) 306.

    high dense interfacial layer

    1.1nm

    Interference fringes

    12

  • 100

    1000

    0.3 0.35 0.4 0.45 0.5 0.55 0.6 0.65 0.7

    Inte

    nsity

    (cps

    )

    (1,1,L)

    Si RT

    300C

    15min30min1hr1hr15min1hr30min2hr2.5hr3hr3.5hr

    4hr5hr6hr

    7hr8hr

    300C after 900C 8hrgrowth of crystallineSiO2 at the interface

    (Crystal Truncation Rod)

    900℃

    0

    2

    4

    6

    8

    10

    12

    14

    0 2 4 6 8 10

    crystalline SiO2

    amorphous SiO2

    Thic

    knes

    s(nm

    )Growth Time(hr)

    900℃

    at RT

    N.Awaji Appl. Phys. Lett., 74(1999)2669.

    InIn--situ observation of CTR scatteringsitu observation of CTR scatteringduring thermal oxidation during thermal oxidation

    interface layer = oxidation front : ~1 nm at RTfundamental phenomena on thermal oxidation

    13

  • J.H. Oh et al., Phys. Rev. B63, 205310 (2001)

    0.14nm

    Tran

    sitio

    n la

    yers

    Si1+

    Si4+

    Si3+

    Si2+

    Si O

    Transition layer model3rd Si3+/Si4+ (Si3+

  • H a r d D i s k D r i v eH a r d D i s k D r i v e

    Head

    yearM

    emor

    y de

    nsity

    (Mbi

    t/in2

    )

    MO

    HDD

    15

  • 1.E-07

    1.E-06

    1.E-05

    1.E-04

    1.E-03

    1.E-02

    1.E-01

    1.E+00

    1.E+01

    0 1 2 3 4 5 6 7 8

    calculation

    experiment

    XX--ray reflectivity analysis of multiray reflectivity analysis of multi--layerslayers

    In c i d e n c e a n g l e (de g )

    Ref

    lect

    ion

    inte

    nsit

    ylayered

    structurethickness

    (nm)rouphness

    (nm)Ta2O5 2.0 0.6

    Ta 9.3 0.5PbPtMn 24.3 0.5

    CoFe 2.2 0.4Cu 2.5 0.5

    CoFe 2.3 0.4NiFe 3.8 0.3Ta 4.8 0.4I.L. 7 0.2Si 03

    Y.Kitade in Fujitsu Labs.

    16

  • Incident x-ray Reflected x-rayGMR multi-layers

    PC

    Soller slit

    SC/PCAnalyzerLiF, PET

    fluorescence

    Optics PCSR

    Optics

    Fluorescence spectra from spin-valve multi-layers with grazing incidence

    Wavelength dispersive XWavelength dispersive X--ray fluorescenceray fluorescence17

  • ~~~

    ~~

    ~~~

    ~~

    Standing wave is induced into multi-layers

    incidence reflection

    TaPt FeCuX-ray fluorescence

    0

    200

    400

    600

    800

    1000

    1200

    1400

    Co-Kα

    0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7

    φ (deg)

    Cu-Kβ

    0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7φ (deg)

    0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7

    Ni-Kα

    φ (deg)X-r

    ay fl

    uore

    scen

    ce in

    tens

    ity (a

    .u.)

    X-ray incident angle (deg)

    Si substrate

    T.L.

    Ta

    NiFe

    CoFe

    Cu

    CoFe

    PdPtMn

    Ta

    Ta2O5

    Grazing Incidence XGrazing Incidence X--ray Fluorescence Techniqueray Fluorescence Technique18

  • -100 0 100 200 300 400 500

    0.0

    0.2

    0.4

    0.6

    0.8

    1.0

    D.L

    .

    T.L

    .

    TaO

    x

    Ta

    PdPtM

    n

    CoF

    eB

    Cu

    CoF

    eB

    NiF

    e

    Ta

    Si

    As deposited

    Pro

    file

    (N

    orm

    aliz

    ed)

    -100 0 100 200 300 400 500

    0.0

    0.2

    0.4

    0.6

    0.8

    1.0

    D.L

    .

    T.L

    .

    CoF

    eB

    Cu

    CoF

    eB

    NiF

    e

    Ta

    TaO

    x

    TaSi

    PdPtM

    n

    390℃ annealed

    Pro

    file

    (N

    orm

    aliz

    ed)

    t(Å)

    Broadening of the interfaces in GMR Broadening of the interfaces in GMR multilayers multilayers 3Å 5Å 8Å

    4Å 7Å 13Å

    Depth profiles of elements analyzed from GIXF and reflectivity data

    (magnetic properties degraded after annealing)

    N.Awaji Fujitsu scientific & technical journal 38 (2002) 82.

    19

  • Ba

    NiP

    5~20nm

    5~30nm

    5~50nm

    a-C cover layerCo alloy recording layer

    Cr buffer layer

    Al substrate

    cross section

    Hc

    circularradial

    coercive force

    Co alloy : hcp crystal

    hard disk

    texturetexture

    diffraction

    c:magnetization axis

    control the orientation

    record along a circle and inrecord along a circle and in--plane magnetizationplane magnetizationmagnetization along a circlemagnetization along a circlealong a radius

    along a circle

    20

  • Grazing incidence xGrazing incidence x--ray diffraction profilesray diffraction profiles

    2θ (deg)

    Textured-Al/NiP/Cr/Co-alloy(20nm)/a-C

    Inte

    nsity

    (a. u

    .)

    25 30 35 40

    1

    2

    3

    4

    5

    6

    7

    0

    Co(002)Cr(110)

    Co(002)

    Co(

    100)

    Co(101)

    Cr(200)ψ=0.5°

    ψ=0.2°

    from Cr buffer layer

    2θ (deg)

    Inte

    nsity

    (a. u

    .)

    25 30 35 400

    1

    2

    3

    Co(

    100)

    Co(

    002)

    Co(101)

    circle

    radius

    preferential orientationof c-axis due to texturealong a circle

    from only a Co layerunder grazing incidence

    21

  • 2 4 6 8 10

    500

    1000

    1500

    2000

    0

    Coe

    rciv

    ity H

    c(O

    e)

    Intensity ratio I[Co(002)]/I[Co(100)]

    :along a circle:along a radius

    Textured sub.(Ra50)

    Preferential cPreferential c--axis orientation dependence axis orientation dependence of coercive magnetic forceof coercive magnetic force

    Increase in coercive force due to preferential c-axis orientation along a circle

    T.Hirose IEEE Trans. Mag. 33. (1997) 2971.

    22

  • Blue: Ga1-xInxN

    Red: GaAlAs

    20 3510

    520470400Emission wavelength(nm)

    InN-composition (%)

    How is local structure in GaInN with low In composition less than 20% which is the critical composition for the phase separation?

    Blue laser for DVD optical storage devicesBlue laser for DVD optical storage devices23

  • InNInN composition dependence of composition dependence of GaInNGaInN XAFSXAFS

    0

    0.05

    0.1

    0.15

    0.2

    27.8 28 28.2 28.4 28.6 28.8 29

    XAFS spectra around In K edge measuredin the fluorescence mode

    1.5%4.5%5.7%

    7.64%10.2%15.85%

    20%Inte

    nsity

    (a. u

    .)

    Photon energy (keV)

    Mole fraction of InN:

    24

  • 0

    5

    10

    15

    20

    25

    0 1 2 3 4 5 6

    Fourier transforms of k 3χ (k)

    over the k range from 3.5 to 14Å -1

    1.5%4.5%5.7%7.64%10.2%15.85%20%|F

    (r)| (

    Å-4 )

    r (Å)

    In-N

    In-Ga (In)Mole fraction of InN:

    Ga or In

    N

    a

    c

    wurtzite crystal structure(a=3.189Å, c=5.185Å for GaN)

    InNInN composition dependence of composition dependence of radial distribution functionsradial distribution functions

    Monotonic decrease in the second peaks from In-Ga(In)

    25

  • InNInN composition dependence of composition dependence of the local structure the local structure

    2

    2.5

    3

    3.5

    4

    0 5 10 15 20

    Inte

    rato

    mic

    dis

    tanc

    e (Å

    )

    Mole fraction of InN (%)

    In-InIn-Ga

    In-N2.17 Å: In-N distance of bulk InN

    3.19 Å: Ga-Ga distance of bulk GaN

    N

    Ga

    InChange of bond angles

    InN composition dependence of atomic distances

    26

  • Deviation from random distribution of Deviation from random distribution of GaGaand In atoms in and In atoms in GaInNGaInN mixed crystalmixed crystal

    0

    2

    4

    6

    8

    10

    12

    0 5 10 15 20

    Coo

    rdin

    atio

    n nu

    mbe

    r

    Mole fraction of InN (%)

    random alloy

    In atom

    Ga atom

    In composition dependence of the 2nd neighbor coordination numbersT. Miyajima phys. Stat. Sol. (b) 228, 45 (2001).

    27

  • What materials are excellent in high speed record/elimination and reliability

    Phase transition storage materials for DVDPhase transition storage materials for DVD

    Recorded mark

    Phase transition materials

    Debye-Scherrer camera

    •AuGeSnTe•GeSbTe•AgInSbTe

    ーAccurate structure analysis with a Debye-Scherrer cameraー

    •High power→amorphous formation by quenching •Low power→crystallization by annealing

    Record&elimination by laser exposure

    28

  • 6.0 8.0 10.0 12.0 14.0 16.0 18.0

    0

    50000

    100000

    400000

    450000

    500000

    inte

    nsity

    (ar

    bi. u

    nit)

    2-theta (deg.)

    18.0 20.0 22.0 24.0 26.0

    0

    10000

    20000

    30000

    20 40 60 80 100 120

    1000

    10000

    inte

    nsity

    (cp

    s)

    2-theta/theta (deg.)

    Ag3.4In3.7Sb76.4Te16.5(+) experiments

    calculationdifference

    With a laboratory source

    X-ray powder diffraction with SR source

    Excellent resolution

    XX--ray power diffraction with SRray power diffraction with SR29

  • 0 100 200 300 400 500 600 700 800 9004.34

    4.35

    4.36

    4.37

    4.38

    4.39

    a (A

    )temperature (K)

    11.2

    11.3

    11.4

    11.5

    11.6

    11.7

    c (A

    )

    -200 -100 0 100 200 300 400 500 600

    temperature (℃)

    A

    B

    C

    a b

    c

    o

    11.2

    76A

    4.355A

    0.2357

    rl = 3.343A rs = 2.955A

    A7, R3m

    rl

    rs

    y x

    o

    z

    r

    z = 0.253a

    86.8 ゚

    r

    R32/R3m

    Temperature dependence of lattice parameteres

    At low temperatureAt high temperature

    •Random occupancy of Ag, In, Sb, Te

    •Simple cubic units

    Fine crystalline structure of Fine crystalline structure of AgInSbTeAgInSbTeAg3.4In3.7Sb76.4Te16.5

    30

    T. Matsunaga Phys. Rev. B64 (2001)184116.

  • z

    yxx

    x

    z z

    y

    y

    GeTe-Sb2Te3 Au25Ge4Sn11Te60 Ag3.4In3.7Sb76.4Te16.5

    •Unique crystalline phase•Poor package :simple cubic, allowance of many vacancies•Random occupancy of component atoms at lattice sites

    Common properties on three materialsCommon properties on three materials31

  • DFB-LDregion

    Modulatorregion

    A package process for fabrication of lasers with various wavelength

    Development of laser diodes for Development of laser diodes for optical communicationsoptical communications

    Control of wave length

    DFB laser diode integrated with wave length modulator for WDM optical communications system

    Narrow-strip selective metal-organic vapor phase epitaxy (MOVPE)

    32

  • XX--ray microray micro--beambeam

    数μmFormation of x-ray micro-beam with asymmetric diffraction

    33

  • Determination of process conditionDetermination of process condition

    40% up on emission efficiency of semiconductor laser

    S.Kimura et al., APL 77(2000) 1286.

    -10 0 10 20 30102

    103104105106107108109

    10101011101210131014

    = 40 µm

    = 30 µm= 25 µm= 20 µm

    = 15 µm= 10 µm

    = 6 µm= 8 µm

    = 4 µm

    Wm = 0 µm

    ∆q/q (´10-3 )0 10 20 30 400.55

    0.60

    0.65

    0.70

    0.75

    Inte

    nsity

    Mask width (μm)

    Com

    posi

    tion

    (x,y

    )

    In composition (x)As composition (y)

    Mask width dependence of lattice parameter

    Mask width dependence of composition (x,y)

    InxGa1-xAsyP1-x

    34

  • XX-- ray fluorescence analysisray fluorescence analysis

    Sample (Si wafer)

    Reflected X-rayIncident X-ray

    Detectors (SC, FPC)

    Wave dispersive (WDX)Analyzing crystals:

    LiF(200), PET(002), multi-layers

    Solar slit

    Incident X-ray Reflected X-ray

    Sample (Si wafer)

    Detector (SSD)

    Energy dispersive(EDX)

    6.5 7 7.5 8E(keV)

    Inte

    nsi

    ty(a

    rbitra

    ry u

    nit)

    EDX

    WDX

    CoK αNiKα

    CoK βFeK β

    SSDPC

    SROptics

    •High sensitivity•Low energy resolution

    •low sensitivity•high energy resolution

    35

  • 4x106 atoms/cm2 = 4 atoms/100μm2

    ≦1.8≦2.1≦2.5≦4.4allowance(x108

    atoms/cm2)

    16G-2G1Gproduction(bit)

    50

    2011

    70

    2008

    100

    2005

    130

    2002

    size(nm)

    ITRS road map

    UltraUltra -- low detection limitlow detection limit

    8x1082x1011Al4x1065x108Cu4x1065x108Ni

    After concentration

    Before concentration

    atoms/cm2

    EDX WDXNative oxide

    Bare Si surfaceHF drop

    HF drop dissolve native oxide automatically.

    DryTo the center

    Concentration of contamination atoms

    Beforeconcentration

    Afterconcentration

    M. Takemura in TOSHIBA

    36

  • Direct observation of fibers in safety tireDirect observation of fibers in safety tire

    SEM image

    ice

    tire

    Fibers stick into ice

    Direct observation of fibers sticking into ice

    press

    fiber

    R&D on safety tire on ice

    X-ray tube

    SR source

    Refractive contrast image

    Difference of absorption

    Sharp edge image

    37

  • space

    fibers

    tireice

    tireice

    ice

    tire

    Fibers stick into ice

    Fibers slip from ice

    press pull

    H. Kishimoto in Sumitomo Rubber Industries

    38

  • Press

    Observation of crush of babbles in AlObservation of crush of babbles in Al

    CCD

    Crush from the bottom side

    X-ray Shock absorber for crush

    Images stored during 2 sec

    Crush from the both sides Crush all1mm

    T. Watanabe in Kobelco Research Institute

    39

  • InIn--situ observation of alloying of situ observation of alloying of galvanized steel by Zngalvanized steel by Zn

    IR heater

    試料

    Holder (quartz)

    slit detector2° 2θ

    Thermocouple

    Ion chamber

    Sample chamber

    I0

    I

    slit

    Melt & Alloy

    Quartz holder

    IR

    Light guideLamp heater

    ZnFe-Zn alloy

    Fe (base)

    Rust preventive coat

    Diffractmeter

    40

  • Alloying process of Zn on steelAlloying process of Zn on steel

    8.0 8.2 8.4 8.6 8.80.0

    0.5

    1.0

    1.5

    2.0

    2.5

    177s

    155s

    133s

    111s

    89s

    67s

    44s

    Zn melt.

    1s

    22s

    Zn (101)

    δ1 (330)

    Norm

    aliz

    ed Inte

    nsi

    ty I/I 0

    2θ / deg.Amount of δ1 crystals ∝ √t(integrated intensities)

    ⇒ Controlled by diffusion processZn-0.14mass%Al

    0 50 100 150 2000.0

    0.2

    0.4

    0.6

    0.8

    1.0

    1.2

    1.4

    Norm

    aliz

    ed

    Peak

    Are

    a

    Time / s

    FeZn10(δ1)480℃

    Variation of diffraction profiles on alloying

    41

    A. Taniyama SPring-8 User Experiment Report 2002A0658.

  • Characterization of inner stress Characterization of inner stress in coats on turbine bladesin coats on turbine blades

    ZrO2

    NiCoCrAlY

    240μm)

    Variation of diffraction profiles on heating

    Gas turbine

    Coat to protect blades from high temperature gas

    Diffractometerfurnace

    Ni3Al(311)

    42

    K. Suzuki SPring-8 User Experiment Report No.8 2001B0063.

  • Temperature dependence of residual stress Temperature dependence of residual stress in bondin bond--coatcoat

    ψZ

    Surface normal

    Diffract plane nomal

    sin2ψ

    Diff

    ract

    ion

    angl

    e2θ

    deg.

    Tc=0.24mm

    2θψ∝constant – Kσsin2ψK=(tanθ0) 2(1+ν)/E

    Temperature dependence of residual stress in bond-coat

    Temperature (K)

    tensile

    compressive

    Softening

    ○ Tc=0.24mm● Tc=0.083mm

    Res

    idua

    l stre

    ss (M

    Pa)

    ν:Poisson’s ratio E:Young’s modulaus

    43

  • XX--ray microray micro--beam with zone platebeam with zone plate

    Focus with zone plate~μm

    44

  • Structural analysis of a single fiberStructural analysis of a single fiberA single fiber

    X-ray

    weighting

    0

    0.2

    0.4

    0.6

    0.8

    1.0

    1.2

    0 1000 2000 3000 4000 5000

    El = 478GPa

    結晶

    PBO (005)

    Stress [MPa]

    Stra

    in o

    f cry

    stal

    (%)

    Stress-strain of a PBO single fiber 0.01mm in diameter

    Structural change at local parts in complex fibers

    M.Kodera in JASRI

    45

  • 0

    10

    40

    30

    20

    ppm

    00.20.40.60.81.01.21.4

    fg

    Cu Zn

    0 25 50 75 100 1250

    25

    50

    75

    100

    125

    X (μm)

    Y (μ

    m)

    Cu in human hear

    10-40 ppm(1 fg = 10-15 g)

    22--D mapping of a very small amount of D mapping of a very small amount of metals with xmetals with x--ray fluorescence analysisray fluorescence analysis

    Influence of special water from deep sea on the body

    46

    Y.Kagoshima Nucl. Instrum. & Methods. A 467-468 (2001) 872.

  • Capacity fading on Li ion battery Capacity fading on Li ion battery during charge/discharge cyclesduring charge/discharge cycles

    Cathode:LiNi0.8Co0.2O2

    ーIn-situ XAFS study on cathode during cycling of batteryーX-ray

    Coin cell

    Ni K-edge XANES spectra of LiNi0.8Co0.2O2

    Coin cell

    47

  • Decrease in capacity Decrease in capacity due to no return of Li into cathodedue to no return of Li into cathode

    Ni

    O

    NiO6

    Li+

    capacity

    capacity

    48

  • Mechanism of the capacity fadingMechanism of the capacity fading

    Initial:distorted NiO6 octahedronAfter fading:regular NiO6 octahedron

    Ni

    O

    NiO6

    Li+

    Jahn-Teller distortion

    T.Nonaka J. Synchrotron rad., 8 (2001) 869.

    49

  • Request to analysis on material Request to analysis on material science in industryscience in industry

    • No detectable with other techniques• How situation : Research, Development,

    Production– R&D:Excellent characterization– Development of process :

    regular measurement according to plan– Test:Quality & Quantity & Time – Response to trouble : Speed

    How can we (SR) reply on request?

    50

  • Situation in JapanSituation in Japan

    • No detectable with other techniques• How situation : Research, Development, Production

    – R&D:Excellent characterizationStructural analysis of thin films of electronic devices

    – Development of process : Determination of process conditions for laserImaging of tire and bobbled Al

    – Test:Quality & Quantity & Time Not actualized in Japanese facilities

    – Response to trouble : SpeedNo answer

    51

  • Industrial Applications in JapanIndustrial Applications in Japan•Films for ULSI, semiconductors•HDD, DVD•Semiconductor laser

    electronics Metals

    Soft Materials Energy & Environment

    •Steel & rust preventive coat •Various coats to prevent heat, stress, etc.•Al including bubbles

    •Batteries: fuel cell & Li-ion •Analysis of contamination elements•Catalysts for environment

    •Tires•Fibers

    Others•Building materials•Catalysis •Insects

    Synchrotron radiation

    XAFS, XPS Diffraction; GIXD, Powder

    Reflectivity, Grazing incidence x-ray fluorescence techniqueFluorescence analysis

    Imaging, Micro-beam

    52