12
### ### ### 3.19 48 3.19 42 632 ### 2800 253 Qflue ### KJ/s ### Qs 6926 KJ/s ### ### Qflue>Qs? #REF! Refuse Thru put #REF! T/dy ### NCV #REF! Kcal/kg ### ### Mw 500 Kg/ton %unburnt #REF! Blowdown 0.22 42 %heat los #REF! 2800 253 Qrefuse #REF! KJ/s RH in air 0.1 Mwpri #REF! Kg/s Mwsec #REF! Kg/s ### Mwflue #REF! Kg/s 1.03 250 hw25deg #REF! KJ/kg hw250deg #REF! KJ/kg hw850deg #REF! KJ/kg Qin req #REF! KJ/s Can Tflue>850deg #REF! Blowdown

Incineration

Embed Size (px)

Citation preview

Symbol0003.19483.194263202800253.2Qflue0KJ/s0Qs6925.5555555556KJ/s00Qflue>Qs?0RefuseThru put0T/dy0NCV0Kcal/kg0.000Mw500Kg/ton%unburnt0%Blowdown0.222222222242%heat loss0%2800253.2Qrefuse0KJ/sRH in air0.1Mwpri0Kg/sMwsec0Kg/s0Mwflue0Kg/s1.0342250hw25deg0KJ/kghw250deg0KJ/kghw850deg0KJ/kgQin req0KJ/sCan Tflue>850deg?0Blowdown14.86111111114014.8611111111362801250.3333244029.722222222234.33322435From SH(2)2.459.583055296.42.96416666671.123.00305555560.0532688.42102.62335.233.91.3051.88274813323.00305555560.05313833.923.00305555565.3925.96722222225.3913833.2429.1312532894102.3
T
P2
P1
L
1
5
11
10
9
8
7
6
4
3
13
12
T
P1
AnalysisProject: PRC Senzhen Incineration PlantTitle: Thermal dynamics analysisBy:EK Gohdate: 20/11/2000(air25)Air density @ 25 degC1.177Kg/m3Flue density @ 25 degC1.177Kg/m3Flue density @ 200 degC0.7483Kg/m3Flue density @ 1300 degC0.2246Kg/m3Cp [email protected]/KgKCp [email protected]/KgKCp [email protected]/KgKCp [email protected]/KgK1.0247assumedCp [email protected]/KgK1.065approxCp [email protected]/KgK1.163assumedCp [email protected]/KgK1.2181assumedAtm air temp25degC298degKFlue Temp @ inlet of boiler850degC1123degKFlue temp @ inlet of superheater1300degC1573degKPri air first pre-heated temp80degC353degKCx Ts of HeaterPri air sec pre-heated temp250degC523degK1 b4 acceptDesired emission Temp200degC473degKV flue @25 DegC23295Nm3/hrContain gases given off frm refuseM flue @25 DegC7.616Kg/sPV/T = CV air pri @25 DegC10616Nm3/hrM air pri @25 DegC3.471Kg/sV air sec @25 DegC7289.3Nm3/hrM air sec @25 DegC2.383Kg/sMoisture content0.01Kg/Kg airMoisture content in refuse500Kg/TonRefuse thru-put per line150Ton/dyNCV refuse1450Kcal/KgNo of line10lineEstimated unburnt0.02Estimated Heat loss0.02NCV fuel10000Kcal/Kg41868KJ/KgFuel cost$1,000$/TonUnit rate of power sold$150.00Per MWhrKnown enthalpy stateh1 = hg @ 37b2802KJ/KgKh3 @ 34.3b = h10 @ 4b3303KJ/KgKh4 @ 0.16b2208KJ/KgKh5 = h6192KJ/KgKh7 = h8546KJ/KgKh9 @37b632KJ/KgKh11=h@4b,300C3067KJ/KgKh12 = hf@4b605KJ/KgKh13 = hf@37b1066KJ/KgKOther assumptionBoiler pressure37barBoiler saturated steam temp246degCSuperheater pressure34.3barSuperheater steam temp435degCCondenser pressure0.1barCondenser saturated temp45.8degCH(2) Expansion valve pressure4barH(2) Expansion valve temp before water injection414degCH(2) Expansion valve controlled temp300degCH(2) saturated temp @4b143.6degCH(1) expansion vlv pressure4barH(1) expansion vlv temp = Tsat @4bar143.6degCDeaerater tank pressure3barDeaerater tank outlet temp130degCFeedwater temp150degCDiff press of FD fan (A2)90mbarassumedIsentropic eff0.9assumedFlue velocity in superheater6m/sassumedFlue velocity in stack3m/sassumedAir velocity in fan duct12m/sassumedCpf Cooling water4.181KJ/KgKCooling Water Inlet Temp27degCLimit of Cooling water discharge37degCdelta T=10degCRemarks:1Values in red are dependent on selected operating condition.Do not change without changing these parameters.2Values in blue are dependent on conditions in PRC.Plse change accordingly.3Values in green are selected operating condition.Plse change accordingly.IncinerationQin refuse per line=Mrefuse x NCVrefuse10539.69KJ/sActual Qin refuse per line=(1-%unburnt-%heatloss)xQin refuse10118.10KJ/sMw in pri air=M pri air x %moisture0.035Kg/sMw in sec air=M sec air x %moisture0.024Kg/sMw in refuse=M refuse x %moisture0.868Kg/sMw in flue gas=Total M water content0.927Kg/shw@850deg,atm4958KJ/Kghw@250deg,atm2975KJ/Kghw@25deg,atm2675KJ/KgTo heat pri air, sec air, all moisture to 850 degCQin pri=Qair(250 to 850) + Qw(250 to 850)3114.36KJ/sQin sec=Qair(25 to 850) + Qw(25 to 850)2720.94KJ/sQin refuse water=Mw refuse x(hw25 to hw850)1981.77KJ/sTotal Qin required7817.07KJ/sIs Qin refuse > Qin required ?0Can the temp b4 boiler be higher or0more steam than the design load can begenerated?BoilerEnergy air side = Energy steam sideMsi =Mwi=MfluexCp(850-200)/(h9-h1)3.111Kg/s11.1993413893Ton/hrAt Air Heater (1)MsH1=Mpair x Cp(80-25)/(h1-h13)0.113Kg/sAt Air Heater (2)MsH2=Mpair x Cp(250-80)/(h11-h13)0.261Kg/sMass balance for turbineMst=(Msi - MsH1)x10 Lines29.980Kg/sMst + Mcw - Ms - MsH3 - 10MsH2= 0Ms+MsH3-Mcw= Mst - 10MsH227.373Kg/sEnergy balance for Deareater (refer to Sheet-Deareater)SolvingMsH33.179Kg/sMcw0.542Kg/sMs24.735Kg/sIs energy in balance?0At Superheater and feedwater heaterQ superheater=Mst(h3-h1)15019.76KJ/sQ feedwater heater=10xMwi(h9-h8)2675.40KJ/sQ required frm fuel= Q sh + Q fw17695.16KJ/sM a2= Qtotal/(CpT1300-CpT200)11.48Kg/sValue include 1.5 time excess airV a2@1300DegC= M a2 / [email protected]/sV a2@200DegC= M a2 / [email protected]/sV a2@25DegC= M a2 / [email protected]/sDiameter of furnance=Va2@1300/Vel3.29mDiameter of Stack=Va2@200/Vel2.55mDiameter of FD Fan=Va2@25/Vel1.02mTemp after superheater384degCApprox value onlyFD Fan Pwr @60%eff146.30KWDisplacement35113.04m3/hrAt FurnanceMass fuel consumed=Ma2(CpT1300-CpT25)/Cvfuel0.486Kg/s42.02Ton/dyFuel cost per year$15,339,056per yrAt TurbineMech power output=Ms(h3-h4) x Eff isen24.4MWRevenue on power alone$32,030,521per yrAt CondenserActual enthalpy h4'=h3 - (h3-h4)xEff isen2317.5KJ/kgQ rejection= Ms(h4' - h5)52.57MWM cooling water=Qrej/Cpw(T37-T27)1257.46Kg/s4526.84Ton/HrToo large, reservior water may not be sufficient. Probably a cooling tower will be more appropriateThermal AnalysisTotal Qin frm refuse=10xMrefuse x NCVrefuse105396.88Total Qin frm fuel= Mfuel x NCV fuel20364.52Thermal Efficiency= Pwr out/Total Qin19.38%
Mst
Ms
Mcw
MsH3
10MsH2
DeareaterMass balance for turbineMst=29.98Ms+MsH3-Mcw=27.37Therefore,Ms=27.37- MsH3 + Mcweqn(1)At Deareaterh13,10MsH110MsH2, h12MsH3, h11Ms+10MsH1+10MsH2+MsH3Ms, h6h7(Ms + MsH3 + 10MsH1 + 10MsH2)h7=Msxh6 + MsH3xh11 + 10MsH1xh13 +10MsH2xh12Ms(h7-h6) - MsH3(h11-h7)=10MsH1(h13-h7) + 10MsH2(h12-h7)354Ms-2521MsH3=741.27eqn(2)At Expansion Valveh3,10MsH2 + MsH3Mcw, h810MsH2(h3-h11)h11,10MsH2 + MsH3 + Mcw(10MsH2 + MsH3)h3 + Mcwxh8=(10MsH2 + MsH3 + Mcw)h1110MsH2(h3-h11)=Mcw(h11-h8) + MsH3(h11-h3)Mcw(h11-h8) - MsH3(h3-h11)=10MsH2(h3-h11)2521Mcw-236MsH3=615.24eqn(3)Sub (1)in(2)354(27.37-MsH3+Mcw) - 2521MsH3=741.27-354Mcw + MsH3(2521+354)=354x27.37 - 741.27-354Mcw+2875MsH3=8948.63eqn(4)(4)x7.12=>-2521Mcw+20474.2231638418MsH3=63727.42eqn(5)(5)+(3)0Mcw+20238.2231638418MsH3=64342.66SolvingMsH3=3.1792643658Kg/sMcw=0.5416693471Kg/sMs=24.74Kg/sChecking for balancing (At Deareator)Energy in=Msxh6 + MsH3xh11 + 10MsH1xh13 +10MsH2xh12=17281.4192373394Energy Out=(Ms + MsH3 + 10MsH1 + 10MsH2)h7=17281.4192373394Balance?=0=>Answer is correct!
Flow diagramLegendSteam flowAirflowKg/sKJ/Kgkg/sKJ/kgKbardegCm3/sdegC11.48001328941.16538429.9803303Superheater34.343511.48001328941.318113000.542546Fuel5.24533030.54254637130Furnance44144143.624.7353303Common steam headerTo other line34.34356.328306711.48001328941.0049FD fan(2)4300Turbine3.11128029.82537246Superheated steam header3.1793067PWR =24.4MW43000.11328020.2613067372467.61617083331.12474300Heater(1)3.47084222221.00492007.61617083331.263Heater(2)3.47084222221.00842.948888888925Boiler8508024.73522080.145.8FD fan(1)Cooling water3.1116320.2616050.113106637150150T/dy RefuseSec air2.38319613891.00494143.6372462.024805555625common return header0.1131066Incinerator4143.61.130106624.7351923143.60.145.82.6076053.179306711.48001328941.12473.47084222221.03423143.63300200250feedwater31.651546heater3713024.735192345.831.651546Common feed header31.1096323130Deareater371500.54254637130
T
P2
P1
L
1
5
11
10
9
8
7
6
4
3
13
12
T