22
Improved Design Assessment of LTB of I-Section Members via Modern Computational Methods 4/20/2016 2016 NASCC D. White, Georgia Tech 1 IMPROVED DESIGN ASSESSMENT OF LTB OF I-SECTION MEMBERS VIA MODERN COMPUTATIONAL METHODS Improved Design Assessment of LTB of ISection Members via Modern Computational Methods Donald W. White (with credits to Dr. Woo Yong Jeong & Mr. Oguzhan Toğay) School of Civil and Environmental Engineering Georgia Institute of Technology Atlanta, GA USA 2016 NASCC The STEEL Conference 2

Improved Design Assessment LTB I-Section Members Modern ... Design Assessment... · Improved Design Assessment of LTB of I-Section Members via Modern Computational Methods 4/20/2016

  • Upload
    others

  • View
    6

  • Download
    0

Embed Size (px)

Citation preview

Page 1: Improved Design Assessment LTB I-Section Members Modern ... Design Assessment... · Improved Design Assessment of LTB of I-Section Members via Modern Computational Methods 4/20/2016

Improved Design Assessment of LTB of I-Section Members via Modern Computational Methods

4/20/2016

2016 NASCCD. White, Georgia Tech 1

IMPROVED DESIGN ASSESSMENT OF LTB OF I-SECTION MEMBERS

VIA MODERN COMPUTATIONAL METHODS

Improved Design Assessment of LTB                     of I‐Section Members                                 

via Modern Computational Methods

Donald W. White (with credits to Dr. Woo Yong Jeong & Mr. Oguzhan Toğay)

School of Civil and Environmental Engineering

Georgia Institute of Technology

Atlanta, GA    USA

2016 NASCC  The STEEL Conference2

Page 2: Improved Design Assessment LTB I-Section Members Modern ... Design Assessment... · Improved Design Assessment of LTB of I-Section Members via Modern Computational Methods 4/20/2016

Improved Design Assessment of LTB of I-Section Members via Modern Computational Methods

4/20/2016

2016 NASCCD. White, Georgia Tech 2

IMPETUS FOR THIS WORK

• Efficient, more rigorous assessment of 

Web‐tapered members with

Multiple taper

Steps in the cross‐section (CS) geometry

Doubly‐ & singly‐symmetric CS geometry

Ordinary frame members

including

• Impact of general lateral & torsional bracing

• Benefits of end restraint & member continuity across braced points

• Influence of general moment gradient                                                         and other load & displacement boundary condition effects 3

IMPETUS FOR THIS WORK

• Lack of sufficient rigor of Direct Analysis (DM) type approaches   for assessment of 3D member limit states & stability bracing requirements

• Lack of sufficient computational efficiency of advanced         (plastic zone) analysis methods 

• Difficulty of correlation between advanced analysis results and Specification resistances

• Desire for improvement upon traditional K & Cb factor approximations

• Desire for improvement upon traditional strength interaction eqs.4

Page 3: Improved Design Assessment LTB I-Section Members Modern ... Design Assessment... · Improved Design Assessment of LTB of I-Section Members via Modern Computational Methods 4/20/2016

Improved Design Assessment of LTB of I-Section Members via Modern Computational Methods

4/20/2016

2016 NASCCD. White, Georgia Tech 3

INTRODUCTION

• Column inelastic effective length factors have been used extensively in the past to achieve improved accuracy and economy in  the design of steel frames

• Using a buckling analysis with inelastic stiffness reduction factors, , the following effects can be captured quite rigorously & efficiently for columns, beams & beam‐columns:

Loss of member rigidity due to the spread of plasticity

Various end restraints 

Various bracing constraints and other load & displacement boundary conditions

Continuity across braced points 5

6

AISC a FOR COLUMNS W/ NONSLENDER ELEMENTS

. ( . ) . ( . ) c n e a eP P P0 9 0 877 0 9 0 877 e a eP P

.

a y

e

P

Pc n

c y

P

P0 658 for .

40 390

9e c n

y c y

P P

P P

.

ne

PP

0 877

.

.a y

n

P

Pc n

c y

P

P

0 877

0 658a y

n

P

Pc n

c y

P

P

0.877

ln ln 0.658

ln 0.877 ln 0.658c yc na

c y c n

PP

P P

2.724 lnu u

a

c y c y

P P

P P

for 0.390u

c y

P

P

a 1for 0.390u

c y

P

P

Page 4: Improved Design Assessment LTB I-Section Members Modern ... Design Assessment... · Improved Design Assessment of LTB of I-Section Members via Modern Computational Methods 4/20/2016

Improved Design Assessment of LTB of I-Section Members via Modern Computational Methods

4/20/2016

2016 NASCCD. White, Georgia Tech 4

ANALYSIS STEPS

• Build a model of the structure

• Apply the desired LFRD factored loads. These loads produce the internal axial forces Pu

• Reduce EIx, EIy, ECw and GJ by  SRF  =  0.9 x 0.877x a• Solve for the inelastic buckling loadVary the applied loads by the scale factor Calculate τa at the current load level

Iterate until the  assumed in the calculation of a is the same as that determined    from the buckling analysis

The resulting Pu is a rigorous calculation of cPn accounting for       all member continuity, bracing and/or end restraint effects 7

EXAMPLE COLUMN INELASTIC BUCKLING ANALYSIS

8

• SABRE2 (using the inelastic reduction factor a) gives

cPn = 1153 kip

• This result matches with a traditional iterative calculation (Yura 1971) using an inelastic  K = 0.861, based on a = 0.633

Page 5: Improved Design Assessment LTB I-Section Members Modern ... Design Assessment... · Improved Design Assessment of LTB of I-Section Members via Modern Computational Methods 4/20/2016

Improved Design Assessment of LTB of I-Section Members via Modern Computational Methods

4/20/2016

2016 NASCCD. White, Georgia Tech 5

COLUMN STIFFNESS REDUCTION FACTORS (SRFs)

9

/u yP P

4 1u ub

y y

P P

P P

2.724 lnu ua

c y c y

P P

P P

Net SRF

10

BEAM ltb MODEL, COMPACT & NONCOMPACT WEB MEMBERS

0.9b n b e ltb eM M M For where uL

yc b yc

MFm m

F M

.For b max LTBL

yc b yc

MFm

F M

4 2

2

2 2 26.76 2

ltb

yc

Y X

FX m Y

E

.max LTB pc ycM R M

11

1.951

pc p p ycr

t t tL

pc yc

m

R L L FLY m

r r r EF

R F

2 xc oS hX

J

where:

1ltb

Page 6: Improved Design Assessment LTB I-Section Members Modern ... Design Assessment... · Improved Design Assessment of LTB of I-Section Members via Modern Computational Methods 4/20/2016

Improved Design Assessment of LTB of I-Section Members via Modern Computational Methods

4/20/2016

2016 NASCCD. White, Georgia Tech 6

COLUMN VS. BEAM  FACTORS FOR A W21X44

11

0.0

0.2

0.4

0.6

0.8

1.0

1.2

0.0 0.2 0.4 0.6 0.8 1.0 1.2

Beam LTB TauFactor

Column TauFactor

0.223

,max

u u

c ye b

P M

P M

REQUIREMENTS FOR INELASTIC LTB ANALYSIS

• The software must rigorously include ECw in addition to EIx, EIy & GJ in the context of doubly‐symmetric I‐section members

• For singly‐symmetric members, the behavior associated with the monosymmetry factor, βx, also must be included 

• The 0.9 x ltb factor should be applied equally to the member elastic stiffness contributions EIy, ECw and GJ for the execution of the buckling analysis

• Required number of elements:

At least 4 elements per unbraced length are required to capture the behavior for frame elements based on cubic Hermitian interpolation of the transverse displacements and twists along the element length 12

Page 7: Improved Design Assessment LTB I-Section Members Modern ... Design Assessment... · Improved Design Assessment of LTB of I-Section Members via Modern Computational Methods 4/20/2016

Improved Design Assessment of LTB of I-Section Members via Modern Computational Methods

4/20/2016

2016 NASCCD. White, Georgia Tech 7

GENERAL PURPOSE THIN‐WALLED OPEN‐SECTION FRAME ELEMENT

13

Implemented in SABRE2 (available at white.ce.gatech.edu/sabre)

ELASTIC LTB BENCHMARK

14

Page 8: Improved Design Assessment LTB I-Section Members Modern ... Design Assessment... · Improved Design Assessment of LTB of I-Section Members via Modern Computational Methods 4/20/2016

Improved Design Assessment of LTB of I-Section Members via Modern Computational Methods

4/20/2016

2016 NASCCD. White, Georgia Tech 8

ELASTIC LTB BENCHMARK

15

Typ.14 dof prismatic element (10 elem) stepped using avg. depth in ea. elem.

Typ.14 dof prismatic element (10 elem) stepped using smallest depth in ea. elem.

BASIC BEAM‐COLUMN EXAMPLE USING SABRE2

16

Dimensions:

At left end:

bft = 6 intft = 0.2188 inbfc = 6 intfc = 0.3125 in h = 12 intw = 0.125 in

At right end:

bft = 6 intft = 0.2188 inbfc = 6 intfc = 0.3125 inh = 24 intw = 0.125 in

Fy = 55 ksi

Simply-supported end conditions

1800 kip-in

11.3 kips

From AISC/MBMA Design Guide 25

144 in90 in 

Point Brace, i = 0.825 k/in

SABRE2 available at: white.ce.gatech.edu/sabre

Page 9: Improved Design Assessment LTB I-Section Members Modern ... Design Assessment... · Improved Design Assessment of LTB of I-Section Members via Modern Computational Methods 4/20/2016

Improved Design Assessment of LTB of I-Section Members via Modern Computational Methods

4/20/2016

2016 NASCCD. White, Georgia Tech 9

SRF DIAGRAM

17

SABRE2 VS DG25

18

vs

1.173 DG25 Solution A

1.138 DG25 Solution C

Page 10: Improved Design Assessment LTB I-Section Members Modern ... Design Assessment... · Improved Design Assessment of LTB of I-Section Members via Modern Computational Methods 4/20/2016

Improved Design Assessment of LTB of I-Section Members via Modern Computational Methods

4/20/2016

2016 NASCCD. White, Georgia Tech 10

0.0

0.2

0.4

0.6

0.8

1.0

1.2

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5

Mn /M

p

Lb /Lp

BEAM ltb MODEL – RESULTS (W21X44 BEAMS) 

19

Moment Gradient(Cb = 1.75)

AISC Specification Chapter F

Uniform Moment

Moment Gradient,Inelastic Buckling Analysis (SABRE2)

0.0

0.2

0.4

0.6

0.8

1.0

1.2

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5

Mn /M

p

Lb /Lp

BEAM ltb MODEL – RESULTS (W21X44 BEAMS) 

20

Moment Gradient(Cb = 1.75)

AISC Specification Chapter F

Uniform Moment

Moment Gradient,Inelastic Buckling Analysis (SABRE2)

Page 11: Improved Design Assessment LTB I-Section Members Modern ... Design Assessment... · Improved Design Assessment of LTB of I-Section Members via Modern Computational Methods 4/20/2016

Improved Design Assessment of LTB of I-Section Members via Modern Computational Methods

4/20/2016

2016 NASCCD. White, Georgia Tech 11

W21X44 BEAM LTB RESISTANCE VS. POINT BRACING STIFFNESS

(Flexurally & torsionally simply-supported end conditions, Uniform Moment, One intermediate point brace at compression flange, Lbr1 = 8.1 ft, Lbr2 = 4.9 ft )

21

Inelastic Buckling Analysis

AISC 2016 Commentary Provisions including “Lq”

W21X44 BEAM LTB RESISTANCE VS. POINT BRACING STIFFNESS

(Flexurally & torsionally simply-supported end conditions, Uniform Moment, One intermediate point brace at compression flange, Lbr1 = 8.1 ft, Lbr2 = 4.9 ft )

22

Inelastic Buckling Analysis

AISC 2016 Commentary Provisions including “Lq”

Page 12: Improved Design Assessment LTB I-Section Members Modern ... Design Assessment... · Improved Design Assessment of LTB of I-Section Members via Modern Computational Methods 4/20/2016

Improved Design Assessment of LTB of I-Section Members via Modern Computational Methods

4/20/2016

2016 NASCCD. White, Georgia Tech 12

W21X44 BEAM LTB RESISTANCE VS. POINT BRACING STIFFNESS

(Flexurally & torsionally simply-supported end conditions, Uniform Moment, One intermediate point brace at compression flange, Lbr1 = 8.1 ft, Lbr2 = 4.9 ft )

23

Inelastic Buckling Analysis

AISC 2016 Commentary Provisions including “Lq”

TRANSFER GIRDER ASSESSMENT

24

465.1D2

D,413.3

D

D,32

t

D2,109

t

D2,160

t

D,40.1

M

M

ccp

c

w

cp

w

c

wy

p

P

3 at Lb = 45 ft = 135 ft

Lateral brace (TYP)

xx

xx

xx

xx

0.5P

Critical Middle Unbraced Length: Cb = 1.10 K = 0.848

Girder Factored Load Capacity: Pmax = 361 kip … from manual calcs.

Page 13: Improved Design Assessment LTB I-Section Members Modern ... Design Assessment... · Improved Design Assessment of LTB of I-Section Members via Modern Computational Methods 4/20/2016

Improved Design Assessment of LTB of I-Section Members via Modern Computational Methods

4/20/2016

2016 NASCCD. White, Georgia Tech 13

INELASTIC BUCKLING MODE

25

Pmax = 376 kip

MOMENT & SRF DIAGRAMS

26

MOMENT

SRF

Page 14: Improved Design Assessment LTB I-Section Members Modern ... Design Assessment... · Improved Design Assessment of LTB of I-Section Members via Modern Computational Methods 4/20/2016

Improved Design Assessment of LTB of I-Section Members via Modern Computational Methods

4/20/2016

2016 NASCCD. White, Georgia Tech 14

CROSS‐SECTION UNITY CHECK

27

BEAM‐COLUMN SRF

• Calculate the UC value with respect to the cross‐section strength from Eqs. H1‐1

UC = Pu /c Pye + 8/9 Mu /b Mmax for  Pu /cPye > 0.2

UC = Pu /2c Pye + Mu/b Mmax for  Pu /cPye <  0.2

• Use the UC value in the a & ltb eqs. instead of  Pu /c Pye & Mu /bMmax

• Determine the angle

• Calculate the net SRF applied to ECw , EIy & GJ as

28

max

/tan

/

u c ye

u b

P Pa

M M

ea b ltbo o

g

ASRF x x R

A0.9 0.877 1 0.9

90 90

Page 15: Improved Design Assessment LTB I-Section Members Modern ... Design Assessment... · Improved Design Assessment of LTB of I-Section Members via Modern Computational Methods 4/20/2016

Improved Design Assessment of LTB of I-Section Members via Modern Computational Methods

4/20/2016

2016 NASCCD. White, Georgia Tech 15

BEAM‐COLUMN ltb MODEL – W21X44 RESULTS 

Simply‐supported members, moment gradient loading

29

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

0.0 0.2 0.4 0.6 0.8 1.0

cPn/

cPy

cMn /cMp

Fully‐Effective Cross‐Section Plastic Strength

L = 7.5 ft

L = 15 ft

L = 10 ft

/b n b pM M

ROOF GIRDER EXAMPLE (ADAPTED FROM AISC 2002)

30

(G' = 1 kip/in)

2 in

Page 16: Improved Design Assessment LTB I-Section Members Modern ... Design Assessment... · Improved Design Assessment of LTB of I-Section Members via Modern Computational Methods 4/20/2016

Improved Design Assessment of LTB of I-Section Members via Modern Computational Methods

4/20/2016

2016 NASCCD. White, Georgia Tech 16

ROOF GIRDER EXAMPLE

31

= 0.921b Mn = 230 kip‐ftc Pn = 18.4 kips

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 10 20 30 40 50 60 70

Net SRF

Position along girder length (ft)

SRF, GRAVITY LOAD CASE AT BUCKLING LOAD 

32

Page 17: Improved Design Assessment LTB I-Section Members Modern ... Design Assessment... · Improved Design Assessment of LTB of I-Section Members via Modern Computational Methods 4/20/2016

Improved Design Assessment of LTB of I-Section Members via Modern Computational Methods

4/20/2016

2016 NASCCD. White, Georgia Tech 17

CLEAR‐SPAN FRAME EXAMPLE

33

SYM

BUCKLING MODE & CONTROLLING LIMIT STATE INFORMATION

34

1.2 (Dead + Collateral + Self-Weight) + 1.6 Uniform Snow

Page 18: Improved Design Assessment LTB I-Section Members Modern ... Design Assessment... · Improved Design Assessment of LTB of I-Section Members via Modern Computational Methods 4/20/2016

Improved Design Assessment of LTB of I-Section Members via Modern Computational Methods

4/20/2016

2016 NASCCD. White, Georgia Tech 18

AXIAL FORCES AT STRENGTH LIMIT

35

MOMENTS AT STRENGTH LIMIT

36

Page 19: Improved Design Assessment LTB I-Section Members Modern ... Design Assessment... · Improved Design Assessment of LTB of I-Section Members via Modern Computational Methods 4/20/2016

Improved Design Assessment of LTB of I-Section Members via Modern Computational Methods

4/20/2016

2016 NASCCD. White, Georgia Tech 19

SRF VALUES AT STRENGTH LIMIT

37

bMmax VALUES AT STRENGTH LIMIT

38

Page 20: Improved Design Assessment LTB I-Section Members Modern ... Design Assessment... · Improved Design Assessment of LTB of I-Section Members via Modern Computational Methods 4/20/2016

Improved Design Assessment of LTB of I-Section Members via Modern Computational Methods

4/20/2016

2016 NASCCD. White, Georgia Tech 20

cPye VALUES AT STRENGTH LIMIT

39

CROSS‐SECTION UNITY CHECKS AT STRENGTH LIMIT

40

Page 21: Improved Design Assessment LTB I-Section Members Modern ... Design Assessment... · Improved Design Assessment of LTB of I-Section Members via Modern Computational Methods 4/20/2016

Improved Design Assessment of LTB of I-Section Members via Modern Computational Methods

4/20/2016

2016 NASCCD. White, Georgia Tech 21

ADVANTAGES OF BUCKLING ANALYSIS APPROACH

• More general and more rigorous handling of all types of bracing, end restraint & continuity effects

• Substantially cleaner, more streamlined & less error prone member strength calculations

• Consistent bracing stiffness & member strength assessments

• More accurate capture of 

Moment gradient and other load & displacement b.c. effects

Tapered & stepped member geometry effects 

via a continuous representation of the corresponding SRF values along the member lengths

41

COMPLEMENTARY RESEARCH 

• Trahair, N.S. and Hancock, G.J. (2004). “Steel member strength by inelastic lateral buckling,” Journal of Structural Engineering, ASCE, 130(1), 64–69.

• Trahair, N.S. (2009). “Buckling analysis design of steel frames,” Journal of Constructional Steel Research,65(7), 1459-63.

• Trahair, N.S. (2010). “Steel cantilever strength by inelastic lateral buckling,” Journal of Constructional SteelResearch, 66(8-9), pp 993-9.

• Kucukler, M., Gardner, L., Macorini, L. (2014). “A stiffness reduction method for the in-plane design ofstructural steel elements”, Engineering Structures, 73, 72–84.

• Kucukler, M., Gardner, L., Macorini, L. (2015a). “Lateral–torsional buckling assessment of steel beamsthrough a stiffness reduction method”, Journal of Constructional Steel Research, 109, 87–100.

• Kucukler, M., Gardner, L., and Macorini, L. (2015b). “Flexural-torsional buckling assessment of steelbeam-columns through a stiffness reduction method”. Engineering Structures, 101, 662-676.

• Kucukler, M., Gardner, L., and Macorini, L. (2015c). “In-plane design of steel frames through a stiffnessreduction method”. Journal of Constructional Steel Research. in press.

• Gardner, L. (2015). “Design of Steel Structures to Eurocode 3 and Alternative Approaches”. Proceedings,International Symposium on Advances in Steel and Composite Structures, Hong Kong, 39-51.

42

Page 22: Improved Design Assessment LTB I-Section Members Modern ... Design Assessment... · Improved Design Assessment of LTB of I-Section Members via Modern Computational Methods 4/20/2016

Improved Design Assessment of LTB of I-Section Members via Modern Computational Methods

4/20/2016

2016 NASCCD. White, Georgia Tech 22

DESIGN METHOD REQUIREMENTS

• Traditional Methods

Effective Length Method (ELM)

∅ , ,

∅ , ,

2nd‐Order Elastic Analysis

– Joint out‐of‐alignment ∆(gravity only load cases)

• Advanced Methods

AISC (2016) App. 1.2 (Elastic Analysis)

∅ ∅

∅ , ,

2nd‐Order Elastic Analysis

– Stiffness reductions 0.8 & 0.8

– Joint out‐of‐alignment ∆– Member out‐of‐straightness 

– For TWOS members, 43

INELASTICBUCKLINGANALYSIS

} Direct Analysis Method (DM)

∅ , ,

∅ , ,

2nd‐Order Elastic Analysis 

– Stiffness reductions 0.8 & 0.8

– Joint out‐of‐alignment ∆

AISC (2016) App. 1.3 (Inelastic Analysis)

2nd‐Order Inelastic Analysis

– 0.9 & 0.9

– Spread of yielding including residual stress effects

– Joint out‐of‐alignment ∆– Member out‐of‐straightness 

– For TWOS members, 

INELASTICBUCKLINGANALYSIS

}

INELASTICBUCKLINGANALYSIS

}

THANKS FOR YOUR ATTENTION! 

I will be happy to address                                                           any questions 

44

SABRE2 available at: white.ce.gatech.edu/sabre