Iib-10.Numerical Integration 80-83

Embed Size (px)

Citation preview

  • 8/9/2019 Iib-10.Numerical Integration 80-83

    1/1

    NUMERICAL IN TEGRATION

    S y n o p s i s :

    1. Trapezoidal Rule : Let y = f(x) be a continuous function defined on [a, b]. Divide the interval on

    x-axis into n equal parts each of length h =n

    ab . Let a = x 0, x 1, x 2, , x n =b be the abscissae of

    the successive points of division and y r = f(x r) for r = 0, 1, 2, , n. Then = dx)x(fb

    a

    = ++++ ...)x(f2)x(f2)x(f[2h

    210 2f(x n1 ) + f(x n)]

    = )}]x(f...)x(f)x(f{2)x(f)x(f[2h

    1n21n0 +++++

    = )]y...yy(2)yy[(2h

    1n21n0 +++++

    2. Simpsons Rule : Let y = f(x) be a continuous function defined on [a, b]. Divide the interval on x-

    axis into n = 2m (even integer) equal parts each of length h =m2

    abn

    ab = . Let a = x 0, x 1, x 2, ,x n

    = x 2m = b be the abscissae of the successive points of division and y r = f(x r) for r = 0, 1, 2n. Then

    ...)x(f4)x(f2)x(f4)x(f[3h

    dx)x(f 3210

    b

    a

    ++++= )]x(f)x(f4 m21m2 ++

    = )}x(f...)x(f)x(f{4)}x(f)x(f[{3h

    1m231m20 +++++

    + )}]x(f...)x(f)x(f{2 2m242 +++

    = )]y...yy(4)yy[(3h 1m231m20 +++++ +

    )]y...yy(2 2m242 +++

    Powered by www.myengg.com

    Powered by www.myengg.com