Iem Workshop Ec8 2012

Embed Size (px)

Citation preview

  • 8/20/2019 Iem Workshop Ec8 2012

    1/108

    1

    Seismic Design to EC8

    Jack Pappin, Arup, Hong Kong

    Topics

    • Seismic hazard

    • Site response / Liquefaction

    • Design of buildings to EC8

    • Foundation design to EC8

    • Other ground effects

  • 8/20/2019 Iem Workshop Ec8 2012

    2/108

    2

    Ground motion

    Plate tectonics

  • 8/20/2019 Iem Workshop Ec8 2012

    3/108

    3

    Observed seismicity

    Seismic activity 1990 to 1999 within 100km of the surface: Source USGS website 

    Section through South America

    Plate tectonics

  • 8/20/2019 Iem Workshop Ec8 2012

    4/108

    4

    Earthquake mechanism

    Time = 0

    Time = 100 years

    Time = 101 years

    Slippage causing Energy release

    Earthquake effects

    Moderate

    Intensity

    Low

    Intensity

    High

    Intensity

  • 8/20/2019 Iem Workshop Ec8 2012

    5/108

    5

    MSK Intensity scale

    III - Weak Felt indoors by a few people

    V - Strong Buildings tremble, unstable objects overturned

    VI - Sl ight damage Sl ight damage to a few br ick bui ld ings

    VII - Building damage Large cracks in weak buildings, slight to r.c. building

    VIII - Some destruction Partial collapse of weak buildings, a few slopes fail

    IX - General damage Large cracks in r.c. buildings, liquefaction observed

    X - General destruction Most brick buildings collapse, many landslides

    XI - Catastrophe Most buildings collapse

    XII - Landscape changes Practically all structures destroyed

    IV - Largely observed Felt indoors by many people, doors and dishes rattle

    II - Very weak Recorded by instruments

    Intensity 7

    Newcastle 1989

  • 8/20/2019 Iem Workshop Ec8 2012

    6/108

    6

    Intensity 9Taiwan 1999

      gnitude

    Magnitude is a measure of the size (or energy release)of the earthquake.

    Each unit increase in magnitude scale is about a three

    times increase in ground motion for the same distance

    from the event. It is also about a 30 times increase in

    energy release.

  • 8/20/2019 Iem Workshop Ec8 2012

    7/108

    7

    MagnitudeEnergy

    Release

    Step 2 - Calculation

    Ground motion

    Step 1 - desk study

  • 8/20/2019 Iem Workshop Ec8 2012

    8/108

    8

    Step 1 - desk study

     M8.5 and 7.9 Southern Sumatra Earthquakes of

    12 September 2007 and M7.0 of 13 September 2007 

  • 8/20/2019 Iem Workshop Ec8 2012

    9/108

    9

    Seismic Hazard of Western Indonesia – April 2008

    What measure should be used to

    define ground motion

    Intensity - measure of peak observed damage potential

    Peak motions - acceleration, velocity or displacement

    Ground motion

  • 8/20/2019 Iem Workshop Ec8 2012

    10/108

    10

    Peak motions - acceleration, velocity or displacement

    ROCK SOIL

    Ground motion

    12 Sep 2007 Sumatra

  • 8/20/2019 Iem Workshop Ec8 2012

    11/108

    11

    Frequency content - response spectra

    What measure should be used to

    define ground motion

    Intensity - measure of peak observed damage potential

    Peak motions - acceleration, velocity or displacement

    Ground motion

    Response spectrum

  • 8/20/2019 Iem Workshop Ec8 2012

    12/108

    12

    30 Sep 2009 Sumatra

    30 Sep 2009 Sumatra

  • 8/20/2019 Iem Workshop Ec8 2012

    13/108

    13

    Ground motion - Calculation

    Key information for a seismic hazard assessment

    Seismic source zones

     Active faults

     Areas of diffuse seismicity

     Attenuation relationship

    The behaviour of a measure of ground

    motion as a function of the distance

    from the source of energy, (EERI 1984).

     Attenuation relationship

    Example for Peak Ground Acceleration

    Distance (km)

       P  e  a

       k  g  r  o  u  n

       d   A  c  c  e

       l  e  r  a

       t   i  o  n

       (  g   )

    101 100 1000

    1.0

    0.5

    0

    M = 7.5

    M = 6.5

    M = 5.5

    Magnitude

    measure of the size

    (or energy release)

    of the earthquake.

  • 8/20/2019 Iem Workshop Ec8 2012

    14/108

    14

    Example of Response Spectra from an event at10km in the Western USA

    Fundamental Period (sec)

       P  e  a

       k  g  r  o  u  n

       d   A  c  c  e

       l  e  r  a

       t   i  o  n

       (  g   )

    10 2

    1.0

    0.5

    0

    M = 7.5

    M = 5.5

    M = 6.5 for Eastern USA

    M = 6.5

     Attenuation relationship

    Variability of Attenuation relationship

    100

    10

    Distance from energy source (km)

       P  e  a

       k  a  c  c  e

       l  e  r  a

       t   i  o  n

       (   %  g

       )

    1

    10

    6

    40

    100

  • 8/20/2019 Iem Workshop Ec8 2012

    15/108

    15

    Ground motion - Calculation

    2 basic methods to determine design ground motion

    to determine the ground motion at

    the site due to maximum expected

    earthquakes

    Deterministic

    Probabilistic to determine the ground motion at

    the site which has a desired annualprobability of being exceeded

    For each source the maximum magnitude

    that is expected is estimated.

    Deterministic seismic hazard analysis

    STEP 2 - distance determination

    R 3R 1

    R 2 

    Source 2

    Source 1 Source 3

    Site

    STEP 1 - source model

    M 1 M 3

    M 2 

    R 1

    STEP 3 - attenuation

    M 3

    M 2 

    M 1

    Distance

    STEP 4 - report

    Y =

    Y 3

    Y 1

    Y 2 

    R 2 R 3

    Controlling

    earthquake

  • 8/20/2019 Iem Workshop Ec8 2012

    16/108

    16

    Probabilistic seismic hazard analysis

    Source 2

    Source 1 Source 3

    Site

    STEP 1 - source model

    STEP 2 - rate of earthquake activity

    Magnitude M 

    3

    2

    1

    STEP 3 - attenuation

    M = 6 

    Distance R 

    M = 7 

    STEP 4 - result for all M and R

    Parameter value y * 

    7

     Aerial photography

    Field mappingGround investigation data

    Hard copy geological maps

     ArcInfo export

    geological maps

    Satellite imagery (IKONOS)

    GIS

    Maps

    Hazards

    Geohazard studies

  • 8/20/2019 Iem Workshop Ec8 2012

    17/108

    17

    Geology & tectonics

    Geomorphology

    Slip rates

    Observed seismicity

    Seismic source zones and activity rates

    Fault sources -

    Geology & tectonics

    Observed seismicityObserved seismicity

     Areal sources -

    2. Instrumental data

    Complied by by several agenciese.g. ISC, USGS.

    Recent data is more complete

    since 1920 for M > 6

    since 1963 for M > 4.5

    1. plus 2. = Earthquake catalogue

    Observed seismicity

    1. Historical data

    Based on Intensity

    more recent data is more complete

  • 8/20/2019 Iem Workshop Ec8 2012

    18/108

    18

    Tectonic

    structure

    Kuala

    Lumpur 

    -7.5

    -5.0

    -2.5

    0.0

    2.5

    5.0

    7.5

    10.0

    95.0 97.5 100.0 102.5 105.0 107.5 110.0

    Longitude

       L  a

       t   i   t  u   d  e

    5 to 5.4

    5.5 to 5.9

    6 to 6.9

    7 to 7.9

    8 to 8.9

    9

    500km

  • 8/20/2019 Iem Workshop Ec8 2012

    19/108

    19

    Subduction zone model

    0

    100

    200

    300

    0 100 200 300 400 500 600 700 800

    Distance (km)

       D  e  p

       t   h   (   k  m

       )

    5.0 to 5.4

    5.5 to 5.9

    6.0 to 6.97.0 to 7.98.0 to 8.9

    9

    Kuala Lumpur 

     Activity with depth for subduction events

    0 50 100 150 200

    0-20

    20-30

    30-40

    40-60

    60-80

    80-100

    100-130

    130-160

    160-200

    200-250

    250-300

       D  e  p   t   h   (   k  m   )

    number of events

  • 8/20/2019 Iem Workshop Ec8 2012

    20/108

    20

    Seismic activity in Subduction

    0.001

    0.01

    0.1

    1

    10

    4 5 6 7 8 9

    Magnitude (M)

       A  n  n  u  a

       l  n  u  m

       b  e  r  o

       f  e  v  e  n

       t  s   >   M

    18001920

    1964

    Design

    0.001

    0.01

    0.1

    1

    10

    100

    4 5 6 7 8 9

    Magnitude (M)

       A  n  n  u  a   l  n  u  m   b  e  r  o   f  e  v  e  n   t  s   >   M

    1800

    1920

    1964

    Design

       1   0   t  o   4   0   k  m

       4   0   t  o   1   0   0   k  m

    0.001

    0.01

    0.1

    1

    10

    4 5 6 7 8 9

    Magnitude (M)

       A  n  n  u  a   l  n  u  m   b  e  r

      o   f  e  v  e  n   t  s   >   M

    1920

    1964

    Design

       1   0   0   t  o

       2   0   0   k  m

    0.001

    0.01

    0.1

    1

    10

    4 5 6 7 8 9

    Magnitude (M)

       A  n  n  u  a   l  n  u  m   b  e  r  o   f  e  v  e  n   t  s   >   M

    1964

    Design

       2   0   0   t  o

       3   0   0   k  m

    Sumatra

    Fault

    model

    -7.5

    -5.0

    -2.5

    0.0

    2.5

    5.0

    7.5

    10.0

    95.0 97.5 100.0 102.5 105.0 107.5 110.0

    Longitude

       L  a   t   i   t  u   d  e

    5 to 5.4

    5.5 to 5.9

    6 to 6.9

    7 to 7.9

    Series9

    Series10

  • 8/20/2019 Iem Workshop Ec8 2012

    21/108

    21

    Sumatra

    Faultmodel

    0

    100

    200

    300

    0 100 200 300 400 500 600 700 800

    Distance (km)

       D  e  p

       t   h   (   k  m

       )

    5.0 to 5.4

    5.5 to 5.9

    6.0 to 6.9

    7.0 to 7.9

    Kuala Lumpur 

    SumatraFault  Area to the north

    and east of the

    Sumatra Fault

    Subduction

    zone

    Sumatra fault activity rates

    0.001

    0.01

    0.1

    1

    10

    4 5 6 7 8 9

    Magnitude (M)

       A  n  n  u  a   l  n  u  m   b  e  r  o   f  e  v  e  n   t  s   >   M

    1800 - 2005

    1920 - 2005

    1964 - 2005

    17mm/yr slip

    Background

    Total

  • 8/20/2019 Iem Workshop Ec8 2012

    22/108

    22

    93 96 99 102 105 108 111

    -12

    -9

    -6

    -3

    0

    3

    6

    9

    12

    Sumatra

    Fault  M    a   l    a    y    P    e   n   i    n   s   u   l    a   

    52 mm/yr 

    (N10oE)

    57 mm/yr 

    Seulimeum

    Renun

    Dikit 

    Semangko

    Palembang

    Pekan Baru

    Penang

    Singapore

       L  a

       t   i   t  u   d  e

       (  o   ) Barumun

    Medan

    Sumani 

    Longitude (o)

    S   u   m  

    a  t    r   a  

    S   u   b   d    u   c  t    i    o  n  

    Eurasian

    Plate

    Indian-AustralianPlate 60 mm/yr 

    (N17oE)

    500 km0

    S   u  m  

    a  t   r   a  

    Java

    Kuala Lumpur 

    Ground-Motion

     Attenuation Relationships

    for Sumatra Earthquakes

    Developed by Megawati

    (NTU, Singapore)

     Attenuation Subduction earthquakes (Megawati 2006)

    0.001

    0.01

    0.1

    1

    10

    0 200 400 600 800 1000

    Distance (km)

       1  s  e  c  o  n   d   R   S   A   (  m   /  s   2   )

    9

    8

    7

    6

    5

    Standard deviation = * 1.8

  • 8/20/2019 Iem Workshop Ec8 2012

    23/108

    23

     Attenuation Sumatra Fault earthquakes (Megawati 2006)

    0.001

    0.01

    0.1

    1

    10

    0 200 400 600 800 1000

    Distance (km )

       1  s  e  c  o  n   d   R   S   A   (  m   /  s   2   )

    9

    8

    7

    6

    5

    Standard deviation = * 2.6

    Normal

    distribution

    0

    0.2

    0.4

    0.6

    0.8

    1

    -3 -2 -1 0 1 2 3

    Standard deviations from mean

       L   i   k  e   l   i   h  o  o   d

  • 8/20/2019 Iem Workshop Ec8 2012

    24/108

    24

    Calculated response spectra

    0

    0.1

    0.2

    0.3

    0.4

    0.5

    0.6

    0.7

    0.8

    0.01 0.1 1 10

    Period (sec)

       S  p  e  c   t  r  a   l   A  c  c  e   l  e  r  a   t   i  o  n   (  m   /  s   2   )

    2% in 50 year 

    10% in 50 year 

    50% in 50 year 

    5% damping

       1   3

       6   3

       1   1   3

       1   6   3

       2   1   3

       2   6   3

       3   1   3

       3   6   3

       4   1   3

       4   6   3

       5   1   3

       5   6   3

       6   1   3

       6   6   3

       7   1   3

       7   6   3

       8   1   3

       8   6   3

    9.25

    8.25

    7.25

    6.25

    5.25

    0

    2

    4

    6

    8

    10

       %    C  o  n   t   i   b  u   t   i  o  n   t  o   H  a  z  a  r   d

    Distance (km)Magnitude (M)

    2% in 50 year (0.2sec)

    De-aggregation2% in 50 year 

    0.2 second period

    1833 type event

    Subduction 0 to 40km deep

    Subduction 40 to 100km deep

    Subduction 100 to 300km deep

    Sumatra Fault

    Northeast Sumatra

    Sunda Plate

       1   3

       6   3

       1   1   3

       1   6   3

       2   1   3

       2   6   3

       3   1   3

       3   6   3

       4   1   3

       4   6   3

       5   1   3

       5   6   3

       6   1   3

       6   6   3

       7   1   3

       7   6   3

       8   1   3

       8   6   3

    9.25

    8.25

    7.25

    6.25

    5.25

    0

    2

    4

    6

    8

    10

    12

    Distance (km)Magnitude (M)

    2% in 50 year (1s)

    1 second period

       1   3

       6   3

       1   1   3

       1   6   3

       2   1   3

       2   6   3

       3   1   3

       3   6   3

       4   1   3

       4   6   3

       5   1   3

       5   6   3

       6   1   3

       6   6   3

       7   1   3

       7   6   3

       8   1   3

       8   6   3

    9.25

    8.25

    7.25

    6.25

    5.25

    0

    2

    4

    6

    8

    10

    12

    14

    16

    18

    20

    Distance (km)Mag

    2% in 50 year (5s)5 second period

  • 8/20/2019 Iem Workshop Ec8 2012

    25/108

    25

    Scenario events

    0

    0.1

    0.2

    0.3

    0.4

    0.5

    0.6

    0.7

    0.8

    0.01 0.1 1 10

    Period (sec)

       S  p  e  c   t  r  a   l   A  c  c  e   l  e  r  a   t   i  o  n   (  m   /  s   2   )

    2% in 50 year 10% in 50 year 50% in 50 year  

    Subd M9.3@530 * 1.9 Subd M9.0@530 * 1.7 Subd M8.7@550 * 1

    Sum Flt M8@400 * 6 Sum Flt M8@400 * 3.5 Sum Flt M8@400 * 1.5

    Local M6@130 * 2.3 Local M6@210 * 2 Local M6@240 * 1

    5% damping

    Incorporation of uncertainty

    Example of a logic tree analysis

     Att enuat ion Magn itu de Maximum

    model distribution magnitude

    0.18

  • 8/20/2019 Iem Workshop Ec8 2012

    26/108

    26

    Time histories

    0

    0.1

    0.2

    0.3

    0.4

    0.5

    0.6

    0.7

    0.8

    0.01 0.1 1 10

    Period (sec)

       S  p  e  c   t  r  a   l   A  c  c  e   l  e  r  a   t   i  o  n   (  m   /  s

       2   )

    2% in 50 year 10% in 50 year 50% in 50 year  

    2% in 50y rs - S hort 10% in 50y rs - S hort 50% in 50y rs - S hort

    2% in 50y rs - Long 10% in 50y rs - Long 50% in 50y rs - Long

    5% damping

    Time histories

    Time [sec]

    4038363432302826242220181614121086420

       A  c  c  e

       l  e  r  a

       t   i  o  n

       [  m   /  s  e  c

       2   ]

    0.3

    0.25

    0.2

    0.15

    0.1

    0.05

    0

    -0.05

    -0.1

    -0.15

    -0.2

    -0.25

     

    T i m e [ s e c ]

    8 007 507 0 06 506 0055 05 0 045 040 035 03 002 502 001 5 01 0 05 00

       A  c  c  e

       l  e  r  a

       t   i  o  n

       [  m   /  s  e  c

       2   ]

    0 .2

    0 . 1 5

    0 .1

    0 . 0 5

    0

    - 0 . 0 5

    - 0 . 1

    - 0 . 1 5

    - 0 . 2

     

    T i m e [ s e c ]

    80 075 070 065 060 055 050 045 040 035 030 025 020 015 010 0500

       A  c  c  e

       l  e  r  a

       t   i  o  n

       [  m   /  s  e  c

       2   ]

    0. 2

    0 . 1 5

    0. 1

    0 . 0 5

    0

    - 0 . 0 5

    - 0 . 1

    - 0 . 1 5

    .

    5

    .2

    15

    .1

    5

    0

    5

    .1

    15

    .2

    5

    Long Period

    Short Period Same scale

  • 8/20/2019 Iem Workshop Ec8 2012

    27/108

    27

    2% in 50 year bedrock motion

    0

    1

    2

    3

    4

    5

    6

    7

    0.01 0.1 1 10

    Period (sec)

       S  p  e  c   t  r  a   l   A  c  c  e   l  e  r  a   t   i  o  n   (  m   /  s   2   )

     Hong Kong

     Kuala Lumpur 

    New York (IBC2006)

    5% damping

  • 8/20/2019 Iem Workshop Ec8 2012

    28/108

    28

    USGS catalogue since 1972 - 0 to 50 km depth

    USGS catalogue since 1972 - 50 to 150 km depth

  • 8/20/2019 Iem Workshop Ec8 2012

    29/108

    29

    USGS catalogue since 1972 - 150 to 300 km depth

    USGS catalogue since 1972 - 300 to 500 km depth

  • 8/20/2019 Iem Workshop Ec8 2012

    30/108

    30

    Section R1

  • 8/20/2019 Iem Workshop Ec8 2012

    31/108

    31

    Section R2

    Section R3

  • 8/20/2019 Iem Workshop Ec8 2012

    32/108

    32

    Magnitude recurrence plots

    0

    1

    2

    0.01 0.1 1 10

       B  e   d  r  o  c   k   S  p  e  c   t  r  a   l  a  c  c  e   l  e  r  a   t   i  o  n   (  m   /  s   2   )

    Structural period (s)

    Semporna

    Sandakan

    Kota Kinabalu

    Kuala Lumpur 

    Penang

    Kuantan

    Kuching

    10% in the next 50 year bedrock response spectra

    5% damping

  • 8/20/2019 Iem Workshop Ec8 2012

    33/108

    33

    Comparison with Eurocode 8 rules (3.2.1(4))

    0.15 0.4 2

    Comparison with Eurocode 8 rules (for bedrock)

  • 8/20/2019 Iem Workshop Ec8 2012

    34/108

    34

    0

    1

    2

    0.01 0.1 1 10

       S  p  e  c   t  r  a   l  a  c  c  e   l  e  r  a   t   i  o  n

       (  m   /  s   2   )

    Structural period (s)

    Semporna

    Sandakan

    Kota Kinabalu

    Kuala Lumpur 

    Penang

    Kuantan

    Kuching

    Seismicdesign notrequired

    Seismicdesign

    requiredwith ductile

    detailing

    Comparison with Eurocode 8 rules (for bedrock)

    5% damping

    Concern with seismicity near to KL

  • 8/20/2019 Iem Workshop Ec8 2012

    35/108

    35

    Events observed since 2004

    2.2 2.7 3.2 3.7 4.2

    0.1

    1

    10

          A     n     n     u     a       l     e     x     c     e     e       d     a     n     c     e

         r     a      t     e

    Magnitude

    10% in the next 50 year bedrock response spectra

    0

    1

    2

    0.01 0.1 1 10

       S  p  e  c   t  r  a   l  a  c

      c  e   l  e  r  a   t   i  o  n

       (  m   /  s   2   )

    Structural period (s)

    Kuala Lumpur 

    KL with localevents

    Seismicdesign notrequired

    Seismicdesign

    requiredwith ductile

    detailing

  • 8/20/2019 Iem Workshop Ec8 2012

    36/108

    36

    Bedrock

    ?

    Site Response

    • 2 week visit two weeks after

    the event

    Mexico City - 1985

  • 8/20/2019 Iem Workshop Ec8 2012

    37/108

    37

    Mexico City - 1985

    Earthquake source

    Mexico City

    Epicentre

    Magnitude 8.1

    D

    D

    D

  • 8/20/2019 Iem Workshop Ec8 2012

    38/108

    38

    Mexico City

    5 km

    Mexico City

    5 km

  • 8/20/2019 Iem Workshop Ec8 2012

    39/108

    39

    Television studio

    Mexico City

    5 km

  • 8/20/2019 Iem Workshop Ec8 2012

    40/108

    40

    Recorded ground motion

    Recorded ground motion

  • 8/20/2019 Iem Workshop Ec8 2012

    41/108

    41

    Response spectra

    Observed building damage

    43%

  • 8/20/2019 Iem Workshop Ec8 2012

    42/108

    42

    Notable non-damage

    Lake bed

    ground

    conditions

  • 8/20/2019 Iem Workshop Ec8 2012

    43/108

    43

    Cyclic triaxial testing of

    lake bed clay

    Nottingham University

    Response spectra

  • 8/20/2019 Iem Workshop Ec8 2012

    44/108

    44

    IBC 2000+ Classification of soil profile types

    The upper 30m of the soil profile are considered

    Soil Profile Shear wave SPT Undrained shear  

    Type velocity (m/sec) N value strength (kPa)

     A - Hard rock >1,500 - -

    B - Weak to medium rock 750 - 1,500 - -

    C - Dense stiff soil 375 - 750 > 50 > 100

    D - Medium dense firm soil 180 - 375 15 - 50 50 - 100

    E - Loose soft soil < 180 < 15 < 50

    F - Deep soft soils that require site specific investigations

    Site Response Effects – US approach

    IBC 2000+ Soil amplification factors

    Site Response Effects

     Approximate Peak Ground Acceleration (g)

       S  o

       i   l   A  m  p

       l   i   f   i  c  a   t   i  o

      n   F  a  c

       t  o  r

    E

    D

    C

    B A

    0

    1

    2

    3

    4

    0 0.1 0.2 0.3 0.4 0.5 0.6

    Short period motion (0.2 sec)

    Soft soil

    Hard Rock

    Long period motion (1 sec)

    E

    D

    C

    B A

  • 8/20/2019 Iem Workshop Ec8 2012

    45/108

    45

    Eurocode classification

    IBC

    Eurocode classification

  • 8/20/2019 Iem Workshop Ec8 2012

    46/108

    46

    Eurocode classification

    Eurocode classification

    0

    1

    2

    3

    0.1 1 10

       S  o   i   l  a  m  p   l   i   f   i  c  a   t   i  o  n

       f  a  c   t  o  r

    Structural period (s)

    EC8 : 10% in 50 year bedrock response spectra

    Class D

    Class C

    Class B

  • 8/20/2019 Iem Workshop Ec8 2012

    47/108

    47

    Eurocode classification

    0

    1

    2

    3

    0.1 1 10

       S

      o   i   l  a  m  p   l   i   f   i  c  a   t   i  o  n

       f  a  c   t  o  r

    Structural period (s)

    EC8 : 10% in 50 year bedrock respons e spectra

    Class D

    Class C

    Class B

    IBC 2000+ Soil amplification factors

     Approximate Peak Ground Acceleration (g)

    D

    C

    B

    0

    1

    2

    3

    4

    0 0.1 0.2 0.3 0.4 0.5 0.6

    Short period motion (0.2 sec)

    Soft soil

    Hard Rock

    Long period motion (1 sec)

    D

    C

    B

    Oasys SIREN site response analysis

    Soil Surface

    Bedrock

    Output motion

    F

      = F

    Input motion

  • 8/20/2019 Iem Workshop Ec8 2012

    48/108

    48

    Gsec

    Gmax or G0

    Soil shear behaviour 

     

    G0

    Gsec

    Backbone

    curve

    log

    Gsec

    G0

    1.0Modulus

    reduction curve

    G0(ij) = vs(ij)2 where G0(ij) is the elastic shear modulus

    is the bulk density of soil and

    vs(ij) is the shear wave velocity through soilVs(vh)

    Vs(hh)

    Vs(hv)

    v

    h1h2

    Soil

    triaxial

    specimen

    Bender

    element

    1

    1

    2 2

    33

    Mid-plane

    pore

    pressure

    probe

    Porous

    stone

    Bender

    element

    (vs(vh))

    Base

    pedestal

    Bender element embedded in base platen

    Bender element (vs(hv))

    Bender element (vs(hh))

    Bender element probe

    Mid-plane pore pressure probeBender element probe

    Hall-effect gauge (radial)Hall-effect gauge (axial)

  • 8/20/2019 Iem Workshop Ec8 2012

    49/108

    49

    Cyclic shear strain (%)

    Gsec

    G0

    1.0

    010.0001 0.001 0.01 0.1 10

    10.0001 0.001 0.01 0.1 10

       D  a  m  p

       i  n  g

      r  a   t   i  o

       (   %   )

    0

    10

    2030

    PI =0

    50

    15

    100

    200

    Variation

    withstrain

    Geophysical methods for G0

    Up hole Down hole

    G0 = VS2

    Cross hole - simple Cross hole - accurate

  • 8/20/2019 Iem Workshop Ec8 2012

    50/108

    50

    Down hole

    seismic conetesting

    Oasys SIREN is a computer programme for a non-linear model

    which solves the one dimensional site response problem in the

    time domain using the explicit finite difference method.

    Soil Surface

    Output motion

    F

      = F

    Input motion

    Bedrock

    Displacement

  • 8/20/2019 Iem Workshop Ec8 2012

    51/108

    51

    Site Class Definition – EC8

    Class C profiles, 10% in 50-year ground mot ion, long period

    0

    1

    2

    3

    4

    5

    6

    7

    0.01 0.1 1 10

    Period (s)

       S  p  e  c   t  r  a   l   R  a   t   i  o

    CK1OR4BH3 Alex RdBH 2 Alex RdBH ARN5BH ARN1BH 1936-3BH 799-TB8BH 2111-5BH 1263-4BH 1808-6BH 91F-86BH 703-69ABH 1222-6BH 460-14BH 2122-15BH 348-31

     Average

    +2 Sigma

    +1 Sigma

     Average

    -1 Sigma

    -2 Sigma

    Class E profiles, 10% in 50-year ground motion, long period

    0

    1

    2

    3

    4

    5

    6

    7

    8

    9

    0.01 0.1 1 10

    Period (s)

       S  p  e  c

       t  r  a

       l   R  a

       t   i  o

    BH 233-11BH 1982-25BH 1754-4BH 1626-25BH 1627-23BH 1144-505-1BH 24B-PP2BH 144K-5BH 2131-2BH 1493-13BH 262-D19BH 424-9DTL/20/PZS/VSTDTL/31/VSTDTL/43/PZM/VSTDTL/45/VSTM2019M2020

     Average

    +2 Sigma

    +1 Sigma

     Average

    -1 Sigma

    -2 Sigma

    Spectral

    Ratios

    B

    D

  • 8/20/2019 Iem Workshop Ec8 2012

    52/108

    52

    Resulting Spectra

    10% in 50 year - Long period

    0

    0.5

    1

    1.5

    2

    0.1 1 10Period (s)

       S  p  e  c   t  r  a   l   A  c  c  e   l  e  r  a   t   i  o  n   (  m   /  s   /  s   )

    Bedrock

    Site Class C

    Site Class D

    Site Class E

    Site Class F

    B

    C

    D

    S

    Displacement spectra

    10% in 50 year - Long period

    0.01

    0.1

    1

    0.1 1 10Period (s)

       S  p  e  c   t  r  a   l   D   i  s  p   l  a  c

      e  m  e  n   t   (  m   )

    Bedrock

    Site Class C

    Site Class D

    Site Class E

    Site Class F

    B

    C

    D

    S

  • 8/20/2019 Iem Workshop Ec8 2012

    53/108

    53

    Design spectra

    0

    1

    2

    0.1 1 10

    Structural Period (s)

       S  p  e  c   t  r  a   l   A  c  c  e   l  e  r  a   t   i  o  n   (  m   /  s   2   )

    Site Class B

    Site Class C

    Site Class D

    Site Class E

    Site Class F

    B

    C

    D

    S

    Bedrock

    Spectral ratios

    0

    1

    2

    3

    4

    5

    0.1 1 10

       S  p  e  c   t  r  a   l   R  a   t   i  o

    Period T

    10% in 50 year spectral ratios

    Site Class B

    Site Class C

    Site Class D

    Site Class S

    0

    1

    2

    3

    0.1 1 10

       S  o   i   l  a  m  p   l   i   f   i  c  a   t   i  o  n

       f  a  c   t  o  r

    Structural period (s)

    EC8 : 10% in 50 year bedrock response spectra

    Class D

    Class C

    Class B

  • 8/20/2019 Iem Workshop Ec8 2012

    54/108

    54

    Eurocode classification for KL / Penang

    0

    1

    2

    0.1 1 10

       S  p  e  c   t  r  a   l   A  c  c  e   l  e  r  a   t   i  o  n

       (  m   /  s   2   )

    Structural Period (s)

    10% in 50 year design spectra

    Site Class C

    Site Class D

    Site Class S

    C Equation

    D Equation

    E Equation

    C 1.6 0.4 1.1 10.4

    D 2.5 0.9 1.6 4.6

    S1 3.2 1.6 2.4 2.4

    ag = 0.175 m/s2

    0

    1

    2

    0.01 0.1 1 10

       S  p  e  c   t  r  a   l  a  c  c  e   l  e  r  a   t   i  o  n

       (  m   /  s   2   )

    Structural period (s)

    Semporna

    Sandakan

    Kota Kinabalu

    Kuala Lumpur 

    Penang

    Kuantan

    Kuching

    Seismicdesign notrequired

    Seismicdesign

    requiredwith ductile

    detailing

    Comparison with Eurocode 8 rules (for bedrock)

    5% damping

  • 8/20/2019 Iem Workshop Ec8 2012

    55/108

    55

    Comparison with IBC rules

    0

    1

    2

    0.1 1 10

       S  p  e  c

       t  r  a   l  a  c  c  e   l  e  r  a   t   i  o  n   (  m   /  s   2   )

    Structural period (s)

    IBC: (2/3 2% in 50 year) response spectra

    KL Rock

    KL Soil C

    KL Soil D

    KL Soil S

    seismicdesign notrequired

    Seismic designrequired with no

    ductility

    Seismic designrequired with

    ductility

    Comparison with IBC rules

    0

    1

    2

    0.1 1 10

       S  p  e  c   t  r  a   l  a  c  c  e   l  e  r  a   t   i  o  n

       (  m   /  s   2   )

    Structural period (s)

    IBC: (2/3 2% in 50 year) respo nse spectraBedrock

    Kuala Lumpur 

    Kota Kinabalu

    Semporna

    seismicdesign notrequired

    Seismic designrequired with

    ductility

  • 8/20/2019 Iem Workshop Ec8 2012

    56/108

    56

    Comparison

    with IBC rules

    0

    1

    2

    3

    0.1 1 10

       S  p  e  c   t  r  a

       l  a  c  c  e   l  e  r  a   t   i  o  n   (  m   /  s   2   )

    Structural period (s)

    IBC: (2/3 2% in 50 year) respon se spectraSoil Class D

    Kuala Lu mpur 

    Kota Kinabalu

    Semporna

    seismicdesign notrequired

    Seismic designrequired with

    ductility

    Comparison with

    Eurocode 8 rules (with soil)

    0

    1

    2

    0.01 0.1 1 10

       B  e   d  r  o  c   k   S  p  e  c   t  r  a   l  a  c  c  e   l  e  r  a   t   i  o  n   (  m   /  s   2   )

    Structural period (s)

    Semporna

    Sandakan

    Kota Kinabalu

    Kuala Lumpur 

    Penang

    Kuantan

    Kuching

    Group D ; S = 1.35

    Semporna D

    KK D

    KL D

  • 8/20/2019 Iem Workshop Ec8 2012

    57/108

    57

    0

    1

    2

    3

    0.01 0.1 1 10

       S  p  e  c   t  r  a   l  a  c  c  e   l  e  r  a   t   i  o  n   (  m   /  s   2   )

    Structural period (s)

    10% in 50 year response spectraSoil Class D

    Kuala Lumpur 

    Kota Kinabalu

    Semporna

    EC 8 Ductile

    EC 8 Design

    Comparison

    with EC 8

    Possible EC8 Zoning map for Malaysia

  • 8/20/2019 Iem Workshop Ec8 2012

    58/108

    58

    0

    1

    2

    0.01 0.1 1 10

       S  p  e  c   t  r  a   l  a  c  c  e   l  e  r  a   t   i  o  n

       (  m   /  s   2   )

    Structural period (s)

    Semporna

    Sandakan

    Kota Kinabalu

    Kuala Lumpur 

    Penang

    Kuantan

    Kuching

    Seismicdesign notrequired

    Seismicdesign

    requiredwith ductile

    detailing

    Comparison with Eurocode 8 rules (for bedrock)

    5% damping

    Eurocode classification for KL / Penang

    0

    1

    2

    0.1 1 10

       S  p  e  c   t  r  a   l   A  c  c  e

       l  e  r  a   t   i  o  n

       (  m   /  s   2   )

    Structural Period (s)

    10% in 50 year design spectra

    Site Class C

    Site Class D

    Site Class S

    C Equation

    D Equation

    E Equation

    C 1.6 0.4 1.1 10.4D 2.5 0.9 1.6 4.6

    S1 3.2 1.6 2.4 2.4

    ag = 0.175 m/s2

  • 8/20/2019 Iem Workshop Ec8 2012

    59/108

    59

    Possible EC8 Zoning map for Malaysia

    8%g6%g

  • 8/20/2019 Iem Workshop Ec8 2012

    60/108

    60

    Liquefaction

    Liquefaction

  • 8/20/2019 Iem Workshop Ec8 2012

    61/108

    61

    Liquefaction

    Philippines 1989

    Turkey 1999Liquefaction

  • 8/20/2019 Iem Workshop Ec8 2012

    62/108

    62

    No Liquefaction

    BUT

    When you are designing the structure,

    can you rely on liquefaction happening?

    Turkey 1999

    Liquefaction

    Standard method of assessing the likelihood of liquefaction

    500 10 20 30

    0.2

    40

    0.1

    0.3

    0.4

    0.5

    Corrected SPT N value (N1)   A  v  e  r  a  g  e  p  e  a

       k  s

       h  e  a  r  s

       t  r  e  s  s   /  v  e  r   t

       i  c  a

       l  e

       f   f  e  c

       t   i  v  e  s

       t  r  e  s  s

    Percent fines (%) 35 15

  • 8/20/2019 Iem Workshop Ec8 2012

    63/108

    63

    Estimation of shear stress

    10 0.2 0.4 0.6

    15

    0.8

    20

    10

    5

    0

    Stress reduction factor r d

       D  e  p

       t   h   (  m   )

    25

    Modify soil Densify Vibroflotation

    Dynamic compaction

    Displacement piling

    Stabilise Grouting

    Improve drainage

    Liquefaction

    How to overcome

  • 8/20/2019 Iem Workshop Ec8 2012

    64/108

    64

    Vibro-replacement

    Ground Improvement

    • Typical methods include stone

    columns, dynamic compaction,

    grouting, soil cement mixing,

    dewatering.

    • Suitability of method must bechecked by field trials.

    • For example stone columns do not

    work well with a high fines content

    (>15%).

    Modify soi l Densi fy Vibrof lo tat ion

    Dynamic compaction

    Displacement piling

    Stabilise Grouting

    Improve drainage

    Change foundation Float

    Pile

    Liquefaction

    How to overcome

  • 8/20/2019 Iem Workshop Ec8 2012

    65/108

    65

    Liquefaction

    How to overcome: Float

    Liquefied soil

    Shearfailure

    Basement void

  • 8/20/2019 Iem Workshop Ec8 2012

    66/108

    66

    Liquefaction

    How to overcome: Pile

    Liquefied soilDuctile

    detailing

    Liquefaction - Lifelines

    Loose backfillFlow of

    liquefied

    soil

    Jet grout walls

    Flotation

    Stone columns

    Hashash et al, 2001

  • 8/20/2019 Iem Workshop Ec8 2012

    67/108

    67

    Building Design to EC8

    134

    Background to Eurocodes

    • Set of unified design codes bringing together structural,civil, and geotechnical disciplines

    •  Adopted by all 28 member states of the European Union

    • Conflicting national standards withdrawn by March 2010

    • Main objective is:

    “the elimination of technical obstacles to trade and theharmonisation of technical specifications” 

    (European Committee for Standardisation)

  • 8/20/2019 Iem Workshop Ec8 2012

    68/108

    68

    How are they Organised?

    Eurocode Basis of Design

    EN 1990

    Eurocode1

     Actions onStructures

    Eurocode2

    Design ofConcreteStructures

    Eurocode3

    Design of SteelStructures

    Eurocode4

    Design ofCompositeSteel andConcreteStructures

    Eurocode5

    Design ofTimber

    Structures

    Eurocode6

    Design ofMasonry

    Structures

    Eurocode7

    GeotechnicalDesign

    Eurocode8

    Design ofStructures forEarthquakeResistance

    National Annex

    Eurocode9

    Design of AluminiumStructures

    From Bond & Harris

  • 8/20/2019 Iem Workshop Ec8 2012

    69/108

    69

    Eurocode 8 - Part 1: General Rules

    Eurocode 8 – Parts 2 to 6

  • 8/20/2019 Iem Workshop Ec8 2012

    70/108

    70

    Eurospeak

    Loads  Actions

    Dead LoadsPermanent Actions

    ImposedLoads

    Variable Actions

    ‘DesignValue’

    CharacteristicValue

    Construction Execution

    140

    Eurospeak• Principles: Denoted by ‘P’ after the clause number – mandatory requirements

    •  Application Rules: Generally recognised rules that comply with the principles and satisfytheir requirements

    • Example

  • 8/20/2019 Iem Workshop Ec8 2012

    71/108

    71

    141

    Eurostyle

    • General, Non-prescriptive, Flexible

    • “Performance Specification for Design”

    Pros•Gives designer freedomto choose appropriatemethod•Economies are possible•Allows for evolving designmethods

    •Can be applied to widerange of design situationsin different locations

    Cons

    •Can be daunting for

    those with little design

    experience

    •Less straightforward to

    use

    •Could be ambiguous

    142

    Design Philosophy

    • Limit State Design is adopted in all Eurocodes

    • Defined in EN 1990

    • Fundamentally, all ULS and SLS shall be considered andverified where applicable

    • Verification of Limit States should be carried out by eitherthe partial factor, or probabilistic methods

    • Important Considerations:- Design Working Life

    - Design Situations, e.g. normal use, transient, accidental, seismic

  • 8/20/2019 Iem Workshop Ec8 2012

    72/108

    72

    Limit State Design Philosophy

    d d   R E  

    d  M k repF d    a X F  E  E  ;;       

    d  M k repF d    a X F  R R ;;       

    Probability of Failure (Eurocode Target

  • 8/20/2019 Iem Workshop Ec8 2012

    73/108

    73

    145

    The Partial Factor Method

    Input‘Characteristic’

    Values

    MaterialParameters

     X k 

    Geometry

    ak 

     Actions

    F rep

    ‘Design’Values

    MaterialParameters

     X k ×γ m =X d 

    Geometry

    ak + ∆a = ad 

     Actions

    F rep×γ F = F d 

    CalculationModel

    CalculateDesign

    Resistance

    R d =f ( X d ,ad )

    CalculateDesign Effect

    of Actions

    E d =f (F d , X d ,ad )

    ULS verified?

    R d > E d ?

    146

    q factor 

    displacement

    force

    elastic

    Real behaviour 

    Sd

    Design force

    (= elastic / q)

  • 8/20/2019 Iem Workshop Ec8 2012

    74/108

    74

    EC8 detailing DCL low ductility; q = 1.5

     

    Lc

    0.6Sc

    Sb

    Densified zones

    Beam

       C  o   l  u  m  n

    Sc

    Sb < 0.75x effective depth of beam

    20 x minimum main bar diameter 

    The lesser of the column dimension

    400 mm

    The larger of column dimension

    Lc larger of Length of lapped joints, minimum 3transverse reinforcement bars

    Diameter of transverse reinforcement bars not less than 6 mm or ¼of the maximum diameter of the longitudinal bars

    Sc min of

    EC8 detailing DCM moderate ductility; q = 3.9

          L     c

          S     c

    Lb

    Sb

    Densified zones

    Beam

    C

    ol

    u

    m

    n

    Horizontal reinforcement in beam-column joints not less than that in the critical region

    of columns

    24 times the stirrup diameter 

    8 x smallest main bar diameter 

    beam depth / 4225 mm

    Lb > beam depth

    8 x minimum main bar diameter 

    Sc < minimum of half the width of the column confined concrete core

    175 mm

    1/6 clear height of the column

    Lc > maximum of Largest column section dimension

    450mm

    Note that the shear capacity of the beams and columns must be able to

    resist a shear force derived from the bending moment strength capacities

    considering actual reinforcement provided and material overstrength

    (material probable strength being higher than the design strength value)

    Sb < minimum of

  • 8/20/2019 Iem Workshop Ec8 2012

    75/108

    75

    3 Storey building in KK

    0.5M

    M

    M

    Height(m)

    10.5

    7

    3.5

    Lateral force

    distribution

    10.5*0.5M = 5.3M

    7*M = 7.0M

    3.5*M = 3.5M

    Sum = 15.8M

    Period T = 0.05 * H0.75 = 0.29 s

    For KK with Soil Class D

    Lateral base shear = 0.85*Sa = 0.85*2.5*1.35 * 6% = 17% g

    Lateral shear = 0.17*2.5M = 0.42M

    Force

    0.42*5.3/15.8 = 0.14M

    0.42*7.0/15.8 = 0.19M

    0.42*3.5/15.8 = 0.09M

    Shear 

    28%

    22%

    17%

    Eurocode classification

  • 8/20/2019 Iem Workshop Ec8 2012

    76/108

    76

    3 Storey building in KL

    0.5M

    M

    M

    Height(m)

    10.5

    7

    3.5

    Lateral force

    distribution

    10.5*0.5M = 5.3M

    7*M = 7.0M

    3.5*M = 3.5M

    Sum = 15.8M

    Period T = 0.05 * H0.75 = 0.29 s

    For KL with Soil Class D

    Lateral base shear = 0.85*Sa = 0.85 * 6% = 5% g

    Lateral shear = 0.05*2.5M = 0.13M

    Force

    0.13*5.3/15.8 = 0.044M

    0.13*7.0/15.8 = 0.058M

    0.13*3.5/15.8 = 0.029M

    Shear 

    9%

    7%

    5%

    Eurocode classification for KL / Penang

    0

    1

    2

    0.1 1 10

       S  p  e  c   t  r  a   l   A  c  c  e

       l  e  r  a   t   i  o  n

       (  m   /  s   2   )

    Structural Period (s)

    10% in 50 year design spectra

    Site Class C

    Site Class D

    Site Class S

    C Equation

    D Equation

    E Equation

    C 1.6 0.4 1.1 10.4D 2.5 0.9 1.6 4.6

    S1 3.2 1.6 2.4 2.4

    ag = 0.175 m/s2

  • 8/20/2019 Iem Workshop Ec8 2012

    77/108

    77

    Example building from Hong Kong – D11

    • 15 storey residential

    • H = 41m, W = 7200t

    Mode shapes

    0

    5

    10

    15

    20

    25

    30

    35

    40

    -1 0 1 2

       H  e   i  g   h   t   (  m   )

    Displacement

    Normalised mode shapes

    Mode 1

    Mode 2

    Mode 3

  • 8/20/2019 Iem Workshop Ec8 2012

    78/108

    78

    Modal contributions - KL

    0

    5

    10

    15

    20

    25

    30

    35

    40

    -5 0 5 10 15 20

       H  e

       i  g   h   t   (  m   )

    Displacement (mm)

    Scaled mode shapes

    RSS

    Mode 1

    Mode 2

    Mode 3

    0

    5

    10

    15

    20

    25

    30

    35

    40

    -1 0 1 2 3

       H  e   i  g   h   t   (  m   )

    Shear (MN)

    Shear 

    RSS

    Mode 1

    Mode 2

    Mode 3

    0

    5

    10

    15

    20

    25

    30

    35

    40

    -20 0 20 40 60 80 100

       H  e   i  g   h   t   (  m   )

    Moment (MNm)

    Moment

    RSS

    Mode 1

    Mode 2

    Mode 3

    Modal contributions - KK

    0

    5

    10

    15

    20

    25

    30

    35

    40

    -10 0 10 20 30 40

       H  e

       i  g   h   t   (  m   )

    Displacement (mm)

    Scaled mode shapes

    RSS

    Mode 1

    Mode 2

    Mode 3

    0

    5

    10

    15

    20

    25

    30

    35

    40

    -5 0 5 10

       H  e   i  g   h   t   (  m   )

    Shear (MN)

    Shear 

    RSS

    Mode 1

    Mode 2

    Mode 3

    0

    5

    10

    15

    20

    25

    30

    35

    40

    -50 0 50 100 150 200

       H  e   i  g   h   t   (  m   )

    Moment (MNm)

    Moment

    RSS

    Mode 1

    Mode 2

    Mode 3

  • 8/20/2019 Iem Workshop Ec8 2012

    79/108

    79

    Modal contributions - Semporna

    0

    5

    10

    15

    20

    25

    30

    35

    40

    -10 0 10 20 30 40 50

       H  e

       i  g   h   t   (  m   )

    Displacement (mm)

    Scaled mode shapes

    RSS

    Mode 1

    Mode 2

    Mode 3

    0

    5

    10

    15

    20

    25

    30

    35

    40

    -5 0 5 10 15

       H  e   i  g   h   t   (  m   )

    Shear (MN)

    Shear 

    RSS

    Mode 1

    Mode 2

    Mode 3

    0

    5

    10

    15

    20

    25

    30

    35

    40

    -100 0 100 200 300

       H  e   i  g   h   t   (  m   )

    Moment (MNm)

    Moment

    RSS

    Mode 1

    Mode 2

    Mode 3

    Shear 

    0

    5

    10

    15

    20

    25

    30

    35

    40

    0 5 10 15 20 25

       H  e   i  g

       h   t   (  m   )

    Shear (%)

    Shear (q = 1.5)

    KL

    KK

    Semporna

  • 8/20/2019 Iem Workshop Ec8 2012

    80/108

    80

    Example building from Hong Kong – D17

    • 53 storey residential

    • H = 158m, W = 33000t

    Mode shapes

    0

    20

    40

    60

    80

    100

    120

    140

    160

    -1 0 1 2

       H  e   i  g   h   t

       (  m   )

    Displacement

    Normalised mode shapes

    Mode 1

    Mode 2

    Mode 3

  • 8/20/2019 Iem Workshop Ec8 2012

    81/108

    81

    Modal contributions - KL

    0

    20

    40

    60

    80

    100

    120

    140

    160

    -50 0 50 100 150 200 250 300

       H  e

       i  g   h   t   (  m   )

    Displacement (mm)

    Scaled mode shapes

    RSS

    Mode 1

    Mode 2

    Mode 3

    0

    20

    40

    60

    80

    100

    120

    140

    160

    -2 0 2 4 6 8 10

       H  e   i  g   h   t   (  m   )

    Shear (MN)

    Shear 

    RSS

    Mode 1

    Mode 2

    Mode 3

    0

    20

    40

    60

    80

    100

    120

    140

    160

    -200 0 200 400 600 800 1000

       H  e   i  g   h   t   (  m   )

    Moment (MNm)

    Moment

    RSS

    Mode 1

    Mode 2

    Mode 3

    Modal contributions - KK

    0

    20

    40

    60

    80

    100

    120

    140

    160

    -100 0 100 200 300

       H  e

       i  g   h   t   (  m   )

    Displacement (mm)

    Scaled mode shapes

    RSS

    Mode 1

    Mode 2

    Mode 3

    0

    20

    40

    60

    80

    100

    120

    140

    160

    -5 0 5 10 15

       H  e   i  g   h   t   (  m   )

    Shear (MN)

    Shear 

    RSS

    Mode 1

    Mode 2

    Mode 3

    0

    20

    40

    60

    80

    100

    120

    140

    160

    -500 0 500 1000 1500

       H  e   i  g   h   t   (  m   )

    Moment (MNm)

    Moment

    RSS

    Mode 1

    Mode 2

    Mode 3

  • 8/20/2019 Iem Workshop Ec8 2012

    82/108

    82

    Modal contributions - Semporna

    0

    20

    40

    60

    80

    100

    120

    140

    160

    -200 0 200 400 600

       H  e

       i  g   h   t   (  m   )

    Displacement (mm)

    Scaled mode shapes

    RSS

    Mode 1

    Mode 2

    Mode 3

    0

    20

    40

    60

    80

    100

    120

    140

    160

    -10 0 10 20 30

       H  e   i  g   h   t   (  m   )

    Shear (MN)

    Shear 

    RSS

    Mode 1

    Mode 2

    Mode 3

    0

    20

    40

    60

    80

    100

    120

    140

    160

    -500 0 500 1000 1500 2000 2500

       H  e   i  g   h   t   (  m   )

    Moment (MNm)

    Moment

    RSS

    Mode 1

    Mode 2

    Mode 3

    Shear 

    0

    20

    40

    60

    80

    100

    120

    140

    160

    0 5 10 15

       H  e   i  g

       h   t   (  m   )

    Shear (%)

    Shear (q = 1.5)

    KL

    KK

    Semporna

  • 8/20/2019 Iem Workshop Ec8 2012

    83/108

    83

    Foundation design

    Failure Modes of Pad Foundations

    SlidingBearing capacity

    Overturning Structural

  • 8/20/2019 Iem Workshop Ec8 2012

    84/108

    84

    Failure by Sliding

    Provided structure can hold itself together the onlyrequirement is for No damage

    Design check

    Small movement in 50% in 50 year ground motion

    Failure by Bearing Capacity

    Due to uncontrolled displacement the Life safety check will be

    required. If the structure could collapse as result of bearing failure of

    the foundation then the No collapse check is required.

    Design check

    Controlled displacement in the 10% in 50 year ground motion.

    Possibly required to check for failure 2% in 50 year ground motion.

  • 8/20/2019 Iem Workshop Ec8 2012

    85/108

    85

    Mexico City 1985

    Failure by Overturning

    If the structure could collapse due to overturning capacity failure then

    the No collapse check is required. Otherwise the only requirement is

    for No damage. For buildings on a raft failure could lead to collapse.

    Design check

    Small movement in 50% in 50 year ground motion.

    For a raft, required to check for failure in 2% in 50 year ground motion

  • 8/20/2019 Iem Workshop Ec8 2012

    86/108

    86

    Structural Failure

    Due to uncontrolled displacement the Life safety check will be

    required. If the structure could collapse as result of structural failureof the foundation then the No collapse check is required.

    Design check

    Structural integrity in the 10% in 50 year ground motion.

    Possibly required to check for failure 2% in 50 year ground motion.

    Failure Modes of Piles - Vertical Loads

    Stiff Clay

    Soft Clay

    Fill

  • 8/20/2019 Iem Workshop Ec8 2012

    87/108

    87

    Mexico City - 1985

    Mexico City - 1985

  • 8/20/2019 Iem Workshop Ec8 2012

    88/108

    88

    Mexico City - 1985

    Soft

    clay

    Sand

    Building in Mexico City – 1 year later 

  • 8/20/2019 Iem Workshop Ec8 2012

    89/108

    89

    Failure Modes of Piles - Vertical Loads

    Stiff Clay

    Soft Clay

    Fill

    Building in Taiwan - 1999

  • 8/20/2019 Iem Workshop Ec8 2012

    90/108

    90

    Building in Taiwan - 1999

    The Hermes is buil t on a narrow sit e in

    Tokyo’s central Ginza distric t. It uses a

    new structural system that relieves

    seismic forces vertically through a

    lifting rear column at ground floor level,

    restrained by dampers.

    This ‘stepping column’ system is able

    to move wi th the earthquake, thereby

    reducing forces and foundation and

    steelwork costs .

    Yielding Piles - Hermes Tokyo

  • 8/20/2019 Iem Workshop Ec8 2012

    91/108

    91

    Case Study - Hermes Tokyo

    Effects on Piles

  • 8/20/2019 Iem Workshop Ec8 2012

    92/108

    92

    Pile Failure - Lateral Loads

    Bedrock

    Stiff Clay

    Soft Clay

    Fill

    500 250

    Bending Moment (kNM)

    Piles - Lateral Loads

    0 50 100 150

    Horizontal displacement (mm)

    Soil displacement

    from SIREN

    Pile

    displacement

    100 : 30

    combination rule

  • 8/20/2019 Iem Workshop Ec8 2012

    93/108

    93

    Case Study - LNG Tanks, Trinidad

    Dynamic soi l-pile-tank interaction study to assess

    loads in the piles and tank.

    • 1-D soil colu mn modelled in Oasys LS-DYNA.

    • Took account of the effect of liquefaction.

    • Took account of stif fening effect of the piles.

    •  Analysed the en ti re probl em in one s tep.

    Typical cross-section through the tank and foundation system

    Case Study - LNG Tanks, Trinidad

  • 8/20/2019 Iem Workshop Ec8 2012

    94/108

    94

    Driven Steel Tube Piles

    Preferred Solution

    Foundation Design Options

    • Foundation types considered included:

    • Ground replacement.

    • Closely spaced stone columns.

    • Lowered foundation scheme.

    • Bored piles.

    • Driven piles (combined with stone columns).

    • There was no clear cost advantage in any of

    the foundation types examined.

    Case Study - LNG Tanks, Trinidad

    1-D Soil Model

    Case Study - LNG Tanks, Trinidad

  • 8/20/2019 Iem Workshop Ec8 2012

    95/108

    95

    Soil Column Analysis

    Case Study - LNG Tanks, Trinidad

    Site Response Results

    Case Study - LNG Tanks, Trinidad

  • 8/20/2019 Iem Workshop Ec8 2012

    96/108

    96

    Soil-Pile Model

    Case Study - LNG Tanks, Trinidad

    Effect of Piles on Response

    Case Study - LNG Tanks, Trinidad

  • 8/20/2019 Iem Workshop Ec8 2012

    97/108

    97

    Complete SSI Model

    Case Study - LNG Tanks, Trinidad

     Analysis of Complete SSI System

    Case Study - LNG Tanks, Trinidad

  • 8/20/2019 Iem Workshop Ec8 2012

    98/108

    98

    Bending Moments in the Piles

    Case Study - LNG Tanks, Trinidad

    Soil displacement

    Effects on raking piles

  • 8/20/2019 Iem Workshop Ec8 2012

    99/108

    99

    Raking Piles

    Raking Piles

  • 8/20/2019 Iem Workshop Ec8 2012

    100/108

    100

    Other ground effects

    Bedrock

    Effects on Railways / Basements

    Stiff Clay

    Soft Clay

    Fill

    0 50 100 150

    Horizontal displacement (mm)

  • 8/20/2019 Iem Workshop Ec8 2012

    101/108

    101

    Cut and cover tunnel box

    68mm

     A pseudo static Horizontal Acceleration (=3%g) is applied to whole model

    68mm

    results of pseudo static model

    Horizontal earth pressures

  • 8/20/2019 Iem Workshop Ec8 2012

    102/108

    102

    Lifelines - Longitudinal Motion

    • Maximum ground strain is Vm / CWhere Vm is the peak ground velocity and

    C is the propagation velocity

    • If this strain is too large then further analysis is required

    Lifeline (EA)

    Elastic/plastic spring tomodel movement

    between lifeline and soil

    Point of applied groundmotion displacement

    O’Rourke and Liu, 1999

    Observed Damage to Water Pipe Systems

    0.01 0.02 0.05 0.1 0.2 0.5 1

    1

    0.5

    0.2

    0.1

    0.05

    0.02

    0.01

    0.005

    0.002

    0.001   P   i  p  e   D  a  m  a  g  e   R  a   t   i  o   (  r  e  p  a   i  r  s  p  e  r   k   i   l  o  m  e   t  r  e   )

    Peak Horizontal Parti cle Veloci ty (m/s)

  • 8/20/2019 Iem Workshop Ec8 2012

    103/108

    103

    O’Rourke and Liu, 1999

    Propagation Velocities

    Measured apparent S - wave propagation velocities

    Event Site condit ionsC

    (km/s)

    Japan 23/1/68 60 m soft alluvium 2.9

    Japan 1/7/68 60 m soft alluvium 2.6

    Japan 9/5/74 70 m silty clay, sand &silty sand 5.3

    Japan 8/7/74 70 m silty clay, sand &silty sand 2.6

    Japan 4/8/74 70 m silty clay, sand &silty sand 4.4

    San Fernando 9/2/71 Variable 2.1

    Imperial Valley 15/10/79 > 300 m alluvium 3.8

    Imperial Valley 15/10/79 > 300 m alluvium 3.7

    Turkey 1999

    Fault Rupture

  • 8/20/2019 Iem Workshop Ec8 2012

    104/108

    104

    Turkey 1999

    Fault Rupture

    Gölcük Stepover Fault

    (2.5m vertical movement)

    (0.7m horizontal movement)

    D

    U

    Example -

    Factory in

    Turkey

  • 8/20/2019 Iem Workshop Ec8 2012

    105/108

    105

    Gölcük Stepover Fault

    (2.5m vertical movement)

    (0.7m horizontal movement)

    Body

    Shop

    D

    U

    Example -

    Factory inTurkey

    Example - Factory in Turkey

    Tilting of columns Differential settlement Lateral displacement

    Damage to Body Shop

  • 8/20/2019 Iem Workshop Ec8 2012

    106/108

    106

    Fault Rupture - Lifelines

    Elastic/plastic spring to

    model movement between

    lifeline and soil

    Point of applied ground

    motion displacement

    O’Rourke and Liu, 1999

    Slope stability

  • 8/20/2019 Iem Workshop Ec8 2012

    107/108

    107

    Slope stability

    Slope stability

    Standard method of considering down-slope movement

    If Ac / Am is greater than 0.5 then movements are small

     Ac is the

    acceleration

    required to

    cause the slope

    to have afactor of safety

    of one

  • 8/20/2019 Iem Workshop Ec8 2012

    108/108

    Bedrock

    Slope Stability - Effects on Piles

    0 50 100 150

    Horizontal displacement (mm)

    500 250

    Bending Moment (kNM)