38
How Neurons Communicate at Synapses Jose Rizo-Rey

How Neurons Communicate at Synapses - UT Southwestern · 2016. 5. 3. · •Repetitive stimulation can lead to stronger or weaker postsynaptic potentials • This plasticity can arise

  • Upload
    others

  • View
    2

  • Download
    0

Embed Size (px)

Citation preview

Page 1: How Neurons Communicate at Synapses - UT Southwestern · 2016. 5. 3. · •Repetitive stimulation can lead to stronger or weaker postsynaptic potentials • This plasticity can arise

How Neurons Communicate at Synapses

Jose Rizo-Rey

Page 2: How Neurons Communicate at Synapses - UT Southwestern · 2016. 5. 3. · •Repetitive stimulation can lead to stronger or weaker postsynaptic potentials • This plasticity can arise

White gives check mate in two moves

Samuel Loyd 1859

Page 3: How Neurons Communicate at Synapses - UT Southwestern · 2016. 5. 3. · •Repetitive stimulation can lead to stronger or weaker postsynaptic potentials • This plasticity can arise

So beautiful!

Samuel Loyd 1859

Page 4: How Neurons Communicate at Synapses - UT Southwestern · 2016. 5. 3. · •Repetitive stimulation can lead to stronger or weaker postsynaptic potentials • This plasticity can arise

OUR AMAZING BRAIN

http://research.vtc.vt.edu/news/2013/feb/13/brain-awareness-week-designed-highlight-advances-b/

Page 7: How Neurons Communicate at Synapses - UT Southwestern · 2016. 5. 3. · •Repetitive stimulation can lead to stronger or weaker postsynaptic potentials • This plasticity can arise

The brain is an extremely complex communications network

Interneuronal communication occurs at synapses

Xinran Liu

Page 13: How Neurons Communicate at Synapses - UT Southwestern · 2016. 5. 3. · •Repetitive stimulation can lead to stronger or weaker postsynaptic potentials • This plasticity can arise

docking

priming Ca2+

fusion

action potential

synaptic vesicles presynaptic

terminal

Ca2+

postsynaptic

cell

synaptic cleft

neurotransmitter receptors

Chemical synaptic transmission

Page 14: How Neurons Communicate at Synapses - UT Southwestern · 2016. 5. 3. · •Repetitive stimulation can lead to stronger or weaker postsynaptic potentials • This plasticity can arise

Binding of neurotransmitters to postsynaptic receptors can cause

excitatory or inhibitory postsynaptic potentials (EPSPs or IPSPs),

depending of the type of synapse and the neurotransmitter released

7e.biopsychology.com

EPSP

presynaptic neuron

postsynaptic neuron

presynaptic neuron

IPSP postsynaptic neuron

Page 16: How Neurons Communicate at Synapses - UT Southwestern · 2016. 5. 3. · •Repetitive stimulation can lead to stronger or weaker postsynaptic potentials • This plasticity can arise

• Repetitive stimulation can lead to stronger or weaker postsynaptic potentials

• This plasticity can arise from:

presynaptic changes in the efficiency of neurotransmitter release

and/or changes in the postsynaptic responses

• Synaptic plasticity underlies many forms of information processing in the brain

Shin et al. (2010) Nat. Struct. Mol. Biol. 2010 17, 280

Page 18: How Neurons Communicate at Synapses - UT Southwestern · 2016. 5. 3. · •Repetitive stimulation can lead to stronger or weaker postsynaptic potentials • This plasticity can arise

docking

priming Ca2+

fusion

action potential

synaptic vesicles presynaptic

terminal

Ca2+

postsynaptic

cell

synaptic cleft

neurotransmitter receptors

Synaptic vesicle fusion is key for interneuronal communication

Page 19: How Neurons Communicate at Synapses - UT Southwestern · 2016. 5. 3. · •Repetitive stimulation can lead to stronger or weaker postsynaptic potentials • This plasticity can arise

Lluis Rizo

Page 20: How Neurons Communicate at Synapses - UT Southwestern · 2016. 5. 3. · •Repetitive stimulation can lead to stronger or weaker postsynaptic potentials • This plasticity can arise

Lluis Rizo

Page 21: How Neurons Communicate at Synapses - UT Southwestern · 2016. 5. 3. · •Repetitive stimulation can lead to stronger or weaker postsynaptic potentials • This plasticity can arise

C2B

Rabphilin

Rab3A

C2A

ZF

C2A

C2B

C2A

C2B

C2C

C1

Munc13

Synaptic

Vesicle

Synaptobrevin

SNAP-25

Munc18

Complexin

C2B

C2A

Rim

ZF

Rab3A PDZ

Synaptotagmin

Synaptic Cleft

Plasma Membrane

Cytoplasm

Syntaxin

MUN

SNAP

NSF

Page 22: How Neurons Communicate at Synapses - UT Southwestern · 2016. 5. 3. · •Repetitive stimulation can lead to stronger or weaker postsynaptic potentials • This plasticity can arise

Ubach et al. EMBO J. 17, 3921 (1998)

Fernandez et al. Neuron 32, 1057 (2001)

Shao et al. Science 273, 248 (1996)

Shao et al. Biochemistry 37, 16106 (1998)

Structures and Ca2+ binding modes of the synaptotagmin-1 C2 domains

C2A C2B

Page 23: How Neurons Communicate at Synapses - UT Southwestern · 2016. 5. 3. · •Repetitive stimulation can lead to stronger or weaker postsynaptic potentials • This plasticity can arise

Synaptotagmin I acts as a Ca2+ sensor in neurotransmitter release

In vitro Ca2+-dependent

phospholipid binding

In vivo Ca2+-dependence of

neurotransmitter release

Fernandez-Chacon et al. Nature 410, 41 (2001)

Page 24: How Neurons Communicate at Synapses - UT Southwestern · 2016. 5. 3. · •Repetitive stimulation can lead to stronger or weaker postsynaptic potentials • This plasticity can arise

C2B

Rabphilin

Rab3A

C2A

ZF

C2A

C2B

C2A

C2B

C2C

C1

Munc13

Synaptic

Vesicle

Synaptobrevin

SNAP-25

Munc18

Complexin

C2B

C2A

Rim

ZF

Rab3A PDZ

Synaptotagmin

Synaptic Cleft

Plasma Membrane

Cytoplasm

Syntaxin

MUN

SNAP

NSF

Page 25: How Neurons Communicate at Synapses - UT Southwestern · 2016. 5. 3. · •Repetitive stimulation can lead to stronger or weaker postsynaptic potentials • This plasticity can arise

N

C

Habc-domain

N

The SNARE complex

synaptobrevin syntaxin

SNAP25

Sutton et al. (1998) Nature 395, 347

Fernandez et al. (1998) Cell 18, 841

Synaptic

vesicle

Plasma membrane

Page 26: How Neurons Communicate at Synapses - UT Southwestern · 2016. 5. 3. · •Repetitive stimulation can lead to stronger or weaker postsynaptic potentials • This plasticity can arise

Syntaxin-1(open)/SNAP-25

Plasma membrane

Synaptobrevin

Synaptic

vesicle

Vesicle

recycling

NSF/SNAPs

SNAP-25

Syntaxin-1

(closed) Synaptobrevin

Synaptic

vesicle

SNARE complex

Widespread, SNARE-centric model of synaptic vesicle fusion

Page 27: How Neurons Communicate at Synapses - UT Southwestern · 2016. 5. 3. · •Repetitive stimulation can lead to stronger or weaker postsynaptic potentials • This plasticity can arise

Model for how synaptotagmin cooperates with the SNAREs

to induce calcium-dependent membrane fusion

-

Ca2+ -

- C2A

C2B

synaptotagmin

- - - - -

- -

Page 28: How Neurons Communicate at Synapses - UT Southwestern · 2016. 5. 3. · •Repetitive stimulation can lead to stronger or weaker postsynaptic potentials • This plasticity can arise

LIPID MIXING ASSAY TO STUDY MEMBRANE FUSION IN VITRO

Time (mins)

0 50 100 150

I538

/I589

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

Page 29: How Neurons Communicate at Synapses - UT Southwestern · 2016. 5. 3. · •Repetitive stimulation can lead to stronger or weaker postsynaptic potentials • This plasticity can arise

Weber et al. (1998) Cell 92, 759

Page 30: How Neurons Communicate at Synapses - UT Southwestern · 2016. 5. 3. · •Repetitive stimulation can lead to stronger or weaker postsynaptic potentials • This plasticity can arise

Efficient membrane fusion in vitro with SNAREs and Synaptotagmin-1

SNAREs alone

SNAREs + Ca2+

+ Synaptotagmin-1

Tucker et al. Science 304, 435 (2004)

Chicka et al. Nat. Struct. Mol. Biol. 15, 827 (2008)

Xue et al. Nat. Struct. Mol. Biol. 15, 1160 (2008)

But without Munc18-1 or Munc13!

Page 31: How Neurons Communicate at Synapses - UT Southwestern · 2016. 5. 3. · •Repetitive stimulation can lead to stronger or weaker postsynaptic potentials • This plasticity can arise

Total abrogation of neurotransmitter release

In the absence of Munc18-1 or Munc13s

Munc18-1 KO

Total silence

Munc13-1/2 KO

Total silence

Munc18-1 KO control

control Munc13-1/2 DKO

Verhage et al. Science 287, 864 (2000)

Varoqueaux et al. Proc. Natl. Acad. Sci. U. S. A 99, 9037 (2002)

Page 32: How Neurons Communicate at Synapses - UT Southwestern · 2016. 5. 3. · •Repetitive stimulation can lead to stronger or weaker postsynaptic potentials • This plasticity can arise

Model of Munc18-1 and Munc13 function

Munc13

MUN domain

SNAP-25 Munc18-1

syntaxin

closed

synaptobrevin

+ + + + + +

+ + +

+ + +

+ + +

+ + +

+ + +

+ + +

+ + +

+ + +

+ + +

+ + +

+ + +

+ + + + + +

+ + +

Fernandez et al. Cell 18, 841 (1998) Dulubova et al. EMBO J. 18, 4372 (1999)

Carr et al. J. Cell Biol. 146, 333 (1999) Yamaguchi et al. Developmental Cell 2, 295 (2002)

Dulubova et al. EMBO J. 21, 3620 (2002) Dulubova et al. PNAS 100, 32 (2003)

Dulubova et al. PNAS 104, 2697 (2007) Deak, Xu et al., J. Cell. Biol. 184, 751 (2009)

Xu et al., Biochemistry 49, 1568 (2010) Ma et al., Nat. Struct. Molec. Biol. 18, 542 (2011)

Page 33: How Neurons Communicate at Synapses - UT Southwestern · 2016. 5. 3. · •Repetitive stimulation can lead to stronger or weaker postsynaptic potentials • This plasticity can arise

Reconstitution of membrane fusion with Syntaxin-1/Munc18-1 liposomes

+ Synaptobrevin liposomes

+ Munc13-1, SNAP-25 and Synaptotagmin-1

D

Synaptobrevin

A

Munc18-1

Syntaxin-1

0 500 1000 1500 2000 2500

0

10

20

30

Fluo

resc

ence

(% o

f max

)

Time (s)

+SNAP-25+synaptotagmin+

Munc13-1

+SNAP-25+Munc13-1

+Synaptotagmin+Munc13-1 +SNAP-25+

Synaptotagmin

Ma et al. Science 339, 421 (2013)

Page 34: How Neurons Communicate at Synapses - UT Southwestern · 2016. 5. 3. · •Repetitive stimulation can lead to stronger or weaker postsynaptic potentials • This plasticity can arise

Efficient fusion with Syntaxin-1/SNAP-25 liposomes

+ Synaptobrevin liposomes

+ Synaptotagmin-1

0 500 1000 1500 2000 2500

0

10

20

30

40

Time (s)

Fluo

resc

ence

(% o

f max

)

+synaptotagmin

Ma et al. Science 339, 421 (2013)

D

A

Synaptobrevin

Syntaxin-1

SNAP-25

+

Page 35: How Neurons Communicate at Synapses - UT Southwestern · 2016. 5. 3. · •Repetitive stimulation can lead to stronger or weaker postsynaptic potentials • This plasticity can arise

Fusion with Syntaxin-1/SNAP-25 liposomes

+ Synaptobrevin liposomes + Synaptotagmin-1

is inhibited by NSF, a-SNAP

0 500 1000 1500 2000 2500

0

10

20

30

40

Time (s)

Fluo

resc

ence

(% o

f max

)

+synaptotagmin

+synaptotagmin+NSF/aSNAP+ATP

Ma et al. Science 339, 421 (2013)

D

A

Synaptobrevin

Syntaxin-1

SNAP-25

+

Page 36: How Neurons Communicate at Synapses - UT Southwestern · 2016. 5. 3. · •Repetitive stimulation can lead to stronger or weaker postsynaptic potentials • This plasticity can arise

Reconstitution of synaptic vesicle fusion

with Syntaxin-1/SNAP-25 liposomes + Synaptobrevin liposomes

+ Munc18-1, Munc13-1, NSF, a-SNAP and Synaptotagmin-1!!!!!

0 500 1000 1500 2000 2500

0

10

20

30

40

Time (s)

Fluo

resc

ence

(% o

f max

)

+synaptotagmin+NSF/aSNAP+ATP

+M18+Munc13-1

+synaptotagmin

+synaptotagmin+NSF/aSNAP

+ATP+Munc13-1

Ma et al. Science 339, 421 (2013)

WE GOT IT!

+synaptotagmin+NSF/aSNAP+ATP

D

A

Synaptobrevin

Syntaxin-1

SNAP-25

+

Page 37: How Neurons Communicate at Synapses - UT Southwestern · 2016. 5. 3. · •Repetitive stimulation can lead to stronger or weaker postsynaptic potentials • This plasticity can arise

Xiaoxia Liu, Alpay Seven

Highly efficient calcium-dependent membrane fusion supported by the SNARES,

Synaptotagmin-1, Mun18-1, Munc13-1, Synaptotagmin-1 and NSF-a-SNAP

Lipid mixing T+VSyt1 +NSF/aSNAP Content mixing T+VSyt1 +NSF/aSNAP

0 500 1000 1500 2000 2500

0

10

20

30

Time (s)

Fluo

resc

ence

(% o

f max

)

0 500 1000 1500 2000 2500

0

20

40

60

80

100

Time (s)

Fluo

resc

ence

(% o

f max

)

Ca2+ Ca2+

T+VSyt1

+Munc18-1 +Munc13-1

+Munc13-1+Munc18-1

T+VSyt1 +Munc18-1

+Munc13-1

+Munc13-1+Munc18-1

D

A

Synaptobrevin

Syntaxin-1

SNAP-25

synaptotagmin

Page 38: How Neurons Communicate at Synapses - UT Southwestern · 2016. 5. 3. · •Repetitive stimulation can lead to stronger or weaker postsynaptic potentials • This plasticity can arise

Munc18-1

Syntaxin-1(open)/SNAP-25

Synaptobrevin

Synaptic

vesicle

Munc18-1

NSF/SNAPs

+ Munc18-1

Syntaxin-1

(closed)

Synaptotagmin-1

Plasma membrane

Ca2+

Munc13

Munc13

Model of synaptic vesicle fusion integrating the functions of

SNAREs, Munc18-1, Munc13s, NSF/SNAPs and synaptotagmin-1

SNAP-25

Ma et al. Science 339, 421 (2013)