h3001.pdf

Embed Size (px)

Citation preview

  • 8/16/2019 h3001.pdf

    1/16

  • 8/16/2019 h3001.pdf

    2/16

  • 8/16/2019 h3001.pdf

    3/16

  • 8/16/2019 h3001.pdf

    4/16

    CREEP AND STRESS-RUPTURE

    STRENGTH

    HAYNES

    188 alloy is a solid-

    solution-strengthened material

    which combines excellent high-

    temperature

    strength

    with good

    tabricability at room tempera

    ture.

    It

    is particularly effective

    for very

    long-term

    applications

    at

    temperatures

    of 1200°F

     50°C) or

    more. It

    is stronger

    than nickel-base solid-solution-

    strengthened alloys, and far

    stronger than

    smple

    nckel

    chromium

    or

    iron-nicke

     

    chromium

    heat-resistant alloys.

    This

    can allow for

    significant

    section

    thickness reduction

    when

    it

    is substituted for these

    materials.

    COMPARISON OF SHEET MATERIALS: STRESS TO PRODUCE 1

    CREEP

    IN 1000 HOURS

    1600°F

    CREEP

    AND

    RUPTURE STRENGTH

    COLD-ROLLED AND

    2150°F

     1175C) SOLUTION-ANNEALED SHEET

    Test

    Temperature

    °F °C)

    Approximate

    Initial

    Stress,

    Ksi

     MPa)

    to

    Produce Specified

    Creep in:

    TEST TEMPERATURE

    230

    900°c

    950°c

    iooo°c

    15

    750°c 800°C 850°c

    10

    x

     

    625

    6

    15

    5

    600

     0

    ft

    3

    2

    0.9

      I

    1400°F 1500°F

    TEST

    TEMPERATURE

    100

    90

    80

    70

    60

    50

    40

    30

    Ct

    a

    C’)

     0

    Ui

     0

    0

    1700 F

    10

    1800°F

    Creep,

     

    10 Hrs.

    100

    Hrs. 1,000 Hrs.

    1400 760)

    0.5 22.5 155) 16.4  115) 11.7  81)

    1.0

    25.5

     175) 18.5

     130)

    13.3

     92)

    Rupture 43.0 295) 32.0 220) 23.0 160)

    1500 815) 0.5 15.5

     105) 11.1  77)

    7.8  54)

    1.0 17.6

     120) 12.6  7) 8.8 61)

    Rupture 31.0 215) 21.7 150)

    15.0  105)

    HAYNES 188

    alloy

    4

  • 8/16/2019 h3001.pdf

    5/16

    CREEP AND

    RUPTURE STRENGTH

    COLD-ROLLED

    AND 2150°F  175°C) SOLUTION-ANNEALED SHEET  continued)

    Approximate

    Init ial Stress,

    Ksi

     MPa)

    to Produce

    Specified

    Creep in:

    1

    Hrs.

    HOT-ROLLED

    AND 2150°F  175°C) SOLUTION-ANNEALED PLATE

    Test

    Temperature

    °FrC)

    Creep,

    1 0 H rs . 1 ,000 Hrs .

    1600

     70) 0.5

    10.7

     4) 7.5 52) 5.0 34)

    1.0

    12.2  4) 8.4 58) 5.7 39)

    Rupture

    21.0 145)

    14.4  99)

    9.4 65)

    1700 925) 0.5 7.3

     0) 4.9 34)

    3.1  21)

    1.0 8.2 57) 5.6

     39)

    3.6 25)

    Rupture 14.3  99) 9.1  3) 5.5 38)

    1800

     80) 0.5 4.9 34) 3.1  21)

    1.8

     12)

    1.0

    5.6 39) 3.6 25) 2.1  14)

    Rupture 9.1  63)

    5.4

     7) 2.4

     17)

    T

    Approximate Initial Stress, Ksi  MPa)

    Temperature

    Creep,

    to Produce Spec if ied

    Creep in:

    °F  °C) 10 H rs. 100 H rs .

    1,000

    Hrs. 10,000 Hrs.

    1300

     05) 0.5 42.0 289) 28.0 193)

    18.0

     124) —

    1.0

    48.0 339) 32.5 224) 22.0 152) —

    Rupture

    76.0

     24)* 56.0

     386)

    40.0 276)

    28.0  193)*

    1400 760)

    0.5 26.0 179)

    17.0

     117) 11.5  79) —

    1.0

    29.0 200) 20.5 141) 14.0  97) —

    Rupture

    52.0 359) 37.0 255) 26.0 179)

    18.5

     128)

    1500 815) 0.5 17.0

     117)

    11.0  6) 7.4 51)

    1.0 19.0

     131)

    13.5  3) 9.3

     64) —

    Rupture 36.0 248) 25.0 172) 17.5  121) 12.0  83)

    1600

     70) 0.5

    11.5

     79)

    7.5

     52)

    5.0 34)

    1.0 13.0

     0) 9.0 62) 6.4 44)

    Rupture

    25.0 172)

    17.0

     117)

    11.6  0) 7.8

     54)*

    1700 925)

    0.5 8.0 56) 5.2 30) 3.4 23) —

    1.0

    9.2 63) 6.0 41) 4.0 28) —

    Rupture 16.5  114) 11.1  77) 7.3  50) —

    1800

     980)

    0.5

    1.0

    Rupture

    •S gniticant extrapolation.

    5.6

    6.3

    11.5

     39)

     43)

     79)

    3.6 25)

    3.9 27)

    7.0

     48)

    2.3 16)

    2.9

     20)

    4.3 30)

    HAYNES

    188

    alloy

  • 8/16/2019 h3001.pdf

    6/16

    TYPICAL TENSILE PROPERTIES

    COLD-ROLLED AND

    2150°F  175°C)

    SOLUTION-ANNEALED

    SHEET

    HOT-ROLLED

    AND

    2150°F

     175°C)

    SOLUTION-ANNEALED PLATE*

    Test

    Temperature

    °F  °C)

    Room

    1000 540)

    1200 650)

    1400

     760)

    1600

     870)

    1800

     980)

    2000 1095)

    2100 1150)

    2200 1205)

    * mited

    data.

    Ultimate

    Tensile

    Strength

    Ksi MPa

    142.6

    985

    112.6 775

    109.8 755

    94.0 650

    65.3 450

    38.7

    265

    21.0

    145

    13.9 96

    12.0

    83

    0.2

    Yield

    Strength

    Ksi

    MPa

    68.5 470

    39.9

    275

    38.3

    265

    38.9 270

    36.1 250

    27.1

    185

    12.8 88

    6.9 48

    4.0

    28

    Elongation

    in 2 in.  51 mm)

     

    56

    69

    73

    70

    77

    84

    89

    60

    71

    IMPACT

    STRENGTH

    PROPERTIES*

    Ft-lbs. Joules

    -300 -185)

    116 158

    -150 -100) 131

    178

    70 20)

    143 194

    1000 540) 117

    159

    1300

     705)

    107 145

    *Avemge

    of longitudinal and

    transverse

    tests on

    solution-annealed

    plate

    Ultimate

    Test Tensile 0.2

    Yield Elongation

    Temperature Strength Strength

    in

    2 in.

     51

    mm)

    °F  °C) Ksi

    MPa

    Ksi MPa

    Room 137.2 945

    67.3

    465 53

    1000 540)

    108.5 750

    42.0

    290 61

    1200

     650)

    103.3 710

    39.7 275

    59

    1400 760)

    89.9 620 38.9 270

    63

    1600

    870) 60.0 415 35.9 250

    64

    1800

     80) 35.2

    245 19.0 130 59

    2000

     1095)

    18.7

    130 93

    64 32

    Test

    Temperature

    °F

     °C)

    Typical Charpy V-Notch

    Impact

    Resistance

    HAYNES

    188

    alloy

  • 8/16/2019 h3001.pdf

    7/16

    THERMAL STABILITY

    HAYNES® 188 alloy is

    similar

    to

    the

    solid-solution-strengthened

    superalloys, such

    as

    alloy 625

    or HASTELLOY® X alloy, which

    will precipitate deleterious

    phases

    upon such long term

    exposure.

    In

    this case, the

    phase

    in question is a

    C02W

    laves phase, which serves to

    impair both tensile

    ductility and

    impact

    strength.

    The behavior

    of 188 alloy is significantly bet

    ter

    in this regard than HAYNES

    25

    alloy,

    which it replaced; but

    for applications where thermal

    stability

    is

    important, 230°alloy

    is

    recommended.

    ROOM-TEMPERATURE

    PROPERTIES OF PLATE AFTER THERMAL

    EXPOSURE

    Ultimate

    Exposure Tensile

    Temperature Strength

    °F

     °C)

    EXPOSURE

    TEMPERATURE °C)

    AT

    500

    600

    70 0

    800 900 1000

    I I I I I I

    2

    ~

    .

    Retained Room-Temperature

    Tensile

    Ductility

    after 8000

    z Hour Exposure

    at

    Temperature

    9 5f3

    uJ

    Ui

     j

    E5 40 -

    z

    Ui

    ~

    D

    20

    0-

    2

    Lii

    I 10

    2

    0

    RT

    1000 1200 1400 1600 1800

    ExPOSURE

    TEMPERATURE

     °F)

    0.2 Yield

    Elongation

    Impact

    Strength

    in

    2 in.

     51

    mm)

    Strength

    Hours

    Ksi MPa

    Ksi MPa Ft-lbs.

    Joules

    1200

    0

    140.0

    965 65.0 450 56.0 143 194

     650C)

    8000

    151.6

    1045 79.7 550 29.1 23 31

    1400 0 140.0 965 65.0 450 56.0 143 194

     7600) 8000

    147.9 1020

    74.0 510 10.8 3 4

    1600

    0* 146.0

    1005

    70.1 485 50.4 143 194

     8700)

    1000 157.5 1085

    70.7 490 28.7 10 13

    4000

    156.0

    1075 68.8

    475

    26.6 10 13

    8000*

    147.4

    1015 64.5 445 22.2 9 12

    16000 146.1 1005

    63.8

    440

    24.0

    8 11

    Average

    of two

    test

    exposures. All

    others single exposures.

    COMPARATIVE

    IMPACTS

    ENOTH AFTER

    8000-HOUR

    EXPOSURES

    Solution-Annealed Charpy V-Notch Impact Following Exposure

    Charpy

    V-Notch

    Impact

    For

    8000 Hours

    at Temperatures, Ft-lbs.  Joules)

    Material Ft.-lbs.

     Joules) 1200°F  50°C) 1400°F

     60°C) 1600°F 870°C)

    230® alloy 54 73) 30  41)

    21

     28)

    21

     28)

    188

    a by

    XalIoy 54 73) 15  20) 8  11) 15  20)

    625 alloy 81  110)

    5

     7) 5  7) 15  2’

    7 HAYNES

    188

    aloy

  • 8/16/2019 h3001.pdf

    8/16

    TYPICAL PHYSICAL

    PROPERTIES

    Temp., °F British Units Temp.,

    °C

    Metric Units

    Density Room 0.324 Ibm Room

    8.98

    9/cm

    Melting

    Range

    2400-2570 1315-1410

    Electric Room 39.6 microhm-in.

    Room 101.0 mcrohm-cm

    Resistivity 200 40.3

    microhm-in.

    100

    103.0 mcrohm-cm

    400 41.5 microhm-in. 200 105.0

    mcrohm-cm

    600

    42.7

    microhm-in. 300 107.7 microhm-cm

    800 43.8 microhm-in. 400 110.5 microhm-cm

    1000 44.7 microhm-jn. 500 112.7 microhm-cm

    1200

    45.6 microhm-in. 600 114.8

    microhm-cm

    1400 46.1 microhm-in. 700 116.4 microhm-crn

    1600 46.5 microhm-in. 800

    117.5 microhm-cm

    1800

    46.7

    microhm-in.

    900

    118.3 microhm-cm

    2000 46.8 microhm-in.

    1000 119.1 microhm-cm

    Thermal Diffusivity

    Room 4.5

    x

    10~ mY/sec. Room

    29.2

    x 10~ cm7sec.

    200 5.0

    x

    10~ in.2/sec. 100

    32.7 x

    10~ cm2/sec.

    400

    5.6

    x

    10~ in.2/sec. 200

    36.5

    x 10~

    cm2/sec.

    600

    6.Ox

    10~ in.2/sec. 300 38.7x10~ cm2/sec

    800

    6.4

    x

    10~ nY/sec.

    400 40.8

    x 10~ cm2/sec.

    1000

    6.7 x 10

    n.2/sec.

    500 43.5 x 10~

    cm2/sec.

    1200 7.1

    x

    10

    in.2/sec

    600 45.7

    x

    10 ~

    cm2/sec.

    1400 7.6

    x

    10 in.2/sec. 700 48.2 x 10~

    cm2/sec.

    1600 7.6

    x

    10

    nY/sec. 800

    50.4

    x

    10~ cm2/sec.

    1800

    8.0

    x

    10

    in.2/sec.

    900 50.4

    x

    10~

    cm2/sec.

    2000

    8.4 x 10 n.2/sec. 1000

    53.0

    x

    10~ cm2/sec.

    Thermal

    Conductivity Room 72 Btu-in./ft.2 hr.-°F Room 10.4

    W/m-K

    200 84

    Btu-in./tt.2

    hr.-°F 100 12.2

    W/m-K

    400 100

    Btu-in./ft.2

    hr.-°F 200 14.3 W/m-K

    600

    112 Btu-in./ft.2 hr i’

    300

    15.9 W/m-K

    800

    125 Btu-mn./ft.2

    hr.-°F 400 17.5 W/m-K

    1000 138 Btu-in./ft.2

    hr.-°F 500

    19.3

    W/m-K

    1200 152 Btu-in./ftYhr.-°F 600 21.1

    W/m-K

    1400 167 Btu-in./tt.2

    hr.-°F

    700

    23.0 W/m-K

    1600

    174

    Btu-in./tt.2 hr-i’

    800 24.8 W/m-K

    1800 189

    Btu-mn./ftY

    hr.-°F

    900 25.5

    W/m-K

    _______________

    2000 204 Btu-in./ft.2

    hr i’

    1000

    27.6

    W/m-K

    HAYNES

    188

    alloy

  • 8/16/2019 h3001.pdf

    9/16

    Temp.,°F BritishUnits Temp.,°C MetricUnits

    SpecificHeat Room 0.096BTU/lb.-°F Room 12.1J/Kg-K

    200 0.101BTU/lb.-°F 100 423J/Kg-K

    400 0.106BTU/lb.-°F 200 444J/Kg-K

    600 0.112BTU/lb.-°F 300 465J/Kg-K

    800 0.117BTU/lb.-°F 400 486J/Kg-K

    1000 0.122BTU/lb.-°F 500 502J/Kg-K

    1200 0.127BTU/lb.-°F 600 523J/Kg-K

    1400 0.131BTU/lb.-°F 700 540J/Kg-K

    1600 0.136BTU/lb.-°F 800 557J/Kg-K

    1800 0.140BTU/lb.-°F 900 573J/Kg-K

    2000 0.145BTU/lb.-°F 1000 590J/Kg-K

    MeanCoefficientofThermalExpansion

    70-200 6.7microinches/in-°F 25-100 12.1μm/m-°C

    70-400 7.1microinches/in-°F 25-200 12.7μm/m-°C

    70-600 7.3microinches/in-°F 25-300 13.1μm/m-°C

    70-800 7.6microinches/in-°F 25-400 13.5μm/m-°C

    70-1000 7.7microinches/in-°F 25-500 13.9μm/m-°C

    70-1200 8.2microinches/in-°F 25-600 14.3μm/m-°C

    70-1400 8.5microinches/in-°F 25-700 15.0μm/m-°C

    70-1600 8.8microinches/in-°F 25-800 15.5μm/m-°C

    70-1800 9.1microinches/in-°F 25-900 16.0μm/m-°C

    25-1000 16.5μm/m-°C

     

    Temp.,°F

    DynamicModulusofElasticity,10

    6psi Temp.,°C

    DynamicModulusofElasticity,GPa

    Room 33.6 Room 232200 32.8 100 225

    400 31.5 200 217

    600 30.2 300 209

    800 28.9 400 201

    1000 27.6 500 193

    1200 26.2 600 184

    1400 24.9 700 176

    1600 23.6 800 169

    1800 22.3 900 161

    2000 21.0 1000 153

     

  • 8/16/2019 h3001.pdf

    10/16

    LOW

    CYCLE

    FATIGUE PROPERTIES

    HAYNES® 188 alloy exhibits for strain-controlled

    tests

    run machined from bar. Tests were

    very

    good low

    cycle fatigue

    in

    the temperature

    range

    from

    run with

    fully reversed strain

    properties

    at elevated

    tempera- 800°F 425°C)

    to 1600°F

     R

    = -1) at a frequency of

    tures. Results shown below are 870°C).

    Samples

    were 20 cpm  0.33 Hz).

    COMPARATIVE LOW CYCLE FATIGUE

    PROPERTIES

    The

    graph below

    compares  60°C)/1

    000 hour pre- again

    run with

    fully reversed

    the low

    cycle

    fatigue

    lives of

    a

    exposed condition.

    Samples strain

     R

    1)

    at

    a

    frequency

    of

    number of alloys tested at were machined from plate

    or 20

    cpm  0.33

    Hz). TSR = Total

    800°F 425°C)

    in both the bar,

    after

    exposure

    for

    ex- Strain Range.

    as-received and 1400°F

    posed

    samples.

    Tests were

    800°F

     25°C)

    LCF

    Life for Various Alloys

    0

    0

    188 230

    X

    625 617 188 230

    X

    625 617

     

    As

    Received

    1400°F

     60°C)/1000

    Hr

    prior exposure

     

    w

    CD

    z

    z

     

    1)

    2.5

    2.0

     

    1.5  

    1.0

    0.9

    0.8

    0.7

    0.6

    0.5

     

    0.4  

    0.3

     

    02

    x

    j*~discontinued

    800°F  25°C)

      o3

     

    I

    tl6000F

     70°c)

    10~

    CYCLES

    TO

    FAILURE

    10°

    10~

      60

    TSR=

    10 TSR=065

    ~5

    .5 .5

    wo

    Lii

    r

    40

    D D

    30

    o

    I—

     1)

    s

    — U)

    w

    tu 20

    -3

    o

    0

    10 —

    HAYNES

    188

    alloy 10

  • 8/16/2019 h3001.pdf

    11/16

    OXIDATION

    RESISTANCE

    HAYNES® 188

    alloy

    exhibits

    environments, and can

    be

    used sures

    of

    short

    duration,

    188

    very good resistance to both air

    for

    long-term

    continuous expo- alloy can

    be used at higher

    and combustion gas oxidizing sure at temperatures up to temperatures.

    2000°F

     095°C). Fo r expo

    COMPARATIVE BURNER

    RIG

    OXiDATION RESISTANCE

    1000

    HOUR

    EXPOSURE

    AT 1100°F

     80°C)

    Material Mils

    pam

    230® alloy 0.8 20 2.8

    71

    3.5 89

    HAYNES® 188 alloy 35 89 4.2 107

    HASTELLOY

    X alloy

    2.7

    69 5.6 142 6.4 153

    625

    alloy

    4.9 124 7.1 180 7.6 193

    617 alloy 2.7 69 9.8 24 9

    10.7

    272

    Oxidation

    Test

    Parameters

    Burner

    r g

    ox

    dation

    tests were combustion of No . 2 fuel oil from the gas stream every 30

    conducted

    by

    exposing

    sam-

    burned

    at a ratio of

    air

    to

    fuel

    of minutes and

    fan-cooled

    to near

    pIes 3/8

    in.

    x 2.5 in. x

    thickness

    about 50:1.  Gas velocity was amb ent

    temperature and

    then

     9

    mm

    x 64

    mm

    x thickness), in about 0.3 mach). Samples reinserted into the

    flame

    tunnel.

    a

    rotating holder,

    to products of

    were automatically removed

    Metal

    Loss

    Average

    Metal Affected

    Mils

    pam

    Maximum

    Metal

    Affected

    Mils pam

    COMPARA1HVE

    BURNER

    RIG

    OXIDATION

    RESISTANCE

    AT

    2000°F 1095°C)

    FOR 500 HOURS

    OXDATION DAMAGE sM

    100

    200 300 400

    500

    600

    700 800

    900

    Maximum

    230® alloy Metal Internal

    Loss Penetration

    188

    alloy

    x alloy

    617 alloy  >24 mils)

    625

    alloy  >31

    mils)

    5

    10

    15

    20 25 30 35

    OXIDATION DAMAGE,

    MILS

    HAYNES

    188

    alloy

  • 8/16/2019 h3001.pdf

    12/16

    COMPARATIVE OXIDAT~ON RESISTANCE IN FLOWING

    A~R*

    Average Metal

    Affected in 1008

    Hours”

    1800°F

     980°C

    2000°F 1095°C 2100°F 1150°C

    Material

    Mils

    jim

    Mils jim Mils jim

    230®alloy 0.7 18 1.3 33 3.4 86

    HAYNES® 188 alloy 8.0

    203

    6l7alloy

    1.3

    33

    1.8

    46

    3.4 86

    HASTELLOY®Xalloy

    0.9

    23 2.7 69

    5.8 147

    625 alloy

    0.7

    18

    4.8

    122

    18.2

    462

    Flowing air at a velocity of 7.0 ftimin.  213.4

    cnvmin.

    past the samples. samples cycled to room temperature once-a-week.

      Metal Loss + Average

    Internal

    Penetration.

    HOT

    CORROSION RESISTANCE AT 1650°F 900°C

    HAYNES

    188 alloy exhibits

    No. 2

    Fuel

    oil with

    0.4

    percent cycled

    out of the gas stream

    excellent

    resistance to

    sulfate

    sulfur. The

    air:fuel

    ratio was

    once-an-hour

    and cooled to

    deposit type hot corrosion.

    30:1.

    Artificial

    sea

    water was near ambient temperature. Gas

    Tests were

    conducted in a low injected at a rate

    equivalent

    to velocity was 13 ft/sec.  4 mIs .

    velocity burner

    rig

    burning

    5

    ppm

    salt. Tests were

    run

    for

    1000 hours,

    with samples

    Metal Loss Average Metal Affected

    Material Mils

    j.tm

    Mils jim

    HAYNES

    188 alloy 0.8 20

    23Oalloy 1.2

    30 5.1 130

    625 alloy 1.8 46 5.2 132

    HASTELLOYXaIIoy 1.6 41 5.5 140

    SULFIDATION

    RESISTANCE

    AT

    1400°F 760°C

    HAYNES

    188

    al oy has

    very a gas mixture consisting of a severe

    test,

    with equilibrium

    good resistance to

    gaseous

    5

    percent

    H2 5 percent

    CO, su fur partial

    pressure of 106 to

    sulfidation envronments

     

    percent CO

    ,

    0.15 percent 10 and oxygen partia pres

    encountered

    in

    various

    indus- H2S

    and 0.1

    percent H 0,

    bal- sures

    less than that needed to

    trial applications.

    Tests

    were ance Ar . Coupons

    were

    produce

    protective chromium

    conducted at

    1400°F

     760°C

    in

    exposed for

    21 5

    hours.

    This is

    oxide scales.

    16

    14

    °~o 12

      ~~~

    t 1

    8

    6

    4

    2

    400

    300

    200

    r

    100

    188 556 310 617 800H 625 x

    HAYNES

    188 a

    oy

    12

  • 8/16/2019 h3001.pdf

    13/16

    SCHEMATIC

    REPRESENTATION OF

    METALLOGRAPHJC

    TECHNIOUE

    USED

    FOR EVALUATING ENVIRONMENTAL

    TESTS

    1.

    Metal Loss

    =

     A

     

    8)12

    2. Average Internal Penetration = C

    3. Maximum

    Internal Penetration

    =

    D

    4. Average

    Metal

    Affected =  A   8)12) +

    C

    5. Maximum Metal Affected

    =

     A

      8)12) +

    D

    FABRICATION

    CHARACTERISTICS

    HEAT

    TREATMENT

    HAYNES 188 alloy is normally

    final so ution heat-treated at

    2150°F 1175 C)for a

    time

    commensurate with section

    thickness.

    Annealing during

    tabricat

    on can be

    performed

    at

    even lower

    temperatures,

    but a

    final, subsequent

    solution

    heat

    treatment is

    needed

    to produce

    optimum properties

    and

    struc

    ture. Please cal l Haynes

    International

    for further

    nforma

    ton.

    EFFECT OF

    COLD

    REDUCT~ON

    UPON

    ROOM-TEMPERATURE

    PROPERTIES*

     

    Cold

    Reduction

    Ultimate

    Tensile

    Strength

     

    I

    :‘E.~r

    v~rt:n. 0

    Subsequent

    Temperature

    0.2 Yield

    Strength

    Elongation

    in

    2 in.  51

    mm)

    Ksi

    MPa

    Ksi

    MPa Hardness

    0 137.2 945 66.9 460

    54.2

    RB 98.1

    10

    151.5 1045 105.9 730 45.1 R~32.1

    20 None 165.9

    1145

    132.9

    915

    28.3

    R~37.1

    30 195.1 1345 167.0 1150 13.4 R~41.2

    40

    214.9 1480

    176.8

    1220

    9.8

    R~43.5

    10

    148.5 1025

    91.2 630 41.4

    R~29.7

    20

    1950°F 153.3 1055

    87.8 605 41.0 R~27.8

    30 158.3 1090 84.2 580 41.3 R~29.6

    40 162.7 1120

    90.8

    625

    39.8

    R~31.1

    10

    143.0 985 64.7 445

    50.1

    R~21.9

    20

    2050°F 149.0 1025

    71.4 490 47.2 R~24.5

    11120°C~

    30 br s mir~ 155.2 1070 80.3 555

    43.7

    Ac

    27.6

    40 159.0

    1095

    86.9 600 43.2

    Ac

    29.5

    10

    139,6 965

    61.9

    425

    55.3 RB95.6

    20 2150°F 141.3 975 64.9 445 53.3

    A9

    97.1

    30 142.8 985

    66.5 460 51.8 RB 98.5

    40

    141.5

    975 64.1 440 55.5 RB 97.2

    * Based upon rolling reduction taken upon 0.125 in.  3.2

    mm)

    thick sheet. Duplicate tests.

    13

    HAYNES

    188

    alloy

  • 8/16/2019 h3001.pdf

    14/16

    WELDING

    HAYNES

    188 alloy is readi y

    welded by Gas Tungsten Arc

     TIG),

    Gas

    Metal Arc  MIG),

    Shie ded

    Metal

    Arc coated

    electrodes), electron beam

    welding

    and

    resistance

    welding

    techniques. Its welding charac

    teristics

    are

    similar

    to

    those for

    HAYNES

    25

    alloy.

    Submerged

    Arc

    welding

    is not recom

    mended

    as

    this process

    is

    characterized by high heat

    input to

    the

    base metal and

    slow

    cooIng

    of the weld. These

    factors can ncrease weld

    restraint and promote cracking.

    Base

    Metal

    Preparation

    The

    joint surface and

    adjacent

    area should be

    thoroughly

    cleaned

    before

    welding. All

    grease, oil,

    crayon marks, su l

    fur

    compounds

    and other

    foreign

    matter

    should

    be

    removed.

    Contact with copper

    or

    copper-bearing materials in

    the joint area should

    be

    avoided.

    It

    is preferable, but

    not

    necessary, that the alloy

    be

    in

    the

    solution-annealed

    condi

    tion when welded.

    Filler Metal

    Selection

    Matching composition filler

    metal is

    recommended

    for

    join

    ing 188 alloy. Fo r

    joining

    section

    thicknesses greater

    than

    3/8 in.  .5 mm)

    230~Ww

    filler

    wire is suggested. Fo r

    shielded metal arc welding,

    HAYNES 25

    alloy electrodes

     AMS 5796) are suggested. Fo r

    dissimilar metal joining of 188

    alloy to nickel-,

    cobalt-

    or iron-

    base materials, 188 alloy

    itself,

    230-W

    filler

    wire, 556TM alloy,

    HASTELLOY S

    alloy

     AMS

    5838) or HASTELLOY W alloy

     MS 5786,

    5787) welding

    products are suggested,

    depending upon the particular

    case.

    Preheating, Interpass

    Temperatures

    and

    Post-Weld

    Heat Treatment

    Preheat

    is

    no t

    usually required

    so ong

    as

    base

    meta

    to be

    welded is above 32 F  °C).

    Interpass

    temperatures

    gener

    ally

    should

    be

    low. Auxiliary

    cooling methods may

    be

    used

    between weld passes,

    as

    needed, prov d

    ng

    that such

    methods

    do

    not

    introduce

    con

    taminants.

    Post-weld heat

    treatment

    is not

    normal

    y

    required

    for

    188

    alloy.

    Fo r

    fur

    ther information, please contact

    Haynes International.

    HEALTH AND SAFETY INE

    RMATION

    Welding can be a safe occupa

    tion.

    Those

    in the

    welding

    industry, however, should be

    aware of the potential hazards

    associated

    with

    welding fumes,

    gases, radiation, electric

    shock,

    heat, eye

    injuries, burns,

    etc. Also,

    local,

    municipal,

    state,

    and

    federal regulations

     such

    as

    those issued by

    OSHA) relative

    to weldng and

    cutting processes should be

    considered.

    Nickel-, cobalt-, and iron-base

    alloy products may

    contain,

    in

    varying concentrations,

    the

    fol

    lowing

    elemental

    constituents:

    auminum, cobalt, chromium,

    copper, iron, manganese,

    molybdenum,

    nickel

    and tung

    sten

    Fo r

    specific

    concentrations

    of

    these and

    other

    elements present, refer

    to

    the Materal Safety Data Sheets

     MSDS) H3095

    and

    H1072

    for

    the product.

    Inha

    ation of metal dust or

    fumes

    generated

    from weldng,

    cutting, grind ng ,

    melting,

    or

    dross handling of these alloys

    may cause

    adverse

    health

    effects such

    as

    reduced

    lung

    function,

    nasal

    and mucous

    membrane

    irritation. Exposure

    to dust or fumes which may be

    generated

    in working with

    these alloys

    may also

    cause eye irritation, skin

    rash

    and

    effects

    on

    other

    organ

    systems.

    The

    operation and

    mainte

    nance

    of welding and cutting

    equipment

    should conform to

    the provisions of American

    Nat onal Standard ANSI/AWS

    Z491,  Safely

    in

    Welding and

    Cuffing”) Attention

    s

    espe

    cia y

    ca l ed

    to Section 7

     Protect on of Personnel) and 8

     Heath

    Protect on

    and

    Ventilat

    on )

    of ANSI/AWS Z491.

    Mechanical ventilation s advis

    able

    and, under certain

    conditions such

    as

    a very

    con

    fined space, is necessary

    during

    welding

    or cuffing

    oper

    ations,

    or both,

    to prevent

    possible

    exposure to haz

    ardous fumes, gases, or

    dust

    that may occur.

    HAYNES

    188

    alloy

  • 8/16/2019 h3001.pdf

    15/16

    MACH

    NING

    Operation High Speed Steel

    Tools

    Carbide

    Tools

    Normal

    Roughing

    M-40 series,

    M-2 , M -33,

    T-4, C-i or C

    2

    grade

    square

    insert,

     Turning/Facing)

    T-8

    and

    T-15. 45 SCEA,

    -5 Back

    Rake,

    45

    SCEA’, 0°

    Back

    Rake, -5°Side Rake,

    +10°Side Rake, 1/16

    in.

    Nose Radius.

    1/16

    in.

    Nose Radius.

    1/4

    in.

    depth

    of

    cut max.,

    1/4

    in.

    depth

    of

    cut

    max., .020

    feed

    max.,

    60-80

    sfm

    0.020 feed

    max.,

    depending on rigidity of

    setup

    25 sfm cutting speed. Dry3, oil4, or

    water-base

    coo ant.

    Water base

    coolant.

    F nish ng M-40 series, M-33, M-3 , T -8 0-2 or 0-3

    grade

    square insert,

     Turning/Facing) and

    T-15.

    if possible.

    15-45°

    SCEA, +10° Back Rake,

    15-45°

    SCEA, +5°Side Rake,

    +15~

    Side Rake, +5

    Back

    Rake,

    1/32-1/16

    in.

    Nose Radius. 1/32-1/16

    in.

    Nose Rad us.

    0.040-0.010 in.

    depth

    of cut, 0.040-0.010 in.

    depth

    of cut,

    Water-base coolant.

    Dry or

    water-base

    coolant.

    Drilling C-2

    grade

    not

    recommended,

    but solid or tipped

    dr

    Is may

    be

    successful on rigid setups.

    The web

    must

    be

    thinned

    to

    reduce thrust.

    Use 135° included

    angle on

    point.

    30-60

    sfm.

    Coolant-feed

    carbide tipped

    drills can

    be

    economical

    in

    some setups.

    Q~

      or

    water-base coolant.

    M-33, M-40 series, or T-15.

    Peed

    0.001 in/Rev. 1/16

    in.

    dia.

    0.002

    in./Rev.

    1/4

    in. dia.

    0.003

    in/Rev. 1/2 in. da.

    0.004 in/Rev.   in. d

    a.

    Speed

    10-20 sfm.

    Oil

    or

    water-base coolant.

    Use

    coolant feed drills

    if p055

    ble.

    Use short drills, heavy web

    135°

    crankshaft

    grind

    points

    wherever

    possible.

     

    SCEA — side

    cutting

    edge

    angle

    or

    lead angle

    of the

    tool.

    2 Water-base coolant should be premium quality, sulfochiorinated water soluble oil or chemical emulsion with extreme pressure additives. Dilute with water to

    make  5: mix.

    3 At any

    point

    where dry cutting is

    recommended,

    an

    air let

    directed on the

    tool may provide substantial

    tool life increases. A water-base

    coolant mist may

    also

    be

    effective.

    4 Oi l

    coolant should

    be a premium

    quality,

    sulfochiorinated oil with extreme pressure

    additives.

    A

    viscosity at  

    6F

    from 50

    to

    125 ssu

    5 Water4ase

    coolant

    may cause chipping and rapid failure of carbide tools in interrupted cuts.

    6 Negative

    rake

    tools should be

    used for

    interrupted

    cuts.

    NOTES:

    HAYNES

    188

    alloy

  • 8/16/2019 h3001.pdf

    16/16

    STANDARD PRODUCTS By Brand or Alloy Designation: 

    B-3®, C-4, C-22®, C-22HS®, C-276, C-2000®, G-30®, G-35®, G-50®, HYBRID-BC1™, and N

    Corrosion-Wear Resistant Alloy

    ULTIMET®

    25, R-41, 75, HR-120®, HR-160®, HR-224™, 188, 214®, 230®, 230-W®, 242®, 263, 282®, 556®, 617, 625,

    625SQ®, 718, X-750, MULTIMET®, NS-163™, and Waspaloy

    Wear-Resistant Alloy

    Ti-3Al-2.5V

    HASTELLOY ®  High-Temperature Alloys

    HASTELLOY ®  Corrosion-Resistant Alloys 

    S, W, and X

    HAYNES ®  High-Temperature Alloys

    6B

    HAYNES ® Titanium Alloy Tubular 

    Properties Data: The data and information in this publication are

    based on work conducted principally by Haynes International,

    Inc. and occasionally supplemented by information from the open

    literature, and are believed to be reliable. However, Haynes

    does not make any warranty or assume any legal liability or

    responsibility for its accuracy, completeness, or usefulness,

    nor does Haynes represent that its use would not infringe

    upon private rights.

     An y su gg es ti on s as to us es an d appl ic at io ns fo r sp ec if ic

    alloys are opinions only and Haynes International, Inc. makes no

    warranty of results to be obtained in any particular situation. For

    specific concentrations of elements present in a particular product

    and a discussion of the potential health affects thereof, refer to

    the Material Safety Data Sheet supplied by Haynes International,

    Inc. All trademarks are owned by Haynes International, Inc.

    Standard Forms:  Bar, Billet, Plate, Sheet, Strip, Coils, Seamless or Welded Pipe & Tubing, PipeFittings, Flanges, Fittings, Welding Wire, and Coated Electrodes

    Global Headquarters1020 West Park Avenue

    P.O. Box 9013

    Kokomo, Indiana 46904-9013 (USA)

    Phone: 1-800-354-0806 or (765) 456-6012

    Fax: (765) 456-6905

    For your local service center or sales office please call or visit our website

    www.haynesintl.com