42
Ground-based observations of Kepler asteroseismic targets Joanna Molenda-Żakowicz Instytut Astronomiczny Uniwersytetu Wrocławskiego POLAND

Ground-based observations of Kepler asteroseismic targets Joanna Molenda-Żakowicz Instytut Astronomiczny Uniwersytetu Wrocławskiego POLAND

  • View
    220

  • Download
    2

Embed Size (px)

Citation preview

Page 1: Ground-based observations of Kepler asteroseismic targets Joanna Molenda-Żakowicz Instytut Astronomiczny Uniwersytetu Wrocławskiego POLAND

Ground-based observationsof Kepler asteroseismic targets

Joanna Molenda-Żakowicz

Instytut Astronomiczny Uniwersytetu WrocławskiegoPOLAND

Page 2: Ground-based observations of Kepler asteroseismic targets Joanna Molenda-Żakowicz Instytut Astronomiczny Uniwersytetu Wrocławskiego POLAND

Kepler asteroseismic targets

what are these objects? pulsating, preferably solar-type stars that will be observed by

the Kepler space telescope for what reason?

to study stellar interiors via asteroseismic methods

what this study will result in? precise radius and mass of the stars can yield precise

parameters of their planetary systems providing that the dedicated asteroseismic models of the stars are computed

Page 3: Ground-based observations of Kepler asteroseismic targets Joanna Molenda-Żakowicz Instytut Astronomiczny Uniwersytetu Wrocławskiego POLAND

Ground-based observations

of which objects? stars that are candidates for Kepler asteroseismic targets

for what reason?

to determine their atmospheric parameters: Teff

, logg, and [Fe/H], and to measure their radial velocity, v

r ,and projected

rotational velocity, v sin i

what this study will result in? it will allow to compute dedicated asteroseismic and

evolutionary models of Kepler asteroseismic targets

Page 4: Ground-based observations of Kepler asteroseismic targets Joanna Molenda-Żakowicz Instytut Astronomiczny Uniwersytetu Wrocławskiego POLAND

Observing sites

Page 5: Ground-based observations of Kepler asteroseismic targets Joanna Molenda-Żakowicz Instytut Astronomiczny Uniwersytetu Wrocławskiego POLAND

Harvard-Smithsonian Center for Astrophysics, USA

Oak Ridge Observatory, Harvard Massachusetts: 1.5-m Wyeth reflector

Fred Lawrence Whipple Observatory, Mount Hopkins, Arizona: 1.5-m Tillinghast reflector

Multiple Mirror Telescope (before it was converted to the monolithic 6.5-m mirror)

Page 6: Ground-based observations of Kepler asteroseismic targets Joanna Molenda-Żakowicz Instytut Astronomiczny Uniwersytetu Wrocławskiego POLAND

Nordic Optical Telescope

Location: Canary Islands, Spain

Altitude: 2,382 m.a.s.l.

Targets:

the faintest candidtes for Kepler asteroseismic targets

stars from open clusters

Photo: Michael J.D. Linden-Vørnle and Bob Tubbs

Page 7: Ground-based observations of Kepler asteroseismic targets Joanna Molenda-Żakowicz Instytut Astronomiczny Uniwersytetu Wrocławskiego POLAND

Nordic Optical Telescope

2.5-m telescope

FIES instrument

a cross-dispersed high-resolution echelle spectrograph

maximum spectral resolution: R = 65 000

the spectral range: 370-740 nm

Photo: Michael J.D. Linden-Vørnle and Bob Tubbs

Page 8: Ground-based observations of Kepler asteroseismic targets Joanna Molenda-Żakowicz Instytut Astronomiczny Uniwersytetu Wrocławskiego POLAND

Wrocław University Observatory

Location: Astrophysical Observatory of the University of Wrocław, Białków, Poland

Targets: open clusters

In the figures: the dome and the 60 cm Cassegrain telescope in Białków

Page 9: Ground-based observations of Kepler asteroseismic targets Joanna Molenda-Żakowicz Instytut Astronomiczny Uniwersytetu Wrocławskiego POLAND

Czech Academy of Sciences Observatory

Location: Ondrejov (Czech Republic)

Altitude: 500 m.a.s.l.

2-m telescope used for high-dispersion coude spectroscopy

Targets: selected binaries from the list of candidates for Kepler asteroseismic targets

Photo: Josef Havelka and Aleš Kolář

Page 10: Ground-based observations of Kepler asteroseismic targets Joanna Molenda-Żakowicz Instytut Astronomiczny Uniwersytetu Wrocławskiego POLAND

Slovak Academy of Sciences Observatory

Location: Tatranska Lomnica (Slovak Republic)

In the figures: the dome and the 60-cm Cassegrain telescope in Tatranska Lomnica

Page 11: Ground-based observations of Kepler asteroseismic targets Joanna Molenda-Żakowicz Instytut Astronomiczny Uniwersytetu Wrocławskiego POLAND

Catania Astrophysical Observatory

Location: Fracastoro Mountain Station, Mt. Etna. Italy

elevation 1,735 m a.s.l

> 200 clear nights per year

occasional breaks in observations due to the activity of Etna

Page 12: Ground-based observations of Kepler asteroseismic targets Joanna Molenda-Żakowicz Instytut Astronomiczny Uniwersytetu Wrocławskiego POLAND

Catania Astrophysical Observatory

Instruments

Page 13: Ground-based observations of Kepler asteroseismic targets Joanna Molenda-Żakowicz Instytut Astronomiczny Uniwersytetu Wrocławskiego POLAND

Telescope

Optical configuration: Cassegrain

Main mirror: 91-cm, paraboloid

Secondary mirror: 24-cm

Mount type: German (see the next figure)

Page 14: Ground-based observations of Kepler asteroseismic targets Joanna Molenda-Żakowicz Instytut Astronomiczny Uniwersytetu Wrocławskiego POLAND

Photometer

Single channel photometer

Filters: Johnson system: U B V Strömgren system: u b v y

H (narrow and wide) Comet narrow band IHW

system

In the figure: the photometer and additional equipment in the Catania astrophysical laboratory.

Page 15: Ground-based observations of Kepler asteroseismic targets Joanna Molenda-Żakowicz Instytut Astronomiczny Uniwersytetu Wrocławskiego POLAND

Spectrograph

Fiber-optics Reosc Echelle Spectrograph of Catania Observatory, FRESCO

Gratings

echellette (cross-disperser), reflection grating of 160x106 mm with 300 l/mm

blazed at 4.3 deg

maximum efficiency 80% at the blaze wavelength 5000 A

Page 16: Ground-based observations of Kepler asteroseismic targets Joanna Molenda-Żakowicz Instytut Astronomiczny Uniwersytetu Wrocławskiego POLAND

Spectrograph

Dispersion

varies from 3.5 A/mm at H

to 6.8 A/mm at H (R=21,000)

The spectral range covered in one exposure is about 2500 A in 19 orders

Page 17: Ground-based observations of Kepler asteroseismic targets Joanna Molenda-Żakowicz Instytut Astronomiczny Uniwersytetu Wrocławskiego POLAND

Spectrograph

Performances

radial velocity measurements precision v < 0.3 km/s rms

S/N at H 100 with Texp

= 10 s for V=6 mag star

limiting magnitude V=11 with S/N =30 and T

exp = 1 h

Calibration lamps

halogen flat field lamp at about 2,600oC

Thorium-Argon hollow cathode lamp

Page 18: Ground-based observations of Kepler asteroseismic targets Joanna Molenda-Żakowicz Instytut Astronomiczny Uniwersytetu Wrocławskiego POLAND

Methodology of observations

Page 19: Ground-based observations of Kepler asteroseismic targets Joanna Molenda-Żakowicz Instytut Astronomiczny Uniwersytetu Wrocławskiego POLAND

Calibration images - Bias

measured at the beginning and the end of each night (typically six measurements in total)

the mean is subtracted from flat fields, calibration lamps and stellar spectra

Page 20: Ground-based observations of Kepler asteroseismic targets Joanna Molenda-Żakowicz Instytut Astronomiczny Uniwersytetu Wrocławskiego POLAND

Calibration images - Flat Field

measured at the beginning and the end of each night (typically six measurements in total)

needed for correction for the shape of the blaze function

Page 21: Ground-based observations of Kepler asteroseismic targets Joanna Molenda-Żakowicz Instytut Astronomiczny Uniwersytetu Wrocławskiego POLAND

Calibration images - Flat Field

each spectrum (calibration lamps and stellar spectra) is divided, order by order, by the fit to the mean flat field

in the figure - the second order of the fit to the mean flat field

Page 22: Ground-based observations of Kepler asteroseismic targets Joanna Molenda-Żakowicz Instytut Astronomiczny Uniwersytetu Wrocławskiego POLAND

Calibration images - Thorium-Argon Lamp

measured 2-3 times per night

needed to place the stellar spectra on the Angstrom scale

Page 23: Ground-based observations of Kepler asteroseismic targets Joanna Molenda-Żakowicz Instytut Astronomiczny Uniwersytetu Wrocławskiego POLAND

Calibration images - Thorium-Argon Lamp

in the figure: emission lines in the spectrum of Thorium-Argon lamp

the emission lines have to be identified in each order

Page 24: Ground-based observations of Kepler asteroseismic targets Joanna Molenda-Żakowicz Instytut Astronomiczny Uniwersytetu Wrocławskiego POLAND

Stars: Oph (K2III)

radial velocity standard

needed for measuring radial velocity of program stars

observed each night

Page 25: Ground-based observations of Kepler asteroseismic targets Joanna Molenda-Żakowicz Instytut Astronomiczny Uniwersytetu Wrocławskiego POLAND

Oph (K2III)

Page 26: Ground-based observations of Kepler asteroseismic targets Joanna Molenda-Żakowicz Instytut Astronomiczny Uniwersytetu Wrocławskiego POLAND

Targets of observations

Page 27: Ground-based observations of Kepler asteroseismic targets Joanna Molenda-Żakowicz Instytut Astronomiczny Uniwersytetu Wrocławskiego POLAND

Targets

standard stars radial velocity standards, e.g,. Ophiuchi stars with well-known spectral types needed for MK

classification fast rotating stars, e.g., Altair needed for the removal of

telluric lines program stars

all the candidates for Kepler asteroseismic targets at least two spectra per star

Page 28: Ground-based observations of Kepler asteroseismic targets Joanna Molenda-Żakowicz Instytut Astronomiczny Uniwersytetu Wrocławskiego POLAND

Primary asteroseismic targets

15 stars which fall onto active pixels of Kepler CCDs

V = 9-11 mag

have precise Hipparcos parallax so that their luminosity can be computed from it

Page 29: Ground-based observations of Kepler asteroseismic targets Joanna Molenda-Żakowicz Instytut Astronomiczny Uniwersytetu Wrocławskiego POLAND

Secondary asteroseismic targets

44 stars which fall onto active pixels of Kepler CCDs

V = 9-11 mag

the Hipparcos parallax are not precise so that the star's luminosity can not be computed from it

Page 30: Ground-based observations of Kepler asteroseismic targets Joanna Molenda-Żakowicz Instytut Astronomiczny Uniwersytetu Wrocławskiego POLAND

Brightest asteroseismic targets

34 stars which fall onto active pixels of Kepler CCDs

V = 8-9 mag

have precise Hipparcos parallax – star's distance and luminosity can be computed

Page 31: Ground-based observations of Kepler asteroseismic targets Joanna Molenda-Żakowicz Instytut Astronomiczny Uniwersytetu Wrocławskiego POLAND

NGC 6811

the candidates for Kepler asteroseismic targets are plotted with green symbols

stars are labeled with WEBDA numbers or with running numbers

red rectangles show the fields observed in Tatranska Lomnica

Page 32: Ground-based observations of Kepler asteroseismic targets Joanna Molenda-Żakowicz Instytut Astronomiczny Uniwersytetu Wrocławskiego POLAND

NGC 6866

the candidates for Kepler asteroseismic targets are plotted with green symbols

stars are labeled with WEBDA numbers or with running numbers

red rectangles show the fields observed in Tatranska Lomnica

Page 33: Ground-based observations of Kepler asteroseismic targets Joanna Molenda-Żakowicz Instytut Astronomiczny Uniwersytetu Wrocławskiego POLAND

Results

Page 34: Ground-based observations of Kepler asteroseismic targets Joanna Molenda-Żakowicz Instytut Astronomiczny Uniwersytetu Wrocławskiego POLAND

Radial velocity measurements

The method: the cross-correlation; the template - Oph

The tool: iraf software

Page 35: Ground-based observations of Kepler asteroseismic targets Joanna Molenda-Żakowicz Instytut Astronomiczny Uniwersytetu Wrocławskiego POLAND

HIP 94734 – SB1

discovered in the ground-based data to be a single-lined spectroscopic binary (see Molenda-Żakowicz et al. 2007 AcA 57, 301)

Page 36: Ground-based observations of Kepler asteroseismic targets Joanna Molenda-Żakowicz Instytut Astronomiczny Uniwersytetu Wrocławskiego POLAND

SB2 stars

show double peak in the cross-correlation function (here: an SB2 star HIP 94335)

Page 37: Ground-based observations of Kepler asteroseismic targets Joanna Molenda-Żakowicz Instytut Astronomiczny Uniwersytetu Wrocławskiego POLAND

SB2 stars – HIP 94335

radial velocity of the primary (red) and secondary (blue) component of the SB2 Algol-type system HIP 94335

Page 38: Ground-based observations of Kepler asteroseismic targets Joanna Molenda-Żakowicz Instytut Astronomiczny Uniwersytetu Wrocławskiego POLAND

Measurements of v sin i

measured with the use of a grid of Kurucz model spectra

and with the Full Width Half Maximum method

in the figure: determination of of v sin i of both components of HIP 94335

Page 39: Ground-based observations of Kepler asteroseismic targets Joanna Molenda-Żakowicz Instytut Astronomiczny Uniwersytetu Wrocławskiego POLAND

Determination of atmospheric parameters

measured by comparison with the grid of spectra of reference stars (see Frasca et al. 2003 A&A 405, 149, Frasca et al. 2006 A&A 454, 301)

the method allows simultaneous and fast determination of logTeff, log g and [Fe/H] even for stars which spectra have low signal-to-noise ratio or limited resolution

requires a dense grid of template spectra of stars with precisely determined atmospheric parameters

in the figure: the reference stars in the logTeff – log g – [Fe/H] space

Page 40: Ground-based observations of Kepler asteroseismic targets Joanna Molenda-Żakowicz Instytut Astronomiczny Uniwersytetu Wrocławskiego POLAND

How this method works

the spectrum of the program star is compared with all template spectra

the best-fitting five template spectra are selected

adopted are weighted means of Teff, log g and [Fe/H] of the five templates that have spectra most similar to the spectrum of the program star

Page 41: Ground-based observations of Kepler asteroseismic targets Joanna Molenda-Żakowicz Instytut Astronomiczny Uniwersytetu Wrocławskiego POLAND

log Teff – log g diagram for Kepler primary asteroseismic targets

Page 42: Ground-based observations of Kepler asteroseismic targets Joanna Molenda-Żakowicz Instytut Astronomiczny Uniwersytetu Wrocławskiego POLAND

Evolutionary and asteroseismic models – HIP 94734

model computed with the use of Monte Carlo Markov Chains. On the right: marginal distributions of model parameters: age and mass. (Bazot et al. in preparation)

mass = 1.114±0.023 M

age = 7.070 ±0.79 Gyr

large separation of solar-like oscillations, = 106.5 ± 3.8 Hz