of 56 /56
Proposition de création d’équipe GeoSpec LabEx PERSYVAL 29/04/2016

GeoSpec - ljk.imag.frljk.imag.fr/GeoSpec/doc/Slides_GeoSpec.pdf · Contexte et objectif de l’action • Calcul formel (Maple, SAGE, MuPAD, etc.). Mathématiques fondamentales et

Embed Size (px)

Text of GeoSpec - ljk.imag.frljk.imag.fr/GeoSpec/doc/Slides_GeoSpec.pdf · Contexte et objectif de...

  • Proposition de cration dquipe

    GeoSpec

    LabEx PERSYVAL 29/04/2016

  • Institut Fourier

    Membres du projet dquipe

  • Laboratoire Jean Kuntzman

    Institut Fourier

    Membres du projet dquipe

  • Laboratoire Jean Kuntzman Lama

    Institut Fourier

    Membres du projet dquipe

  • Laboratoire Jean Kuntzman Lama

    Institut Fourier

    Membres du projet dquipe

  • Laboratoire Jean Kuntzman Lama

    Institut Fourier

    Membres du projet dquipe

  • Laboratoire Jean Kuntzman Lama

    Institut Fourier

    Membres du projet dquipe

  • Contexte et objectif de laction Mathmatiques fondamentales et outils numriques

  • Contexte et objectif de laction

    Calcul formel (Maple, SAGE, MuPAD, etc.).

    Mathmatiques fondamentales et outils numriques

  • Contexte et objectif de laction

    Calcul formel (Maple, SAGE, MuPAD, etc.).

    Mathmatiques fondamentales et outils numriques

    Thorme des quatre couleurs : logiciel Coq et dmonstrateurs, certification.

  • Contexte et objectif de laction

    Calcul formel (Maple, SAGE, MuPAD, etc.).

    Mathmatiques fondamentales et outils numriques

    Thorme des quatre couleurs : logiciel Coq et dmonstrateurs, certification.

    Plus proche du calcul scientifique lapproche de Hales : conjecture de Kepler et des Honeycombs. Approche par arithmtique dintervalle et optimisation. Dmonstration de la conjecture de Kepler !

  • Contexte et objectif de laction

    Calcul formel (Maple, SAGE, MuPAD, etc.).

    Mathmatiques fondamentales et outils numriques

    Thorme des quatre couleurs : logiciel Coq et dmonstrateurs, certification.

    Plus proche du calcul scientifique lapproche de Hales : conjecture de Kepler et des Honeycombs. Approche par arithmtique dintervalle et optimisation. Dmonstration de la conjecture de Kepler !

    Un succs rcent rgional : le tore plat (PNAS, Pour La Science, etc.).

  • Contexte et objectif de laction

    Calcul formel (Maple, SAGE, MuPAD, etc.).

    Mathmatiques fondamentales et outils numriques

    Objectif des porteurs du projet

    Thorme des quatre couleurs : logiciel Coq et dmonstrateurs, certification.

    Plus proche du calcul scientifique lapproche de Hales : conjecture de Kepler et des Honeycombs. Approche par arithmtique dintervalle et optimisation. Dmonstration de la conjecture de Kepler !

    Un succs rcent rgional : le tore plat (PNAS, Pour La Science, etc.).

  • Contexte et objectif de laction

    Calcul formel (Maple, SAGE, MuPAD, etc.).

    Mathmatiques fondamentales et outils numriques

    Valorisation du potentiel Grenoblois mathmatiques fondamentales et calcul scientifique.

    Objectif des porteurs du projet

    Thorme des quatre couleurs : logiciel Coq et dmonstrateurs, certification.

    Plus proche du calcul scientifique lapproche de Hales : conjecture de Kepler et des Honeycombs. Approche par arithmtique dintervalle et optimisation. Dmonstration de la conjecture de Kepler !

    Un succs rcent rgional : le tore plat (PNAS, Pour La Science, etc.).

  • Contexte et objectif de laction

    Calcul formel (Maple, SAGE, MuPAD, etc.).

    Mathmatiques fondamentales et outils numriques

    Valorisation du potentiel Grenoblois mathmatiques fondamentales et calcul scientifique.

    Objectif des porteurs du projet

    Dveloppement dune nouvelle dynamique originale au niveau national et international autour de jeunes chercheurs brillants de disciplines transverses. Plus que de nouveaux thormes, les perspectives sont de proposer de nouveaux clairages sur des sujets trs actuels.

    Thorme des quatre couleurs : logiciel Coq et dmonstrateurs, certification.

    Plus proche du calcul scientifique lapproche de Hales : conjecture de Kepler et des Honeycombs. Approche par arithmtique dintervalle et optimisation. Dmonstration de la conjecture de Kepler !

    Un succs rcent rgional : le tore plat (PNAS, Pour La Science, etc.).

  • Complexit dynamique : sections de Birkhoff

  • Complexit dynamique : sections de Birkhoff

    Notion de section associe un champ de vecteur

  • Complexit dynamique : sections de Birkhoff

    Notion de section associe un champ de vecteur

    Comprendre la complexit dun champ de vecteur par ses sections

  • Complexit dynamique : sections de Birkhoff

    Notion de section associe un champ de vecteur

    Comprendre la complexit dun champ de vecteur par ses sections

    Les gomtres travaillent dans des classes de surfaces !

  • Complexit dynamique : sections de Birkhoff

    Notion de section associe un champ de vecteur

    Comprendre la complexit dun champ de vecteur par ses sections

    Les gomtres travaillent dans des classes de surfaces ! Le thorme non constructif de Thurston garantit lexistence de

    reprsentations lmentaires sur des surfaces plates dans le cadre hyperbolique. Comment les identifier ?

  • Optimisation parmi les mtriques

    pp v 2 Tx

    S, limn!1

    1

    nlog ||D

    x

    fn(v)|| = log()

  • Optimisation parmi les mtriques

    Paramtrisation des mtriques : problmes avec contraintes de type SDP locales. Rsultats de non convergence pour P1 ! Plusieurs chelles sont ncessaires.

    pp v 2 Tx

    S, limn!1

    1

    nlog ||D

    x

    fn(v)|| = log()

  • Optimisation parmi les mtriques

    Paramtrisation des mtriques : problmes avec contraintes de type SDP locales. Rsultats de non convergence pour P1 ! Plusieurs chelles sont ncessaires.

    Benchmarks : recherche dexemples explicites de Thurston. Autres paramtrisation du problme ?

    pp v 2 Tx

    S, limn!1

    1

    nlog ||D

    x

    fn(v)|| = log()

  • Optimisation parmi les mtriques

    Paramtrisation des mtriques : problmes avec contraintes de type SDP locales. Rsultats de non convergence pour P1 ! Plusieurs chelles sont ncessaires.

    Benchmarks : recherche dexemples explicites de Thurston. Autres paramtrisation du problme ?

    pp v 2 Tx

    S, limn!1

    1

    nlog ||D

    x

    fn(v)|| = log()

    Linarisation, projection //, algorithme non lisse large scale.

  • Complexit godsique et spectrale :

  • Complexit godsique et spectrale : Quest ce quune godsique sur une surface plate ?

  • Complexit godsique et spectrale :

    Un problme gomtrique

    QuestionTrouver la godsique ferme la plus courte sur une surface plate S.

    La surface est reprsente par un sous-ensemble ouvert de R2 pourlequel des morceaux de bord sont identifies (exemple: le tore plat).Une godsique est une trajectoire dune particule dans un champvectorielle V : S R2 constante sur S.

    Sx0

    V

    Emmanuel Russ, Bozhidar Velichkov Problmes spectraux

    Quest ce quune godsique sur une surface plate ?

  • Complexit godsique et spectrale :

    Un problme gomtrique

    QuestionTrouver la godsique ferme la plus courte sur une surface plate S.

    La surface est reprsente par un sous-ensemble ouvert de R2 pourlequel des morceaux de bord sont identifies (exemple: le tore plat).Une godsique est une trajectoire dune particule dans un champvectorielle V : S R2 constante sur S.

    Sx0

    V

    Emmanuel Russ, Bozhidar Velichkov Problmes spectrauxTrouver la godsique la plus courte ferme sur une surface plate donne

    Quest ce quune godsique sur une surface plate ?

  • Complexit godsique et spectrale :

    Un problme gomtrique

    QuestionTrouver la godsique ferme la plus courte sur une surface plate S.

    La surface est reprsente par un sous-ensemble ouvert de R2 pourlequel des morceaux de bord sont identifies (exemple: le tore plat).Une godsique est une trajectoire dune particule dans un champvectorielle V : S R2 constante sur S.

    Sx0

    V

    Emmanuel Russ, Bozhidar Velichkov Problmes spectrauxTrouver la godsique la plus courte ferme sur une surface plate donne

    Quest ce quune godsique sur une surface plate ?

    Complexit combinatoire : tous les points, toutes les directions

  • Complexit godsique et spectrale :

    Un problme gomtrique

    QuestionTrouver la godsique ferme la plus courte sur une surface plate S.

    La surface est reprsente par un sous-ensemble ouvert de R2 pourlequel des morceaux de bord sont identifies (exemple: le tore plat).Une godsique est une trajectoire dune particule dans un champvectorielle V : S R2 constante sur S.

    Sx0

    V

    Emmanuel Russ, Bozhidar Velichkov Problmes spectrauxTrouver la godsique la plus courte ferme sur une surface plate donne

    Quest ce quune godsique sur une surface plate ?

    Complexit combinatoire : tous les points, toutes les directions Contexte non plat, problme de lapproximation godsique

  • Complexit godsique et spectrale :

    Un problme gomtrique

    QuestionTrouver la godsique ferme la plus courte sur une surface plate S.

    La surface est reprsente par un sous-ensemble ouvert de R2 pourlequel des morceaux de bord sont identifies (exemple: le tore plat).Une godsique est une trajectoire dune particule dans un champvectorielle V : S R2 constante sur S.

    Sx0

    V

    Emmanuel Russ, Bozhidar Velichkov Problmes spectrauxTrouver la godsique la plus courte ferme sur une surface plate donne

    Quest ce quune godsique sur une surface plate ?

    Complexit combinatoire : tous les points, toutes les directions Contexte non plat, problme de lapproximation godsique La complexit explose avec la dimension

  • Un problme gomtrique

    S

    V

    fl0 = x0

    x

    = fl(t, x)

    fl0 = fl(t, x)

    Les godsiques sont solutions de lquation de transport

    t

    fl(t, x) + V x

    fl(t, x) = 0, fl(0, ) = x0 . (1)

    "La godsique la plus courte corresponde un champ vectoriel Vet une donne initiale x0 S pour lesquelles la solution de (??) etla moins diuse."

    QuestionDfinir la diusion pour un systme dynamique: topological mixing,

    mixing, ergodicity.

    Emmanuel Russ, Bozhidar Velichkov Problmes spectraux

    Une approche de nature EDP

    @

    t

    (t, x) + V rx

    (t, x) = 0, (0, ) = x0

  • Un problme gomtrique

    S

    V

    fl0 = x0

    x

    = fl(t, x)

    fl0 = fl(t, x)

    Les godsiques sont solutions de lquation de transport

    t

    fl(t, x) + V x

    fl(t, x) = 0, fl(0, ) = x0 . (1)

    "La godsique la plus courte corresponde un champ vectoriel Vet une donne initiale x0 S pour lesquelles la solution de (??) etla moins diuse."

    QuestionDfinir la diusion pour un systme dynamique: topological mixing,

    mixing, ergodicity.

    Emmanuel Russ, Bozhidar Velichkov Problmes spectraux

    Une approche de nature EDP Un problme gomtrique

    S

    V

    fl0 = x0

    x

    = fl(t, x)

    fl0 = fl(t, x)

    Les godsiques sont solutions de lquation de transport

    t

    fl(t, x) + V x

    fl(t, x) = 0, fl(0, ) = x0 . (1)

    "La godsique la plus courte corresponde un champ vectoriel Vet une donne initiale x0 S pour lesquelles la solution de (??) etla moins diuse."

    QuestionDfinir la diusion pour un systme dynamique: topological mixing,

    mixing, ergodicity.

    Emmanuel Russ, Bozhidar Velichkov Problmes spectraux

    @

    t

    (t, x) + V rx

    (t, x) = 0, (0, ) = x0

  • Un problme gomtrique

    S

    V

    fl0 = x0

    x

    = fl(t, x)

    fl0 = fl(t, x)

    Les godsiques sont solutions de lquation de transport

    t

    fl(t, x) + V x

    fl(t, x) = 0, fl(0, ) = x0 . (1)

    "La godsique la plus courte corresponde un champ vectoriel Vet une donne initiale x0 S pour lesquelles la solution de (??) etla moins diuse."

    QuestionDfinir la diusion pour un systme dynamique: topological mixing,

    mixing, ergodicity.

    Emmanuel Russ, Bozhidar Velichkov Problmes spectraux

    Une approche de nature EDP Un problme gomtrique

    S

    V

    fl0 = x0

    x

    = fl(t, x)

    fl0 = fl(t, x)

    Les godsiques sont solutions de lquation de transport

    t

    fl(t, x) + V x

    fl(t, x) = 0, fl(0, ) = x0 . (1)

    "La godsique la plus courte corresponde un champ vectoriel Vet une donne initiale x0 S pour lesquelles la solution de (??) etla moins diuse."

    QuestionDfinir la diusion pour un systme dynamique: topological mixing,

    mixing, ergodicity.

    Emmanuel Russ, Bozhidar Velichkov Problmes spectraux

    @

    t

    (t, x) + V rx

    (t, x) = 0, (0, ) = x0

    @t(t, x) = (t, x) V r(t, x), (0, x) = '(x).On considre lquation de la chaleur avec un terme de drift

  • Un problme gomtrique

    S

    V

    fl0 = x0

    x

    = fl(t, x)

    fl0 = fl(t, x)

    Les godsiques sont solutions de lquation de transport

    t

    fl(t, x) + V x

    fl(t, x) = 0, fl(0, ) = x0 . (1)

    "La godsique la plus courte corresponde un champ vectoriel Vet une donne initiale x0 S pour lesquelles la solution de (??) etla moins diuse."

    QuestionDfinir la diusion pour un systme dynamique: topological mixing,

    mixing, ergodicity.

    Emmanuel Russ, Bozhidar Velichkov Problmes spectraux

    Une approche de nature EDP Un problme gomtrique

    S

    V

    fl0 = x0

    x

    = fl(t, x)

    fl0 = fl(t, x)

    Les godsiques sont solutions de lquation de transport

    t

    fl(t, x) + V x

    fl(t, x) = 0, fl(0, ) = x0 . (1)

    "La godsique la plus courte corresponde un champ vectoriel Vet une donne initiale x0 S pour lesquelles la solution de (??) etla moins diuse."

    QuestionDfinir la diusion pour un systme dynamique: topological mixing,

    mixing, ergodicity.

    Emmanuel Russ, Bozhidar Velichkov Problmes spectraux

    quations de diusion sur une surface plate

    On considre lquation de la chaleur avec un terme de drift

    t

    fl(t, x) = fl(t, x) V fl(t, x), fl(0, x) = (x). (2)

    S

    V

    fl(t, x)

    La vitesse de diusion de fl est dtermine par la valeur propre

    u + V u = u,

    S

    u = 0,

    S

    u

    2 = 1. (3)

    La fonction la moins diuse est la fonction propre u.

    Emmanuel Russ, Bozhidar Velichkov Problmes spectraux

    @

    t

    (t, x) + V rx

    (t, x) = 0, (0, ) = x0

    @t(t, x) = (t, x) V r(t, x), (0, x) = '(x).On considre lquation de la chaleur avec un terme de drift

  • Un problme gomtrique

    S

    V

    fl0 = x0

    x

    = fl(t, x)

    fl0 = fl(t, x)

    Les godsiques sont solutions de lquation de transport

    t

    fl(t, x) + V x

    fl(t, x) = 0, fl(0, ) = x0 . (1)

    "La godsique la plus courte corresponde un champ vectoriel Vet une donne initiale x0 S pour lesquelles la solution de (??) etla moins diuse."

    QuestionDfinir la diusion pour un systme dynamique: topological mixing,

    mixing, ergodicity.

    Emmanuel Russ, Bozhidar Velichkov Problmes spectraux

    Une approche de nature EDP Un problme gomtrique

    S

    V

    fl0 = x0

    x

    = fl(t, x)

    fl0 = fl(t, x)

    Les godsiques sont solutions de lquation de transport

    t

    fl(t, x) + V x

    fl(t, x) = 0, fl(0, ) = x0 . (1)

    "La godsique la plus courte corresponde un champ vectoriel Vet une donne initiale x0 S pour lesquelles la solution de (??) etla moins diuse."

    QuestionDfinir la diusion pour un systme dynamique: topological mixing,

    mixing, ergodicity.

    Emmanuel Russ, Bozhidar Velichkov Problmes spectraux

    quations de diusion sur une surface plate

    On considre lquation de la chaleur avec un terme de drift

    t

    fl(t, x) = fl(t, x) V fl(t, x), fl(0, x) = (x). (2)

    S

    V

    fl(t, x)

    La vitesse de diusion de fl est dtermine par la valeur propre

    u + V u = u,

    S

    u = 0,

    S

    u

    2 = 1. (3)

    La fonction la moins diuse est la fonction propre u.

    Emmanuel Russ, Bozhidar Velichkov Problmes spectraux

    @

    t

    (t, x) + V rx

    (t, x) = 0, (0, ) = x0

    @t(t, x) = (t, x) V r(t, x), (0, x) = '(x).On considre lquation de la chaleur avec un terme de drift

    La vitesse de diusion de est determinee par la valeur propre

    u + V ru = u,Z

    Su = 0,

    Z

    Su2 = 1.

    La fonction la moins diusee est la fonction propre u.

  • Un problme gomtrique

    S

    V

    fl0 = x0

    x

    = fl(t, x)

    fl0 = fl(t, x)

    Les godsiques sont solutions de lquation de transport

    t

    fl(t, x) + V x

    fl(t, x) = 0, fl(0, ) = x0 . (1)

    "La godsique la plus courte corresponde un champ vectoriel Vet une donne initiale x0 S pour lesquelles la solution de (??) etla moins diuse."

    QuestionDfinir la diusion pour un systme dynamique: topological mixing,

    mixing, ergodicity.

    Emmanuel Russ, Bozhidar Velichkov Problmes spectraux

    Un problme gomtrique

    S

    V

    fl0 = x0

    x

    = fl(t, x)

    fl0 = fl(t, x)

    Les godsiques sont solutions de lquation de transport

    t

    fl(t, x) + V x

    fl(t, x) = 0, fl(0, ) = x0 . (1)

    "La godsique la plus courte corresponde un champ vectoriel Vet une donne initiale x0 S pour lesquelles la solution de (??) etla moins diuse."

    QuestionDfinir la diusion pour un systme dynamique: topological mixing,

    mixing, ergodicity.

    Emmanuel Russ, Bozhidar Velichkov Problmes spectraux

    quations de diusion sur une surface plate

    On considre lquation de la chaleur avec un terme de drift

    t

    fl(t, x) = fl(t, x) V fl(t, x), fl(0, x) = (x). (2)

    S

    V

    fl(t, x)

    La vitesse de diusion de fl est dtermine par la valeur propre

    u + V u = u,

    S

    u = 0,

    S

    u

    2 = 1. (3)

    La fonction la moins diuse est la fonction propre u.

    Emmanuel Russ, Bozhidar Velichkov Problmes spectraux

    Une approche de nature EDP

  • Un problme gomtrique

    S

    V

    fl0 = x0

    x

    = fl(t, x)

    fl0 = fl(t, x)

    Les godsiques sont solutions de lquation de transport

    t

    fl(t, x) + V x

    fl(t, x) = 0, fl(0, ) = x0 . (1)

    "La godsique la plus courte corresponde un champ vectoriel Vet une donne initiale x0 S pour lesquelles la solution de (??) etla moins diuse."

    QuestionDfinir la diusion pour un systme dynamique: topological mixing,

    mixing, ergodicity.

    Emmanuel Russ, Bozhidar Velichkov Problmes spectraux

    Un problme gomtrique

    S

    V

    fl0 = x0

    x

    = fl(t, x)

    fl0 = fl(t, x)

    Les godsiques sont solutions de lquation de transport

    t

    fl(t, x) + V x

    fl(t, x) = 0, fl(0, ) = x0 . (1)

    "La godsique la plus courte corresponde un champ vectoriel Vet une donne initiale x0 S pour lesquelles la solution de (??) etla moins diuse."

    QuestionDfinir la diusion pour un systme dynamique: topological mixing,

    mixing, ergodicity.

    Emmanuel Russ, Bozhidar Velichkov Problmes spectraux

    quations de diusion sur une surface plate

    On considre lquation de la chaleur avec un terme de drift

    t

    fl(t, x) = fl(t, x) V fl(t, x), fl(0, x) = (x). (2)

    S

    V

    fl(t, x)

    La vitesse de diusion de fl est dtermine par la valeur propre

    u + V u = u,

    S

    u = 0,

    S

    u

    2 = 1. (3)

    La fonction la moins diuse est la fonction propre u.

    Emmanuel Russ, Bozhidar Velichkov Problmes spectraux

    Pour fixee, determinee le champ vectoriel V qui maximise (+V r).

    Etudier les proprietes du champ optimal V et de la fonction propre ucorrespondante.

    Une approche de nature EDP

  • Un problme gomtrique

    S

    V

    fl0 = x0

    x

    = fl(t, x)

    fl0 = fl(t, x)

    Les godsiques sont solutions de lquation de transport

    t

    fl(t, x) + V x

    fl(t, x) = 0, fl(0, ) = x0 . (1)

    "La godsique la plus courte corresponde un champ vectoriel Vet une donne initiale x0 S pour lesquelles la solution de (??) etla moins diuse."

    QuestionDfinir la diusion pour un systme dynamique: topological mixing,

    mixing, ergodicity.

    Emmanuel Russ, Bozhidar Velichkov Problmes spectraux

    Un problme gomtrique

    S

    V

    fl0 = x0

    x

    = fl(t, x)

    fl0 = fl(t, x)

    Les godsiques sont solutions de lquation de transport

    t

    fl(t, x) + V x

    fl(t, x) = 0, fl(0, ) = x0 . (1)

    "La godsique la plus courte corresponde un champ vectoriel Vet une donne initiale x0 S pour lesquelles la solution de (??) etla moins diuse."

    QuestionDfinir la diusion pour un systme dynamique: topological mixing,

    mixing, ergodicity.

    Emmanuel Russ, Bozhidar Velichkov Problmes spectraux

    quations de diusion sur une surface plate

    On considre lquation de la chaleur avec un terme de drift

    t

    fl(t, x) = fl(t, x) V fl(t, x), fl(0, x) = (x). (2)

    S

    V

    fl(t, x)

    La vitesse de diusion de fl est dtermine par la valeur propre

    u + V u = u,

    S

    u = 0,

    S

    u

    2 = 1. (3)

    La fonction la moins diuse est la fonction propre u.

    Emmanuel Russ, Bozhidar Velichkov Problmes spectraux

    Pour fixee, determinee le champ vectoriel V qui maximise (+V r).

    Etudier les proprietes du champ optimal V et de la fonction propre ucorrespondante.

    EDP non variationelle, optimisation non lisse probable en cas de multiplicit >0. Mthodes bundle.

    Une approche de nature EDP

  • Un problme gomtrique

    S

    V

    fl0 = x0

    x

    = fl(t, x)

    fl0 = fl(t, x)

    Les godsiques sont solutions de lquation de transport

    t

    fl(t, x) + V x

    fl(t, x) = 0, fl(0, ) = x0 . (1)

    "La godsique la plus courte corresponde un champ vectoriel Vet une donne initiale x0 S pour lesquelles la solution de (??) etla moins diuse."

    QuestionDfinir la diusion pour un systme dynamique: topological mixing,

    mixing, ergodicity.

    Emmanuel Russ, Bozhidar Velichkov Problmes spectraux

    Un problme gomtrique

    S

    V

    fl0 = x0

    x

    = fl(t, x)

    fl0 = fl(t, x)

    Les godsiques sont solutions de lquation de transport

    t

    fl(t, x) + V x

    fl(t, x) = 0, fl(0, ) = x0 . (1)

    "La godsique la plus courte corresponde un champ vectoriel Vet une donne initiale x0 S pour lesquelles la solution de (??) etla moins diuse."

    QuestionDfinir la diusion pour un systme dynamique: topological mixing,

    mixing, ergodicity.

    Emmanuel Russ, Bozhidar Velichkov Problmes spectraux

    quations de diusion sur une surface plate

    On considre lquation de la chaleur avec un terme de drift

    t

    fl(t, x) = fl(t, x) V fl(t, x), fl(0, x) = (x). (2)

    S

    V

    fl(t, x)

    La vitesse de diusion de fl est dtermine par la valeur propre

    u + V u = u,

    S

    u = 0,

    S

    u

    2 = 1. (3)

    La fonction la moins diuse est la fonction propre u.

    Emmanuel Russ, Bozhidar Velichkov Problmes spectraux

    Pour fixee, determinee le champ vectoriel V qui maximise (+V r).

    Etudier les proprietes du champ optimal V et de la fonction propre ucorrespondante.

    Problme non convexe : relaxation par petit paramtre ?

    EDP non variationelle, optimisation non lisse probable en cas de multiplicit >0. Mthodes bundle.

    Une approche de nature EDP

  • Complexit mtrique :

  • Complexit mtrique : Tore plat et distance : problme du plongement isomtrique de Nash

  • Complexit mtrique : Tore plat et distance : problme du plongement isomtrique de Nash

    1

    The flat torus

    I Realization of the square torus in 3D

    Distances are changed during the transformation.

    ) The torus of revolution is not an isometric embedding of the square flat torus

  • Complexit mtrique : Tore plat et distance : problme du plongement isomtrique de Nash

    1

    The flat torus

    I Realization of the square torus in 3D

    Distances are changed during the transformation.

    ) The torus of revolution is not an isometric embedding of the square flat torus

    science received a particular attention in the last decades (for instance when it comes to shapematching). Many practical questions have been addressed related to the comprehension of thegeometry of an object and its spectral data. Whereas progress has been made regarding for in-stance the parametrization of meshed surface, manifold with a large genus (that is with manyholes) are still very challenging to manipulate or cluster. We expect that progresses in the math-ematical understanding of the link between the geometry and analytic or dynamical propertiesmay also lead to significant progresses in these fields.

    2 ObjectivesThe general goal of this project is to combine the knowledge of theoretical and applied mathe-maticians in order to study optimal manifolds with respect to complex criteria, under complexgeometrical constraints. The main difficulty to achieve this purpose lies in that the comprehen-sion of extremal manifolds requires fine mathematical parametrization. Related tools have beendeveloped in the areas of topology and dynamical systems but are still beyond the reach of ap-plied mathematicians or computer scientists. This project plans to benefit from the expertise oftwo teams in Grenoble University in the related fields of theoretical and applied mathematics toproduce original and promising studies in this direction: we indeed believe that the researchersof the Fourier Institute, of the LAMA and of the Jean Kuntzmann Laboratory involved in thisproject have the exact complementary skills which will make it possible to develop new ap-proaches in the numerical approximation of optimal or critical manifolds and the analysis ofshape optimization problems under complex geometrical constraints.

    We focus our project on three problematics in which both theoretical and applied mathemati-cians are involved. By this proposal, our team targets progress on understanding deeper thefollowing three different fields of metric structures, dynamical systems and spectral theory.

    3 Metric complexity [D.Bucur - G. Besson - E. Oudet - B. Thibert]Metrics are the relevant mathematical tools to generalize the notion of length, shortest path andcurvatures for general surfaces. In the last decades, the theoretical point of view on these classicalgeometrical notions generated a wide range of applications in many fields like data analysis inhigh dimension, mesh matching, optimal transportation, etc.

    We develop in the following paragraphs the part of our project related to the understandingof abstract metrics. More precisely, we focus here on the identification of specific geometricalobjects which help to describe and quantify metric structures.

    Figure 1: Two approximate isometric embeddings of a flat torus (the left illustration comes from[29] and the central picture has been obtained by from [4]).

    3

  • Complexit mtrique : Tore plat et distance : problme du plongement isomtrique de Nash

    Plongement canonique, alternative lapproche de Gromov

    1

    The flat torus

    I Realization of the square torus in 3D

    Distances are changed during the transformation.

    ) The torus of revolution is not an isometric embedding of the square flat torus

    science received a particular attention in the last decades (for instance when it comes to shapematching). Many practical questions have been addressed related to the comprehension of thegeometry of an object and its spectral data. Whereas progress has been made regarding for in-stance the parametrization of meshed surface, manifold with a large genus (that is with manyholes) are still very challenging to manipulate or cluster. We expect that progresses in the math-ematical understanding of the link between the geometry and analytic or dynamical propertiesmay also lead to significant progresses in these fields.

    2 ObjectivesThe general goal of this project is to combine the knowledge of theoretical and applied mathe-maticians in order to study optimal manifolds with respect to complex criteria, under complexgeometrical constraints. The main difficulty to achieve this purpose lies in that the comprehen-sion of extremal manifolds requires fine mathematical parametrization. Related tools have beendeveloped in the areas of topology and dynamical systems but are still beyond the reach of ap-plied mathematicians or computer scientists. This project plans to benefit from the expertise oftwo teams in Grenoble University in the related fields of theoretical and applied mathematics toproduce original and promising studies in this direction: we indeed believe that the researchersof the Fourier Institute, of the LAMA and of the Jean Kuntzmann Laboratory involved in thisproject have the exact complementary skills which will make it possible to develop new ap-proaches in the numerical approximation of optimal or critical manifolds and the analysis ofshape optimization problems under complex geometrical constraints.

    We focus our project on three problematics in which both theoretical and applied mathemati-cians are involved. By this proposal, our team targets progress on understanding deeper thefollowing three different fields of metric structures, dynamical systems and spectral theory.

    3 Metric complexity [D.Bucur - G. Besson - E. Oudet - B. Thibert]Metrics are the relevant mathematical tools to generalize the notion of length, shortest path andcurvatures for general surfaces. In the last decades, the theoretical point of view on these classicalgeometrical notions generated a wide range of applications in many fields like data analysis inhigh dimension, mesh matching, optimal transportation, etc.

    We develop in the following paragraphs the part of our project related to the understandingof abstract metrics. More precisely, we focus here on the identification of specific geometricalobjects which help to describe and quantify metric structures.

    Figure 1: Two approximate isometric embeddings of a flat torus (the left illustration comes from[29] and the central picture has been obtained by from [4]).

    3

  • Complexit mtrique : Tore plat et distance : problme du plongement isomtrique de Nash

    Plongement canonique, alternative lapproche de Gromov

    Les objets manipuler sont de rgularit restreinte

    1

    The flat torus

    I Realization of the square torus in 3D

    Distances are changed during the transformation.

    ) The torus of revolution is not an isometric embedding of the square flat torus

    science received a particular attention in the last decades (for instance when it comes to shapematching). Many practical questions have been addressed related to the comprehension of thegeometry of an object and its spectral data. Whereas progress has been made regarding for in-stance the parametrization of meshed surface, manifold with a large genus (that is with manyholes) are still very challenging to manipulate or cluster. We expect that progresses in the math-ematical understanding of the link between the geometry and analytic or dynamical propertiesmay also lead to significant progresses in these fields.

    2 ObjectivesThe general goal of this project is to combine the knowledge of theoretical and applied mathe-maticians in order to study optimal manifolds with respect to complex criteria, under complexgeometrical constraints. The main difficulty to achieve this purpose lies in that the comprehen-sion of extremal manifolds requires fine mathematical parametrization. Related tools have beendeveloped in the areas of topology and dynamical systems but are still beyond the reach of ap-plied mathematicians or computer scientists. This project plans to benefit from the expertise oftwo teams in Grenoble University in the related fields of theoretical and applied mathematics toproduce original and promising studies in this direction: we indeed believe that the researchersof the Fourier Institute, of the LAMA and of the Jean Kuntzmann Laboratory involved in thisproject have the exact complementary skills which will make it possible to develop new ap-proaches in the numerical approximation of optimal or critical manifolds and the analysis ofshape optimization problems under complex geometrical constraints.

    We focus our project on three problematics in which both theoretical and applied mathemati-cians are involved. By this proposal, our team targets progress on understanding deeper thefollowing three different fields of metric structures, dynamical systems and spectral theory.

    3 Metric complexity [D.Bucur - G. Besson - E. Oudet - B. Thibert]Metrics are the relevant mathematical tools to generalize the notion of length, shortest path andcurvatures for general surfaces. In the last decades, the theoretical point of view on these classicalgeometrical notions generated a wide range of applications in many fields like data analysis inhigh dimension, mesh matching, optimal transportation, etc.

    We develop in the following paragraphs the part of our project related to the understandingof abstract metrics. More precisely, we focus here on the identification of specific geometricalobjects which help to describe and quantify metric structures.

    Figure 1: Two approximate isometric embeddings of a flat torus (the left illustration comes from[29] and the central picture has been obtained by from [4]).

    3

  • Complexit mtrique : Tore plat et distance : problme du plongement isomtrique de Nash

    Plongement canonique, alternative lapproche de Gromov

    Les objets manipuler sont de rgularit restreinte Gnralisation un genre plus grand que 1

    1

    The flat torus

    I Realization of the square torus in 3D

    Distances are changed during the transformation.

    ) The torus of revolution is not an isometric embedding of the square flat torus

    science received a particular attention in the last decades (for instance when it comes to shapematching). Many practical questions have been addressed related to the comprehension of thegeometry of an object and its spectral data. Whereas progress has been made regarding for in-stance the parametrization of meshed surface, manifold with a large genus (that is with manyholes) are still very challenging to manipulate or cluster. We expect that progresses in the math-ematical understanding of the link between the geometry and analytic or dynamical propertiesmay also lead to significant progresses in these fields.

    2 ObjectivesThe general goal of this project is to combine the knowledge of theoretical and applied mathe-maticians in order to study optimal manifolds with respect to complex criteria, under complexgeometrical constraints. The main difficulty to achieve this purpose lies in that the comprehen-sion of extremal manifolds requires fine mathematical parametrization. Related tools have beendeveloped in the areas of topology and dynamical systems but are still beyond the reach of ap-plied mathematicians or computer scientists. This project plans to benefit from the expertise oftwo teams in Grenoble University in the related fields of theoretical and applied mathematics toproduce original and promising studies in this direction: we indeed believe that the researchersof the Fourier Institute, of the LAMA and of the Jean Kuntzmann Laboratory involved in thisproject have the exact complementary skills which will make it possible to develop new ap-proaches in the numerical approximation of optimal or critical manifolds and the analysis ofshape optimization problems under complex geometrical constraints.

    We focus our project on three problematics in which both theoretical and applied mathemati-cians are involved. By this proposal, our team targets progress on understanding deeper thefollowing three different fields of metric structures, dynamical systems and spectral theory.

    3 Metric complexity [D.Bucur - G. Besson - E. Oudet - B. Thibert]Metrics are the relevant mathematical tools to generalize the notion of length, shortest path andcurvatures for general surfaces. In the last decades, the theoretical point of view on these classicalgeometrical notions generated a wide range of applications in many fields like data analysis inhigh dimension, mesh matching, optimal transportation, etc.

    We develop in the following paragraphs the part of our project related to the understandingof abstract metrics. More precisely, we focus here on the identification of specific geometricalobjects which help to describe and quantify metric structures.

    Figure 1: Two approximate isometric embeddings of a flat torus (the left illustration comes from[29] and the central picture has been obtained by from [4]).

    3

  • Complexit mtrique : Tore plat et distance : problme du plongement isomtrique de Nash

    Plongement canonique, alternative lapproche de Gromov

    Les objets manipuler sont de rgularit restreinte

    Comportement fractal attendu, estimation quantitative

    Gnralisation un genre plus grand que 11

    The flat torus

    I Realization of the square torus in 3D

    Distances are changed during the transformation.

    ) The torus of revolution is not an isometric embedding of the square flat torus

    science received a particular attention in the last decades (for instance when it comes to shapematching). Many practical questions have been addressed related to the comprehension of thegeometry of an object and its spectral data. Whereas progress has been made regarding for in-stance the parametrization of meshed surface, manifold with a large genus (that is with manyholes) are still very challenging to manipulate or cluster. We expect that progresses in the math-ematical understanding of the link between the geometry and analytic or dynamical propertiesmay also lead to significant progresses in these fields.

    2 ObjectivesThe general goal of this project is to combine the knowledge of theoretical and applied mathe-maticians in order to study optimal manifolds with respect to complex criteria, under complexgeometrical constraints. The main difficulty to achieve this purpose lies in that the comprehen-sion of extremal manifolds requires fine mathematical parametrization. Related tools have beendeveloped in the areas of topology and dynamical systems but are still beyond the reach of ap-plied mathematicians or computer scientists. This project plans to benefit from the expertise oftwo teams in Grenoble University in the related fields of theoretical and applied mathematics toproduce original and promising studies in this direction: we indeed believe that the researchersof the Fourier Institute, of the LAMA and of the Jean Kuntzmann Laboratory involved in thisproject have the exact complementary skills which will make it possible to develop new ap-proaches in the numerical approximation of optimal or critical manifolds and the analysis ofshape optimization problems under complex geometrical constraints.

    We focus our project on three problematics in which both theoretical and applied mathemati-cians are involved. By this proposal, our team targets progress on understanding deeper thefollowing three different fields of metric structures, dynamical systems and spectral theory.

    3 Metric complexity [D.Bucur - G. Besson - E. Oudet - B. Thibert]Metrics are the relevant mathematical tools to generalize the notion of length, shortest path andcurvatures for general surfaces. In the last decades, the theoretical point of view on these classicalgeometrical notions generated a wide range of applications in many fields like data analysis inhigh dimension, mesh matching, optimal transportation, etc.

    We develop in the following paragraphs the part of our project related to the understandingof abstract metrics. More precisely, we focus here on the identification of specific geometricalobjects which help to describe and quantify metric structures.

    Figure 1: Two approximate isometric embeddings of a flat torus (the left illustration comes from[29] and the central picture has been obtained by from [4]).

    3

  • Une approche spectrale

  • Une approche spectrale

    Thorme doptimalit de Nadirashvili

    max

    |S|=, genre(S)=1(S) = (Tequi)

  • Problme aux valeurs propres pour des surfaces singulires. Approche paramtrique spectrale. Approche par boug de maillage dangereuse.

    Une approche spectrale

    Thorme doptimalit de Nadirashvili

    max

    |S|=, genre(S)=1(S) = (Tequi)

  • Problme aux valeurs propres pour des surfaces singulires. Approche paramtrique spectrale. Approche par boug de maillage dangereuse.

    Une approche spectrale

    Thorme doptimalit de Nadirashvili

    max

    |S|=, genre(S)=1(S) = (Tequi)

    Comment paramtrer des surfaces de genres suprieurs de manire compatible avec le calcul scientifique. Classes conformes et reprsentants.

  • Problme aux valeurs propres pour des surfaces singulires. Approche paramtrique spectrale. Approche par boug de maillage dangereuse.

    Une approche spectrale

    Distance godsique, valuation quantitative de la rgularit du plongement.

    Thorme doptimalit de Nadirashvili

    max

    |S|=, genre(S)=1(S) = (Tequi)

    Comment paramtrer des surfaces de genres suprieurs de manire compatible avec le calcul scientifique. Classes conformes et reprsentants.

  • science received a particular attention in the last decades (for instance when it comes to shapematching). Many practical questions have been addressed related to the comprehension of thegeometry of an object and its spectral data. Whereas progress has been made regarding for in-stance the parametrization of meshed surface, manifold with a large genus (that is with manyholes) are still very challenging to manipulate or cluster. We expect that progresses in the math-ematical understanding of the link between the geometry and analytic or dynamical propertiesmay also lead to significant progresses in these fields.

    2 ObjectivesThe general goal of this project is to combine the knowledge of theoretical and applied mathe-maticians in order to study optimal manifolds with respect to complex criteria, under complexgeometrical constraints. The main difficulty to achieve this purpose lies in that the comprehen-sion of extremal manifolds requires fine mathematical parametrization. Related tools have beendeveloped in the areas of topology and dynamical systems but are still beyond the reach of ap-plied mathematicians or computer scientists. This project plans to benefit from the expertise oftwo teams in Grenoble University in the related fields of theoretical and applied mathematics toproduce original and promising studies in this direction: we indeed believe that the researchersof the Fourier Institute, of the LAMA and of the Jean Kuntzmann Laboratory involved in thisproject have the exact complementary skills which will make it possible to develop new ap-proaches in the numerical approximation of optimal or critical manifolds and the analysis ofshape optimization problems under complex geometrical constraints.

    We focus our project on three problematics in which both theoretical and applied mathemati-cians are involved. By this proposal, our team targets progress on understanding deeper thefollowing three different fields of metric structures, dynamical systems and spectral theory.

    3 Metric complexity [D.Bucur - G. Besson - E. Oudet - B. Thibert]Metrics are the relevant mathematical tools to generalize the notion of length, shortest path andcurvatures for general surfaces. In the last decades, the theoretical point of view on these classicalgeometrical notions generated a wide range of applications in many fields like data analysis inhigh dimension, mesh matching, optimal transportation, etc.

    We develop in the following paragraphs the part of our project related to the understandingof abstract metrics. More precisely, we focus here on the identification of specific geometricalobjects which help to describe and quantify metric structures.

    Figure 1: Two approximate isometric embeddings of a flat torus (the left illustration comes from[29] and the central picture has been obtained by from [4]).

    3

    Problme aux valeurs propres pour des surfaces singulires. Approche paramtrique spectrale. Approche par boug de maillage dangereuse.

    Une approche spectrale

    Distance godsique, valuation quantitative de la rgularit du plongement.

    Thorme doptimalit de Nadirashvili

    max

    |S|=, genre(S)=1(S) = (Tequi)

    Comment paramtrer des surfaces de genres suprieurs de manire compatible avec le calcul scientifique. Classes conformes et reprsentants.

  • science received a particular attention in the last decades (for instance when it comes to shapematching). Many practical questions have been addressed related to the comprehension of thegeometry of an object and its spectral data. Whereas progress has been made regarding for in-stance the parametrization of meshed surface, manifold with a large genus (that is with manyholes) are still very challenging to manipulate or cluster. We expect that progresses in the math-ematical understanding of the link between the geometry and analytic or dynamical propertiesmay also lead to significant progresses in these fields.

    2 ObjectivesThe general goal of this project is to combine the knowledge of theoretical and applied mathe-maticians in order to study optimal manifolds with respect to complex criteria, under complexgeometrical constraints. The main difficulty to achieve this purpose lies in that the comprehen-sion of extremal manifolds requires fine mathematical parametrization. Related tools have beendeveloped in the areas of topology and dynamical systems but are still beyond the reach of ap-plied mathematicians or computer scientists. This project plans to benefit from the expertise oftwo teams in Grenoble University in the related fields of theoretical and applied mathematics toproduce original and promising studies in this direction: we indeed believe that the researchersof the Fourier Institute, of the LAMA and of the Jean Kuntzmann Laboratory involved in thisproject have the exact complementary skills which will make it possible to develop new ap-proaches in the numerical approximation of optimal or critical manifolds and the analysis ofshape optimization problems under complex geometrical constraints.

    We focus our project on three problematics in which both theoretical and applied mathemati-cians are involved. By this proposal, our team targets progress on understanding deeper thefollowing three different fields of metric structures, dynamical systems and spectral theory.

    3 Metric complexity [D.Bucur - G. Besson - E. Oudet - B. Thibert]Metrics are the relevant mathematical tools to generalize the notion of length, shortest path andcurvatures for general surfaces. In the last decades, the theoretical point of view on these classicalgeometrical notions generated a wide range of applications in many fields like data analysis inhigh dimension, mesh matching, optimal transportation, etc.

    We develop in the following paragraphs the part of our project related to the understandingof abstract metrics. More precisely, we focus here on the identification of specific geometricalobjects which help to describe and quantify metric structures.

    Figure 1: Two approximate isometric embeddings of a flat torus (the left illustration comes from[29] and the central picture has been obtained by from [4]).

    3

    Problme aux valeurs propres pour des surfaces singulires. Approche paramtrique spectrale. Approche par boug de maillage dangereuse.

    Une approche spectrale

    Distance godsique, valuation quantitative de la rgularit du plongement.

    Thorme doptimalit de Nadirashvili

    max

    |S|=, genre(S)=1(S) = (Tequi)

    Comment paramtrer des surfaces de genres suprieurs de manire compatible avec le calcul scientifique. Classes conformes et reprsentants.

  • science received a particular attention in the last decades (for instance when it comes to shapematching). Many practical questions have been addressed related to the comprehension of thegeometry of an object and its spectral data. Whereas progress has been made regarding for in-stance the parametrization of meshed surface, manifold with a large genus (that is with manyholes) are still very challenging to manipulate or cluster. We expect that progresses in the math-ematical understanding of the link between the geometry and analytic or dynamical propertiesmay also lead to significant progresses in these fields.

    2 ObjectivesThe general goal of this project is to combine the knowledge of theoretical and applied mathe-maticians in order to study optimal manifolds with respect to complex criteria, under complexgeometrical constraints. The main difficulty to achieve this purpose lies in that the comprehen-sion of extremal manifolds requires fine mathematical parametrization. Related tools have beendeveloped in the areas of topology and dynamical systems but are still beyond the reach of ap-plied mathematicians or computer scientists. This project plans to benefit from the expertise oftwo teams in Grenoble University in the related fields of theoretical and applied mathematics toproduce original and promising studies in this direction: we indeed believe that the researchersof the Fourier Institute, of the LAMA and of the Jean Kuntzmann Laboratory involved in thisproject have the exact complementary skills which will make it possible to develop new ap-proaches in the numerical approximation of optimal or critical manifolds and the analysis ofshape optimization problems under complex geometrical constraints.

    We focus our project on three problematics in which both theoretical and applied mathemati-cians are involved. By this proposal, our team targets progress on understanding deeper thefollowing three different fields of metric structures, dynamical systems and spectral theory.

    3 Metric complexity [D.Bucur - G. Besson - E. Oudet - B. Thibert]Metrics are the relevant mathematical tools to generalize the notion of length, shortest path andcurvatures for general surfaces. In the last decades, the theoretical point of view on these classicalgeometrical notions generated a wide range of applications in many fields like data analysis inhigh dimension, mesh matching, optimal transportation, etc.

    We develop in the following paragraphs the part of our project related to the understandingof abstract metrics. More precisely, we focus here on the identification of specific geometricalobjects which help to describe and quantify metric structures.

    Figure 1: Two approximate isometric embeddings of a flat torus (the left illustration comes from[29] and the central picture has been obtained by from [4]).

    3

    Problme aux valeurs propres pour des surfaces singulires. Approche paramtrique spectrale. Approche par boug de maillage dangereuse.

    Une approche spectrale

    Distance godsique, valuation quantitative de la rgularit du plongement.

    Thorme doptimalit de Nadirashvili

    max

    |S|=, genre(S)=1(S) = (Tequi)

    Comment paramtrer des surfaces de genres suprieurs de manire compatible avec le calcul scientifique. Classes conformes et reprsentants.