23
Forrest G. Hall 1 Thomas Hilker 1 Compton J. Tucker 1 Nicholas C. Coops 2 T. Andrew Black 2 Caroline J. Nichol 3 Piers J. Sellers 1 1 NASA Goddard Space Flight Center Greenbelt, MD, USA 2 University of British Columbia, Vancouver, BC Canada 3 University of Edinburgh, Edinburgh EH9 3JN, UK Data assimilation of photosynthetic light-use efficiency using multi- angular satellite data

Forrest G. Hall 1 Thomas Hilker 1 Compton J. Tucker 1 Nicholas C. Coops 2 T. Andrew Black 2

  • Upload
    aren

  • View
    52

  • Download
    0

Embed Size (px)

DESCRIPTION

Data assimilation of photosynthetic light-use efficiency using multi-angular satellite data. Forrest G. Hall 1 Thomas Hilker 1 Compton J. Tucker 1 Nicholas C. Coops 2 T. Andrew Black 2 Caroline J. Nichol 3 Piers J. Sellers 1 1 NASA Goddard Space Flight Center Greenbelt, MD, USA - PowerPoint PPT Presentation

Citation preview

Page 1: Forrest G. Hall 1 Thomas Hilker 1 Compton J. Tucker 1 Nicholas C. Coops 2 T. Andrew Black 2

Forrest G. Hall1

Thomas Hilker1

Compton J. Tucker1

Nicholas C. Coops2

T. Andrew Black2

Caroline J. Nichol3

Piers J. Sellers1

1NASA Goddard Space Flight Center Greenbelt, MD, USA2University of British Columbia, Vancouver, BC Canada3University of Edinburgh, Edinburgh EH9 3JN, UK

Data assimilation of photosynthetic light-use efficiency using multi-angular

satellite data

Page 2: Forrest G. Hall 1 Thomas Hilker 1 Compton J. Tucker 1 Nicholas C. Coops 2 T. Andrew Black 2

CARBON CYCLE

WATER CYCLE

ENERGY CYCLE

PAR

PHOTOSYNTHETIC RATEGross Primary Production

GPP = PAR x Fpar x e Net Primary ProductionNPP = GPP – Respiration

Evapotranspiration ET = Transpiration + Evaporation

CARBON, WATER & ENERGY CYCLE

T ~[e*- ea]gc+ga

gcga

R = GPP – NPP spectral eddy corr

gc = a + b GPP x (h/c)

Light Use Efficiencymol C/ mol photon

GPP RNightimeTemp based

NPP eddy corr

GPP = NPP - R

Page 3: Forrest G. Hall 1 Thomas Hilker 1 Compton J. Tucker 1 Nicholas C. Coops 2 T. Andrew Black 2

3

0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0 2.2 2.4 wavelength(µm)

1

0.8

0.6

0.4

0.2

0

pigmentsleaf structure and leaf area water absorption

refle

ctan

ce

Associated changes in reflectance

0.50 0.55 0.60

wavelength (m)

refle

ctan

ce

0.05

0.10

0.15

531570

531570

PRI

] = Δζ

531nm 570nm

Page 4: Forrest G. Hall 1 Thomas Hilker 1 Compton J. Tucker 1 Nicholas C. Coops 2 T. Andrew Black 2

4Hilker et al., Remote Sensing of Environment (2010)

Multi-angle Remote Sensing of ε

AMSPEC

256 bands350-1200nm10nm bandwidth

Page 5: Forrest G. Hall 1 Thomas Hilker 1 Compton J. Tucker 1 Nicholas C. Coops 2 T. Andrew Black 2

5

shaded sunlit shaded

ε= low

ε = high

Hall et al. Rem. Sens. Environ. (2008,2012)

Effects of Function on Canopy PRI l

ow

h

igh

Insensitive to ς

ε

PRI’

Δρ@531nm from down-regulation)

Unstressed canopy PRI

Page 6: Forrest G. Hall 1 Thomas Hilker 1 Compton J. Tucker 1 Nicholas C. Coops 2 T. Andrew Black 2

6

shaded sunlit shaded

Hall et al. Rem. Sens. Environ. (2008,2012)

Orbital Canopy PRI’ and ε l

ow

h

igh

X

ε = high

ε= low

4 3 2 1

123 4

Ground Track

ε

<PRI

’>

ε =

ε op

t PRI’ = PRI’max

Page 7: Forrest G. Hall 1 Thomas Hilker 1 Compton J. Tucker 1 Nicholas C. Coops 2 T. Andrew Black 2

Differences Among Test Sites

7

Hilker et al., Journal of Geophysical Research (2011)

Page 8: Forrest G. Hall 1 Thomas Hilker 1 Compton J. Tucker 1 Nicholas C. Coops 2 T. Andrew Black 2

Satellite-derived Photosynthesis

8

Hilker et al., Journal of Geophysical Research (2011)

(PR

I’)

Page 9: Forrest G. Hall 1 Thomas Hilker 1 Compton J. Tucker 1 Nicholas C. Coops 2 T. Andrew Black 2

9

Remote sensing of ε across sites1st derivative of PRI (wrt αs) vs. ε

Tower-Based

AM

SP

EC

Spe

ctro

met

er B

ased

Page 10: Forrest G. Hall 1 Thomas Hilker 1 Compton J. Tucker 1 Nicholas C. Coops 2 T. Andrew Black 2

10

Temporal Scaling of PhotosynthesisData assimilation

Hilker et al., Remote Sensing of Environment (submitted)

εopt (t1)εopt (t2) εopt (t3)

εopt (tn)

Spectrally Derived Instantaneous

Diurnal Spatially Explicit Time Series

εopt

Page 11: Forrest G. Hall 1 Thomas Hilker 1 Compton J. Tucker 1 Nicholas C. Coops 2 T. Andrew Black 2

11

Two years of Ɛopt from CHRIS-PROBA

time06/0

4/06

07/0

6/06

08/2

6/06

10/0

1/06

08/0

2/07

07/0

6/07

10/2

7/06

εopt

Page 12: Forrest G. Hall 1 Thomas Hilker 1 Compton J. Tucker 1 Nicholas C. Coops 2 T. Andrew Black 2

12

Resp

onse

func

tions

Hall et al. RSE (2012)

Page 13: Forrest G. Hall 1 Thomas Hilker 1 Compton J. Tucker 1 Nicholas C. Coops 2 T. Andrew Black 2

13

Model comparison: GPPMODIS GPP model:Tower fPAR, PAR, MODIS ɛ

Data assimilation model:Tower fPAR, PAR, assimilated ɛ

Hilker et al. RSE (2012)

Page 14: Forrest G. Hall 1 Thomas Hilker 1 Compton J. Tucker 1 Nicholas C. Coops 2 T. Andrew Black 2

Comparing Fluxes: EC, MODIS, Data assimilation model

14

Assimilation

Hilker et al. RSE (2012)

Page 15: Forrest G. Hall 1 Thomas Hilker 1 Compton J. Tucker 1 Nicholas C. Coops 2 T. Andrew Black 2

15

Respiration

GPP=NPP-R

We can determine R independently of TSoil

NEP GEP

Hilker et al. Ag and For Met (2012)

Page 16: Forrest G. Hall 1 Thomas Hilker 1 Compton J. Tucker 1 Nicholas C. Coops 2 T. Andrew Black 2

Diurnal variability of R

16

Hilker et al. Ag and For Met (2012)

Page 17: Forrest G. Hall 1 Thomas Hilker 1 Compton J. Tucker 1 Nicholas C. Coops 2 T. Andrew Black 2

Energy balance

17

H λE

Hilker et al. GCB (2012)

Page 18: Forrest G. Hall 1 Thomas Hilker 1 Compton J. Tucker 1 Nicholas C. Coops 2 T. Andrew Black 2

Energy Balance: λE

18

Hilker et al. GCB (2012)

Page 19: Forrest G. Hall 1 Thomas Hilker 1 Compton J. Tucker 1 Nicholas C. Coops 2 T. Andrew Black 2

Energy Balance(spectral) λE+H = (tower)RN - G ?

19

Hilker et al. GCB (2012)

Page 20: Forrest G. Hall 1 Thomas Hilker 1 Compton J. Tucker 1 Nicholas C. Coops 2 T. Andrew Black 2

Recent relevant publications:1. Hall, F.G., et al., N.C., 2012. Data assimilation of photosynthetic light-use efficiency

using multi-angular satellite data: I. Model formulation. Rem. Sens. Environ., 121: 301–308.

2. Hilker, T. et al., 2012a. Data assimilation of photosynthetic light-use efficiency using multi-angular satellite data: II Model implementation and validation. Rem. Sens. Environ., 121: 287–300

3. Hilker, T. et al., 2012b. A new technique for estimating daytime respiration of forest ecosystems. Agr. For. Met.

4. Hilker, T. et al., 2012c. On the Remote Sensing of Heat Fluxes and Surface Energy Balance. Global Change Biology.

5. Hilker, T. et al., 2011. Inferring terrestrial photosynthetic light use efficiency of temperate ecosystems from space. JGR-Biogeosc., 116.

6. Hall, F.G. et al., 2011. PHOTOSYNSAT, photosynthesis from space: Theoretical foundations of a satellite concept and validation from tower and spaceborne data. Rem. Sens. Environ., 115(8): 1918-1925.

7. Hilker, T. et al., 2010. Remote sensing of photosynthetic light-use efficiency across two forested biomes: Spatial scaling. Rem. Sens. Environ., 114: 2863–2874.

8. Hall, F.G. et al., 2008. Multi-angle remote sensing of forest light use efficiency by observing PRI variation with canopy shadow fraction. Rem. Sens. Environ., 112(7): 3201-3211.

Page 21: Forrest G. Hall 1 Thomas Hilker 1 Compton J. Tucker 1 Nicholas C. Coops 2 T. Andrew Black 2

Conclusions1. PRI’ quantifies light use efficiency (LUE) independent of

ecosystem variations in canopy structure and unstressed reflectance.

2. Near instantaneous multi-angle data are required to simultaneously quantify PRI and shadow fraction.

3. For the first time we have an eddy-correlation independent, spectral method to quantify GPP from towers and space.

4. Used in a data assimilation mode with GPP model, our satellite GPP algorithm can provide high spatial resolution, diurnal estimates of GPP.

• The ability to infer light use efficiency at regional scales allows us also to infer respiration independently of Tsoil and

• To remotely sense the key components of the surface energy balance.

5. A network of AMSPEC sites (@≈30k ea) could help rapidly refine process understanding and modeling in other ecosystems.

.21

Page 22: Forrest G. Hall 1 Thomas Hilker 1 Compton J. Tucker 1 Nicholas C. Coops 2 T. Andrew Black 2

Recommendations

• A wide-swath (~700km) satellite (along track multi-angle viewing) with PRI bands, chlorophyll absorption and NIR bands (for Fpar) could provide important advancements in the quantification and understanding of the global carbon, water and energy cycle.

22

Page 23: Forrest G. Hall 1 Thomas Hilker 1 Compton J. Tucker 1 Nicholas C. Coops 2 T. Andrew Black 2

Spaceborne photosynthesis

Figure: NASA Goddard Space Flight Center 23