11
LAPORAN AKHIR HASIL PENELITIAN HIBAH BERSAING INSTITUSI BATCH I TAHUN ANGGARAN 2012 Judul : Fitoremediasi Tanah Tercemar Merkuri Limbah Tambang Emas Rakyat untuk Perbaikan Produksi Jagung Ketua : Prof. Ir. Eko Handayanto, MSc., PhD. Anggota : 1. Dr.Ir. Budi Prasetya, MP. 2. Ir.Nurul Muddarisna, MP Dibiayai oleh Direktorat Jenderal Pendidikan Tinggi, Kementerian Pendidikan dan Kebudayaan, Melalui DIPA Universitas Brawijaya nomor : 0636/023- 04.2.16/15/2012, tanggal 9 Desember 2011, dan berdasarkan SK Rektor Universitas Brawijaya Nomor : 366/SK/2012 tanggal 13 Agustus 2012 LEMBAGA PENELITIAN DAN PENGABDIAN KEPADA MASYARAKAT UNIVERSITAS BRAWIJAYA 2012 Bidang Unggulan: Ketahanan Pangan :………………………

Fitoremediasi Tanah Tercemar Merkuri Limbah Tambang Emas

Embed Size (px)

Citation preview

Page 1: Fitoremediasi Tanah Tercemar Merkuri Limbah Tambang Emas

LAPORAN AKHIR HASIL

PENELITIAN HIBAH BERSAING INSTITUSI BATCH I

TAHUN ANGGARAN 2012

Judul : Fitoremediasi Tanah Tercemar Merkuri Limbah Tambang Emas

Rakyat untuk Perbaikan Produksi Jagung

Ketua : Prof. Ir. Eko Handayanto, MSc., PhD.

Anggota : 1. Dr.Ir. Budi Prasetya, MP.

2. Ir.Nurul Muddarisna, MP

Dibiayai oleh Direktorat Jenderal Pendidikan Tinggi, Kementerian Pendidikan dan

Kebudayaan, Melalui DIPA Universitas Brawijaya nomor : 0636/023-

04.2.16/15/2012, tanggal 9 Desember 2011, dan berdasarkan SK Rektor Universitas

Brawijaya Nomor : 366/SK/2012 tanggal 13 Agustus 2012

LEMBAGA PENELITIAN DAN PENGABDIAN KEPADA MASYARAKAT

UNIVERSITAS BRAWIJAYA

2012

Bidang Unggulan: Ketahanan Pangan

:………………………

Page 2: Fitoremediasi Tanah Tercemar Merkuri Limbah Tambang Emas

i

Page 3: Fitoremediasi Tanah Tercemar Merkuri Limbah Tambang Emas

1

ABSTRAK

Upaya konvensional untuk reklamasi (remediasi) tanah pertanian tercemar Hg

limbah tambang emas tersebut belum banyak dilakukan karena kendala biaya

yang tinggi. Salah satu teknologi mudah dan murah yang belum diterapkan di

lahan tercemar Hg adalah fitoremediasi. Tujuan dari penelitian ini adalah untuk

mempelajari dan mengetahui potensi fitoekstrasi tanaman Lindernia crustacean,

Digitaria radicosa, Zingiber purpurium, Paspalum conjugatum, Cyperus kylingia,

Caladium bicolor dalam fitoremediasi tanah yang tercemar oleh limbang tambang

emas mengandung unsur Hg, serta pengaruh ikutannya terhadap pertumbuhan

tanaman jagung. Penelitian dilaksanakan dalam dua tahap, yaitu percobaan pot

lapangan untuk mengetahui potensi 6 spesies (Lindernia crustacean, Digitaria

radicosa, Zingiber purpurium, Paspalum conjugatum, Cyperus kylingia,

Caladium bicolor) sebagai akumulator Hg. Tahap kedua adalah mempelajari

dampak fitoremediasi Hg terhadap pertumbuhan dan produksi tanaman jagung.

Hasil penelitian menunjukkan bahwa tanaman Paspalum conjugatum, Cyperus

kylingia, dan Lindernia crustacean merupakan tiga spesies tanaman liar yang

berpotensi untuk digunakan sebagai fitoremediator Hg pada lahan pertanian yang

tercemar Hg. Penambahan bahan ligand mengandung S, yaitu thiosulfat, pada

tanah tercemar Hg meningkatkan pelarutan Hg dalam tanah dan peningkatan

serapan Hg oleh tanaman fitoremediator. Pertrumbuhan dan produksi biomasa

tanaman jagung meningkat 33%. Produksi biomasa kering tertinggi dijumpai pada

perlakuan pascafitoremediasi dengan Paspalum conjugatum.

ABSTRACT

Conventional efforts for emediation of soils contaminated by gold mine waste

containing Hg has not been conducted because of its high cost. An inexpensive

technology that has not been applied in Hg contaminated soil is phytoremediation.

The purpose of this research was to study and determine the potential of Lindernia

crustacean, Digitaria radicosa, Zingiber purpurium, Paspalum conjugatum,

Cyperus kylingia, and Caladium bicolor in phytoremediation of Hg contaminated

soil, and the effect the phytoremediation on the growth of maize. The experiment

was conducted in two phases. The first phase was a pot field trial to determine the

potential Lindernia crustacean, Digitaria radicosa, Zingiber purpurium,

Paspalum conjugatum, Cyperus kylingia, and Caladium bicolor) as Hg

accumulator plants. The second phase was is to study the impact of Hg

phytoremediation on the growth and production of maize. The results showed that

Paspalum conjugatum, Cyperus kylingia and Lindernia crustacean were three

species of indigenous plants that have the potential to be used as Hg

fitoremediator plants. The addition of ligand containing S, i.e. thiosulfate, to the

Hg contaminated soil increased accumulation of Hg by fitoremediator plants.

Growth andbiomass production of maize increased by 33%. Highest dry biomass

production observed in treatment with Paspalum conjugatum.

Page 4: Fitoremediasi Tanah Tercemar Merkuri Limbah Tambang Emas

2

RINGKASAN

Penambangan emas rakyat umumnya dilakukan dengan menggunakan

sistem tradisional dengan metode sederhana yaitu amalgamasi merkuri (Hg) dan

membutuhkan investasi kecil. Pembuangan limbah proses pendulangan emas

berupa lumpur yang mengandung Hg dan berbagai logam berat lainnya umumnya

dilakukan di lahan sekitar lokasi proses amalgamasi sehingga mencemari lahan

pertanian yang berada di sekitar lokasi tersebut. Sisa lumpur yang dibuang ke

lahan pertanian berdampak negatif terhadap produksi tanaman pangan karena

dapat menghambat pertumbuhan tanaman, bahkan tanaman mati, akibat

keracunan Hg. Upaya konvensional untuk reklamasi (remediasi) tanah pertanian

tercemar Hg limbah tambang emas tersebut belum banyak dilakukan karena

kendala biaya yang tinggi. Salah satu teknologi mudah dan murah yang belum

diterapkan di lahan tercemar Hg adalah fitoremediasi. Tujuan dari penelitian ini

adalah untuk (1) mempelajari dan mengetahui potensi fitoekstrasi tanaman

Lindernia crustacean, Digitaria radicosa, Zingiber purpurium, Paspalum

conjugatum, Cyperus kylingia, Caladium bicolor dalam fitoremediasi tanah yang

tercemar oleh limbang tambang emas mengandung unsur Hg, (2) Mempejalari dan

mengetahui pengaruh penambahan bahan ligand mengandung S terhadap

pelarutan Hg dalam tanah tercemar Hg dan perubahan serapan Hg oleh enam jenis

tanaman di atas, dan (3) Mempelajari pertumbuhan dan produksi tanaman jagung

pada tanah pascafitoremediasi di atas. Penelitian dilaksanakan dalam dua tahap

yang akan berlangsung selama 6 bulan. Tahap pertama berupa percobaan pot

lapangan di lokasi lahan tercemar Hg limbah tambang emas di Kecamatan

Sekotong, Lombok Barat. Tujuan penelitian tahap pertama adalah untuk

mengetahui potensi 6 spesies (Lindernia crustacean, Digitaria radicosa, Zingiber

purpurium, Paspalum conjugatum, Cyperus kylingia, Caladium bicolor) sebagai

akumulator Hg, serta pengaruh penambahan thio sulfat (ammonium thiosulfat)

sebagai pemacu serapan Hg oleh tanaman akumulator Hg. Setelah penelitian

pertama berakhir (60 hari), sisa bahan tanah penelitian tahap pertama

(pascafitoremediasi) digunakan untuk pertumbuhan tanaman jagung untuk

mempelajari dampak fitoremdiasi Hg terhadap pertumbuhan dan produksi

tanaman jagung. Penelitian tahap kedua akan dilaksanakan selama 70 hari.

Hasil penelitian menunjukkan bahwa Tanaman Lindernia crustacean,

Digitaria radicosa, Zingiber purpurium, Paspalum conjugatum, Cyperus kylingia

dan Caladium bicolor mampu mengakumulasi Hg 2,96; 1,65; 0,85; 8,82; 3,97;

dan 0,14 mg/kg selama pertumbuhan 9 minggu. Berdasar kemampuan di atas,

tanaman Paspalum conjugatum, Cyperus kylingia, dan Lindernia crustacean

merupakan tiga spesies tanaman liar yang berpotensi untuk digunakan sebagai

fitoremediator Hg pada lahan pertanian yang tercemar Hg. Penambahan bahan

ligand mengandung S, yaitu thiosulfat, pada tanah tercemar Hg meningkatkan

pelarutan Hg dalam tanah dan peningkatan serapan Hg oleh Lindernia crustacean,

Digitaria radicosa, Zingiber purpurium, Paspalum conjugatum, Cyperus kylingia

dan Caladium bicolor. Secara rata-rata, penambahan thiosulfat meningkatkan

71% serapan Hg oleh enam spesies tanaman di atas, dengan pola jumlah serapan

seperti pada perlakuan tanpa pemberian thiosulfat. Tinggi tanaman dan produksi

biomasa tanaman jagung yang ditanam selama 8 minggu pada tanah

Page 5: Fitoremediasi Tanah Tercemar Merkuri Limbah Tambang Emas

3

pascafitoremediasi Hg rata-rata meningkat 33% dibandingkan dengan tinggi

tanaman yang ditanam pada tanah sebelum fitoremediasi. Penggunaan thiosulfat

dalam proses fitoremediasi yang menyebabkan peningkatan serapan Hg oleh

tanaman fitoremediator dapat meningkatkan tinggi tanaman sebesar 69%.

Pertumbuhan terbaik dijumpai pada perlakuan pascafitoremediasi dengan

Paspalum conjugatum. Dibandingkan dengan produksi biomasa jagung yang

ditanam pada tanah tanpa fitoremediasi, produksi biomasa kering tajuk dan akar

tanaman jagung yang ditanam pada tanah pascafitoremediasi meningkat 24% pada

pada perlakuan tanpa thiosulfat dan 41% pada perlakuan penambahan thiosulfat

dalam proses fitoremediasi. Produksi biomasa kering tertinggi dijumpai pada

perlakuan pascafitoremediasi dengan Paspalum conjugatum.

Page 6: Fitoremediasi Tanah Tercemar Merkuri Limbah Tambang Emas

4

SUMMARY

In Artisanal and small-scale gold mining (ASGM), extraction of gold is

generally done by using a traditional system with a simple method which is the

amalgamation of mercury (Hg) and requires a small investment. Disposal of waste

in the form of sludge containing Hg and various other heavy metals is generally

done in the land around the site so that the amalgamation process contaminates

agricultural land around the site. The remaining sludge discharged into farmland

negatively impact crop production because it can inhibit plant growth.

Conventional efforts for remediation of Hg contaminated soils has not been

conducted because of its high cost. An inexpensive technology that has not been

applied in Hg contaminated soil is phytoremediation. The purposes of this study

were to (1) study and determine the potential of Lindernia crustacean, Digitaria

radicosa, Zingiber purpurium, Paspalum conjugatum, Cyperus kylingia,

Caladium bicolor in phytoremediation of Hg contaminated soils, (2) determine the

effect of the addition of ligands containing S toward dissolving Hg in Hg

contaminated soil and changes in Hg accumulation by six plant species above, and

(3) study the growth and biomass production of maize grown on post

phytoremediation process.

The experiment was conducted in two phases for 6 months. The first

phaese was a pot trial field at the field site contaminated with Hg at Sekotong

gold mine area of West Lombok. The first phase of the research objective was to

investigate the potential of Lindernia crustacean, Digitaria radicosa, Zingiber

purpurium, Paspalum conjugatum, Cyperus kylingia, and Caladium bicolor as Hg

accumulator plants, and the effect of the addition of thio sulphate (ammonium

thiosulfate) on Hg accumulation by plants . After the end of the first phase (60

days), the remaining soil material was used for the growing maize to study the

impact fitoremdiasi Hg on growth and biomass production of maize. The second

phase of the study was conducted for 70 days.

The results showed that Lindernia crustacean, Digitaria radicosa,

Zingiber purpurium, Paspalum conjugatum, Cyperus kylingia and Caladium

bicolor were able to accumulate 2.96; 1.65; 0.85; 8.82; 3.97, and 0.14 mg Hg / kg

for 9 weeks of growth. Based on the above capabilities, Paspalum conjugatum,

Cyperus kylingia and Lindernia crustacean are three species of indigenous plants

that have the potential to be used as Hg fitoremediators for Hg contaminated soil.

The addition of thiosulfate to the Hg contaminated soil increased accumulation of

Hg by Lindernia crustacean, Digitaria radicosa, Zingiber purpurium, Paspalum

conjugatum, Cyperus kylingia and Caladium bicolor. On average, the addition of

thiosulfate increased 71% uptake of Hg by six plant species above, the pattern of

uptake was similar to treatments with no addition of thiosulfate. Plant height and

biomass production of maize grown for 8 weeks increased 33% compared to those

of no phytoremediation soil. The use of thiosulfate in phytoremediation processes

that lead to increased Hg accumulation by fitoremediator plants increased plant

height by 69%. Best growth observed in treatment with Paspalum conjugatum

pascafitoremediasi. Compared with biomass production of maize grown on soil

without phytoremediation, dry biomass production and plant roots of maize grown

on soil pascafitoremediasi increased 24% in the treatment without thiosulfate and

Page 7: Fitoremediasi Tanah Tercemar Merkuri Limbah Tambang Emas

5

41% on the addition of thiosulfate in the treatment process of phytoremediation.

Highest dry biomass production observed in treatment with Paspalum

conjugatum.

Page 8: Fitoremediasi Tanah Tercemar Merkuri Limbah Tambang Emas

6

DAFTAR PUSTAKA

Ali, M.B., Vajpayee, P., Tripathi, R.D., Rai, U.N., Kumar, A., Singh, N., Behl,

H.M. and Singh, S.P. 2000. Mercury bioaccumulation induces oxidative

stress and toxicity to submerged macrophyte Potamogeton crispus L.

Bulletin of Environmental Contamination and Toxicology 65:573-582.

Angle, J. S., Chaney, R. L., Baker, A. J. M, Li, Y., Reeves, R., Volk, V.,

Roseberg, R., Brewer E., Burke S. and Nelkin J. 2000. Developing

commercial phytoextraction technologies: practical considerations. South

African Journal of Science 97: 619-623.

Berti, W.R. and Cunningham, S.D. 2000. Phytostabilization of metals. In:

Phytoremediation of Toxic Metals–Using Plants to Clean Up the

Environment .I. Raskin and B.D. (eds), p 71-88. New York:John Wiley &

Sons.

Birdstrup, P. L. 1964. Toxicity of mercury and its compounds. London; Elsevier

publishing company.

Blaylock, M.J., Salt, D.E., Dushenkov, S., Zakharova, 0., Gussman, C., Kapulnik,

Y., Ensley, B.D. and Raskin, I. 1997. Enhanced accumulation of Pb in

Indian Mustard by soil-applied chelating agents. Environment Science and

Technology 31:860-865.

Boening, D.W. 2000. Ecological effects, transport, and fate of mercury: a general

review. Chemosphere 40:1335-1351.

Chandra Sekhar K., Kamala, C. T., Chary, N. S. Balaram, V. and Garcia, G. 2005.

Potential of Hemidesmus indicus for phytoextraction of lead from

industrially contaminated soils. Chemosphere 58: 507-514

Ensley, B. D. 200). Rationale for use of phytoremediation. In: I. Raskin and B. D.

Ensley (Eds.), Phytoremediation of Toxic Metals. Using Plants to Clean

up the Environment, J. Wiley & Sons, New York, USA: 3-11.

Evans, L.J. 1989. Chemistry of metal retention by soils. Environmental Science

and Technology 23(9):1046-1056.

Ferreira, C., Lopes Vieira, C., Azevedo, H. and Caldeira, G. 1998. The effects of

high levels of Hg on senescence, proline accumulation and stress enzymes

activities of maize plants. Agrochimica 42(5):209-218.

Fitter, A.H, dan Hay, R.K.M. 2004. Fisiologi Lingkungan Tanaman. Terjemahan

oleh Sri Andani dan E.D. Purbayanti. Universitas Gadjah Mada Press.

Yogyakarta.

Glass, D. J. 2000. Economic potential of phytoremediation. In: I. Raskin and B. D.

Ensley, (Eds.), Phytoremediation of Toxic Metals. Using Plants to Clean

up the Environment, J. Wiley & Sons, New York, USA: 15-3 1.

Grill, E., Winnacker, E.L. and Zenk, M.H. 1985. Phytochelatins: the principal

heavy- metal complexing peptides of higher plants. Science 230:674-676.

Page 9: Fitoremediasi Tanah Tercemar Merkuri Limbah Tambang Emas

7

Gunradi, R, 2000 Laporan Penyelidikan Pernantauan Unsur Hg (mercury) Akibat

Penambangan Emas Tanpa Ijin (PET1) di Daerah Pongkor, Jawa Barat,

Dengan Pemetaan Geokimia. Koordinator Urusan Departemen Energi dan

Sumberdaya Mineral, Propinsi Jawa Barat.

Hidayati, N, Juhaeti, T, dan Syarif, F. 2009. Mercury and Cyanide

Contaminations in Gold Mine Environment and Possible Solution of

Cleaning Up by Using Phytoextraction. Hayati Journal of Biosciences.

Vol. 16, No. 3: 88-94

Hinton, J. 2002. Earthworms as a Bioindicator of Mercury Pollution in an

Artisanal Gold Mining Community, Cachoeira do Pink Brazil. Master

Thesis. University of British Columbia, Canada, 140 pp.

Hylander, L.D., Plath, D., Miranda, C.R., Lucke, S., Ohlander, J. and Rivera,

A.T.F. 2007. Comparison of different gold recovery methods with regard

to pollution control and efficiency. Clean 35: 52-61.

Ismawati, Y. 2010. Presentation at the National Mercury Roundtable Forum,

Jakarta, 4 August 2010.

Kabata-Pendias, A. and Pendias, H. 2000. Trace Elements in Soils and Plants,

CRC Press, Florida,USA, 413 pp.

Krisnayanti, B.D., Arifin, Z. Bustan, Sudirman. and Yani, A. 2012. Mercury

Concentration on Tailing and Water from One Year of ASGM at Lantung,

Sumbawa, Indonesia. In: Environmental, Socio-economic, and Health

Impacst of Artisanal and Small-Scale Minings. E. Handayanto, B.D.

Krisnayanti and Suhartini (eds). p 61-66. UB Press, Malang, Indonesia

Kumar, P. and Chandra, R. 2004. Detoxification of distillery effluent through

Bacillus thuringiensis (MTCC 4714) enhanced phytoremediation potential

of Spriodela polyrrhiza (L.) Schliden. Bulletin of Environmental

Contamination and Toxicology 73:903-910

Li, Y. M., Chaney, R., Brewer, E., Rosenberg, R., Angle, S.J., Baker, A. J. M.,

Reeves, R. D. and Nelkin, J. 2003. Development of technology for

commercial phytoextraction of nickel: economic and technical

considerations. Plant and Soil 249: 107-115

Liao, S.W. and Chang, W.L. 2004. Heavy metal phytoremediation by Water

Hyacinth at constructed wetlands in Taiwan. Journal of Aquatic Plant

Management 42: 60-68.

McLaren, R.G. and Cameron, K.C. 1996. Soil Science. Oxford University Press,

NZ, 304. pp.

Meagher, R.B., Rugh, C.L., Kandasamy, M.K., Gragson, G. and Wang, N.J. 2000.

Engineering phytoremediation of mercury pollution in soil and water using

bacterial genes. In: Phytoremediation of Contaminated Soil and Water, N.

Terry, and G. Bailuelos. Eds. Lewis Publishers, USA, pp 201-219.

Mitra, S. 1986. Mercury in the ecosystem its dispersion and pollution today.

Netherlands: Technomic Publishing Co., Inc.

Page 10: Fitoremediasi Tanah Tercemar Merkuri Limbah Tambang Emas

8

Morel, F.M.M., Kraepiel, A.M.L. and Amyot, M. 1998. The chemical cycle and

bioaccumulation of mercury. Annual Reviews in Ecological Systems

29:543-566.

Moreno, F.N., Anderson, C.W.N., Robinson, B.H. and Stewart, R.B. 2004.

Phytoremediation of mercury-contaminated mine tailings by induced

plant-Hg accumulation. Environmental Practice 6(2):165-175.

Munzuroglu, O. and Geekil, H. 2002. Effect of metals on seed germination root

elongation and coeoptiles and hypocotyls growth in Triticum aestivum and

Cucumis salivus. Archieve of Environmental and Contamination

Toxicology. 43: 203-213.

Patra, M., and Sharma, A. 2000. Mercury toxicity in plants. Bot. Rev, 66(3), 379-

422.

Pilon-Smits, E. 2005. Phytoremediation. Annual Review of Plant Biology 56:15-

39.

Prasad, M. N. V. 2001. Metals in the environment analysis by biodiversity.

Newyork: Marcel Dekker, Inc.

Rahmawati, I. 2011. Pengaruh Kemiskinan Terhadap Maraknya Pertambangan

Tanpa Ijin (Studi Kasus Di Kecamatan Sekotong, Kabupaten Lombok

Barat). Media Bina Ilmiah, Fakultas Teknik Universitas Muhammadiyah

Mataram, Desember 2011: 16-20.

Rauser, W.E. 1995. Phytochelatins and related peptides. Plant Physiology.

109:11411149.

Rugh, C. L. 2004. Genetically engineered phytoremediation: one man’s trash is

another man’s transgene. Trends in Biotechnology 22: 496-468.

Schnoor, J. L., Light, L. A., Mccutcheon, S. C., Wolfe, N. L. and Carreira, L. H.

1995. Phytoremediation of organic and nutrient contaminants.

Environmental Science and Technology 29: 3 18-323.

Schuster, E. 1991. The behaviour of mercury in the soil with special emphasis on

the complexation and adsorption processes- a review of the literature.

Water, Air, and Soil Pollution 56:667-680

Subowo, M., Widodo, S. dan Nugraha, A. 2007. Status dan Penyebaran Pb, Cd,

dan Pestisida pada Lahan Sawah Intensifikasi di Pinggir Jalan Raya.

Prosiding. Bidang Kimia dan Bioteknologi Tanah, Puslittanak, Bogor.

Telmer, K. 2007. Mercury and Small Scale Gold Mining –Magnitude and

Challenges Worldwide. GEF/UNDP/UNIDO Global Mercury Project

Thangavel, P. and Subhuram, C. V. 2004. Phytoextraction – Role of hyper

accumulators in metal contaminated soils. Proceedings of the Indian

National Science Academy. Part B 70: 109–130.

Truu, J. Talpsep, E. Vedler, E. Heinaru, E. and Heinaru, A. 2003. Enhanced

Biodegradation of Oil Shale Chemical Industry Solid Wastes by

Phytoremediation and Bioaugmentation. Estonia Academy Publisher

Page 11: Fitoremediasi Tanah Tercemar Merkuri Limbah Tambang Emas

9

Wallschlager, D., Desai, V.M.M. and Wilken, R. 1996. The role of humic

substances in the aqueous mobilization of mercury from contaminated

floodplain soils. Water, Air, and Soil Pollution 90:507-520.

Wallschlager, D., Desai, V.M.M., Spengler, M., and Wilken, R. 1998 a. Mercury

speciation in floodplain soils and sediments along a contaminated river

transect. Journal of Environmental Quality 27:1034-1044.

Wallschlager, D., Desai, V.M.M., Spengler, M., Windmilller, C.C. and Wilken R.

1998 b. How humic substances dominate mercury geochemistry in

contaminated floodplain soils and sediments. Journal of Environmental

Quality 27:10441057.

Wang, J., X, Feng, X. and C.W.N. Anderson, C.W.N. 2012. Thiosulphate

Assisted Phytoextraction of Mercury (Hg) Contaminated Soils at The

Wanshan Mercury Mining District, Southwest China. In: Environmental,

Socio-economic, and Health Impacst of Artisanal and Small-Scale

Minings. E. Handayanto, B.D. Krisnayanti and Suhartini (eds). p 67-76.

UB Press, Malang, Indonesia.

Wolfe, A. K. and Bjornstad, D. J. 2002. Why would anyone object? An

exploration of social aspects of phytoremediation acceptability. Critical

Reviews in Plant Science 21: 429-438

Yayasan Tambuhak Sinta. 2010. Scoping Study Report of Poboya, Palu ASGM

Site.