68
FCA - CRT Lippenbroek Tom Maris & Patrick Meire OMES partners

FCA - CRT Lippenbroek Tom Maris & Patrick Meire OMES partners

Embed Size (px)

Citation preview

Page 1: FCA - CRT Lippenbroek Tom Maris & Patrick Meire OMES partners

FCA - CRT

Lippenbroek

Tom Maris & Patrick MeireOMES partners

Page 2: FCA - CRT Lippenbroek Tom Maris & Patrick Meire OMES partners

Lippenbroek: pilot project

FCA: Flood Control AreaCRT: Controlled Reduced Tide

Financed by Agency of Nature and Forest EU-Life projectBuild by W&Z nvMonitoring is part of OMES

Page 3: FCA - CRT Lippenbroek Tom Maris & Patrick Meire OMES partners

Ecology:

- Introducing estuarine ecosystem

- Tidal regime in area

- Two times a day!

Ring Dike Lowered FCA dike

FCA estuary

Outlet

polder

Concept FCA - CRTsafety, ecology and a new ecosystem

Safety:

- Lowered dike stretch

- Critical tides: whole storage capacity

- Only few times/year!

‘New’ ecosystem: Lippenbroek since March 2006!

- Area below high water level

- Separate in- and outlet sluices at different heights:

First CRT in the world with neap-spring tide cycle!

Ring Dike Lowered FCA dike

CRT estuary

Outlet

Inlet

polder

Page 4: FCA - CRT Lippenbroek Tom Maris & Patrick Meire OMES partners

0.0

1.0

2.0

3.0

4.0

5.0

6.0

0 2 4 6 8 10 12Time (hour)

Wa

ter

lev

el

(m T

AW

)

Polder

Estuary

Tidal curves in estuary CRT polder

sluice 4.7

Start inflow

stagnant

HW Maximum inflowStop inflow Start outflow

Page 5: FCA - CRT Lippenbroek Tom Maris & Patrick Meire OMES partners

Tidal curves in estuary CRT polder

sluice 4.7

0.0

1.0

2.0

3.0

4.0

5.0

6.0

0 2 4 6 8 10 12Time (hour)

Wat

er l

evel

(m

TA

W)

neap mean spring

Polder

Spring tide longer period of inflow high current speed flooding the polder

Neap tide short period of inflow low current speed almost no water in

SPRING NEAP VARIATION: ONLY WITH HIGH INLET SLUICES

Page 6: FCA - CRT Lippenbroek Tom Maris & Patrick Meire OMES partners

Lippenbroek and mesocosm

Differences in todal characteristics are expected

How will the ecosystem react on this?

Three step approach:

• Mesocosm experiment at campus

• Mesocosm experiment in Schelde (Kruibeke)

• Pilot project Lippenbroekco

mp

lex

ity

To provide scientific support for the design of future controlled inundation areas

Page 7: FCA - CRT Lippenbroek Tom Maris & Patrick Meire OMES partners

- Controlled reduced tide vs. “natural” tidal regime- Flooding frequency- Soil texture

Campus mesocosm

Phragmites australis growth chracteristics shoot diameter, length, number of leafs, biomass, rhizome density,…

Page 8: FCA - CRT Lippenbroek Tom Maris & Patrick Meire OMES partners

- Metal pollution- Soil texture

Schelde mesocosm

Page 9: FCA - CRT Lippenbroek Tom Maris & Patrick Meire OMES partners

Cd content

05

10152025303540

pannicle leaf shoot

con

ten

t (µ

g/g

dry

mas

s)

cont

not cont

- Reed growth (biomass) not significantly affected by metal pollution(not shown)

- Aboveground biomass excludes extra heavy metals

Mesocosm: heavy metals

Page 10: FCA - CRT Lippenbroek Tom Maris & Patrick Meire OMES partners

0

10

20

30

40

50

60

0 50 100 150 200 250 300 350 400 450

Burcht

Kijkverdriet

Shoot length

Tot

al s

hoot

dry

wei

ght

- Field data of Phragmites australis allometrics

- Develop a non-destructive biomass sampling method for the mesocosms

Allometric relations

Page 11: FCA - CRT Lippenbroek Tom Maris & Patrick Meire OMES partners

Node diameter

Tot

al s

hoot

dry

wei

ght

- Field data of Phragmites australis allometrics

- Develop a non-destructive biomass sampling method for the mesocosms

0

10

20

30

40

50

60

0 2 4 6 8 10 12 14

Burcht

Kijkverdriet

Allometric relations

Page 12: FCA - CRT Lippenbroek Tom Maris & Patrick Meire OMES partners

- Reed allometric relations through life cycle, comparison field studies / mesocosms

- Heavy metals in reed (accumulation, retention, metal delivery) in polluted and non-polluted environment

- Reed growth under controlled reduced tide vs. natural tide

Beyond that:- Detailed experiments towards silicate availability under different external factors- Experiments along a range of tidal inundation periods

3 year dataset, now ready for publication

Mesocosm: publications in prep.

Page 13: FCA - CRT Lippenbroek Tom Maris & Patrick Meire OMES partners

Vlissingen

Gent

Antwerp

Belgian -Dutch borderNorth Sea

-

North sea

Vlissingen

Gent

Antwerpen

Belgian -Dutch border

North sea

N

40 km 100 km

FCA – CRT KBR

FCA - CRT Lippenbroek

Vlissingen

Gent

Antwerp

Belgian -Dutch borderNorth Sea

-

North sea

Vlissingen

Gent

Antwerpen

Belgian -Dutch border

North sea

N

40 km 100 km

FCA – CRT KBR

Vlissingen

Gent

Antwerp

Belgian -Dutch borderNorth Sea

-

North sea

Vlissingen

Gent

Antwerpen

Belgian -Dutch border

North sea

Vlissingen

Gent

Antwerp

Belgian -Dutch borderNorth Sea

-

North sea

Vlissingen

Gent

Antwerpen

Belgian -Dutch border

North sea

N

40 km 100 km

FCA – CRT KBR

FCA - CRT Lippenbroek

FCA – CRT in the Schelde estuary

Pilot project Lippenbroek (freshwater)

Page 14: FCA - CRT Lippenbroek Tom Maris & Patrick Meire OMES partners

Lippenbroek

1: Ring Dike

2: FCA dike

3: Inlet sluice

4: Outlet sluice1

23

1

4

1

1

Management scenario Lippenbroek

Pilot project Lippenbroek

10 ha of tidal nature developping since March 2006

Page 15: FCA - CRT Lippenbroek Tom Maris & Patrick Meire OMES partners

m TAW

6: Schelde estuary

Reference site

Schelde estuary (De Plaat)

400

450

500

550

600

650

9 10 11 12 13 14 15 16 17 18 19

date (march 2006)

leve

l (cm

TA

W)

tidal marsh elevation

neap tide spring tide

6: Schelde estuary

1: Lippenbroek Lippenbroek (Creek)

100

150

200

250

300

350

9 10 11 12 13 14 15 16 17 18 19

date (march 2006)

leve

l (cm

TA

W)

neap tide spring tide

polder elevation

1: Lippenbroek

16

Tidal curves in estuary Lippenbroek

Page 16: FCA - CRT Lippenbroek Tom Maris & Patrick Meire OMES partners

Schelde estuary (De Plaat)

525

550

575

600

0 3 6 9 12 15 18 21 0 3 6 9 12 15 18 21 0

time (hour)

leve

l (cm

TA

W)

tidal marsh elevation

Lippenbroek (Creek)

250

275

300

325

0 3 6 9 12 15 18 21 0 3 6 9 12 15 18 21 0

time (hour)

leve

l (cm

TA

W)

polder elevation

Lippenbroek

280

290

300

310

320

4 5 6 7 8 9 10 11 12

time (hour)

leve

l (cm

TA

W)

polder elevation

Schelde estuary

540

550

560

570

580

4 5 6 7 8 9 10 11 12

time (hour)

leve

l (cm

TA

W)

marsh elevation

Estuary shorter inundation time higher inundation height no stagnant phase

Lippenbroek longer inundation time lower inundation height stagnant phase

Tidal curves in estuary Lippenbroek

Page 17: FCA - CRT Lippenbroek Tom Maris & Patrick Meire OMES partners

Gradient in inundation characteristics

400

500

600

700

100

200

300

400

01 apr 15 apr 30 apr 15 mei 30 mei

Lippenbroek

Schelde estuary

Big spring – neap tide variation leading to a large gradient in inundation characteristics!

Strong reduction of the high water level by 3 meter

No reduction of the amplitude of the spring – neap variation

Page 18: FCA - CRT Lippenbroek Tom Maris & Patrick Meire OMES partners

S10

S1

S2S3

S4

S5

S6

S7

S8

S9No walking or sampling

No walking, permanent and vulnerable sampling designs can be installed

Wooden bench to enter red or orange zone

Zone for soil disturbing sampling, but intact vegetation

Zone for all soil and vegetation disturbing measurements

Intensive monitoring: 10 sites

•Sedimentation

•Erosion

•Vegetation

•Soil

•Benthos

•Nutrients

•Bacterials

•Soil respiration

•Water quality

•....

At all sites we measure continuously the water levelproviding us:

Inundation heigtInundation frequencyInudation period

Benthos sampling

Page 19: FCA - CRT Lippenbroek Tom Maris & Patrick Meire OMES partners

Spatial considerations:10 sites6 cores per site3 strata per core

Temporal considerations:4 seasons2 years

Fauna

Environment

Benthos: sampling plan

Olivier Beauchard, ECOBE

Page 20: FCA - CRT Lippenbroek Tom Maris & Patrick Meire OMES partners

FLOOD

EBB

« Reference »: lotic physical dynamics (riverine system)in the surroundings of the Lippenbroek

Reference sites

Page 21: FCA - CRT Lippenbroek Tom Maris & Patrick Meire OMES partners

Reference sites

Mudflat

WillowsReeds

Page 22: FCA - CRT Lippenbroek Tom Maris & Patrick Meire OMES partners

Environmental variables by ECOBE

Per stratum:- grain size- proportions clays / silts / sands- water content (at low tide)- TOC- total N / total P- extractable N & P- compaction- pH- plant debris

Per site:- flood frequency- flood duration- tidal amplitude- sedimentation- plant species

Temperature and oxygen

Per core:- stagnant water height (neap tide)- stagnant water height (spring tide)- mean height

At the bridge or sluices- current speed- general water quality (SpCond, Oxygen, pH, spm, chl a, NO3, NO2, NH4, Kjehld N, SO4, Cl, PO4, BOD5, DSi, BSi)

- heavy metals in soil in pore water

Page 23: FCA - CRT Lippenbroek Tom Maris & Patrick Meire OMES partners

BioturbationBioturbation

Activities of the benthic fauna in the sediment : Activities of the benthic fauna in the sediment :

- Sediment reworking - Sediment reworking - Construction of burrows and tubes and - Construction of burrows and tubes and related bio-irrigationrelated bio-irrigation

Bioturbation (M. Tackx)

Page 24: FCA - CRT Lippenbroek Tom Maris & Patrick Meire OMES partners

BIODIFFUSIONCONVEYOR-BELT FEEDING

DOWNWARD NON LOCAL TRANSPORT

t = 0Matter at

the interface

t = xMatter in

the sediment

Ingestion

Fecal pellets

Particles

BIOIRRIGATION

Non local upward transport

Bioadvection

Water + Solutes

M. Tackx

Page 25: FCA - CRT Lippenbroek Tom Maris & Patrick Meire OMES partners

Role of bioturbation in sediment evolution in a newly created march ?

Bioturbation

M. Tackx

Page 26: FCA - CRT Lippenbroek Tom Maris & Patrick Meire OMES partners

Bioturbation: measurements on the Lippenbroek

- 3 sampling sites distributed on the Lippenbroek along a gradient of immersion

- 4 campaigns / year (one each season) during two years

- First campaign : middle of january 2007

- 3 replicates per site + 1 control (without fauna) 12 replicates / campaign

M. Tackx

Page 27: FCA - CRT Lippenbroek Tom Maris & Patrick Meire OMES partners

Bioturbation: Experimental protocol

1 cm

15 cm

Inserting the core in the sediment

Frozen mud cake + fluorescent microspheres

(ø = 1.0 µm)0.5 cm

Depositing the fluorescent microspheres on the sediment surface

Extracting the core and

slicing into 9 slices

0 / 0.5 / 1 / 2 / 3 / 4 / 5 / 7 / 10 /

15 cm

15 days exposure

Sieving each slice through a 250 µm mesh

Identification and counting of the benthic

fauna

Microspheres counting

M. Tackx

Page 28: FCA - CRT Lippenbroek Tom Maris & Patrick Meire OMES partners

Bioturbation: who does what

- Inserting and extracting the cores

- Cores slicing

- Benthos identification and counting

Olivier Beauchard

ECOBE

- Sieving of each sediment slice

- Microspheres counting

France

ECOLAB/LMGEM

Page 29: FCA - CRT Lippenbroek Tom Maris & Patrick Meire OMES partners

Phytoplankton:

• 4 13 h-campaigns • water samples taken at one central site (bridge)• 3 extra sites in summer • filtration for pigments in the field• 90 analyses with HPLC for 2006

Phytobenthos:

• 5 sampling campaigns: (April, May, July, September, October)• contact cores with liquid nitrogen• 88 analyses with HPLC for 2006• microscopical and field observations

Phytoplankton and phytobenthos

Page 30: FCA - CRT Lippenbroek Tom Maris & Patrick Meire OMES partners

Euglena

Oscillatoria

© Natuurpunt

Vaucheria

Fast colonisation with Vaucheria, filamentous cyanobacteria and both planktonic and benthic diatoms

Page 31: FCA - CRT Lippenbroek Tom Maris & Patrick Meire OMES partners

Stijn Temmerman

Universiteit Antwerpen, Dep. Biologie, PLP

Wouter Vandenbruwaene

m.m.v.:

Jan De Schutter, Patrik PeetersWaterbouwkundig Laboratorium Borgerhout

Sedimentation

Tom Maris, Sander JacobsUniversiteit Antwerpen, Dep. Biologie, ECOBE

Page 32: FCA - CRT Lippenbroek Tom Maris & Patrick Meire OMES partners

monitoring of sedimentation and erosion in a FCA-CRT

Objective

Sedimentation Stijn Temmerman

Page 33: FCA - CRT Lippenbroek Tom Maris & Patrick Meire OMES partners

Sedimentation

monitoring of sedimentation and erosion in a FCA-CRT

Objective

CRUCIAL for

Water storage capacity

Ecology

FCA dike

Ring dike

Schelde estuary

Stijn Temmerman

Page 34: FCA - CRT Lippenbroek Tom Maris & Patrick Meire OMES partners

Sedimentation-erosion measurements at:Methods

•Different places

•Different time intervals

Sedimentation Stijn Temmerman

Page 35: FCA - CRT Lippenbroek Tom Maris & Patrick Meire OMES partners

Sedimentation-erosion measurementsMethods

50 locations within the FCA-CRT

8 locations on adjacent

marsh (ref.sites)

Sedimentation Stijn Temmerman

Page 36: FCA - CRT Lippenbroek Tom Maris & Patrick Meire OMES partners

Sedimentation-erosion measurementsMethods

3 methods:

13 Sediment Elevation Table

(SET)

33 Marker Horizons (MH)

58 Sediment Traps (ST)

+

+ +

+ + +

Sedimentation Stijn Temmerman

Page 37: FCA - CRT Lippenbroek Tom Maris & Patrick Meire OMES partners

Sedimentation-erosion measurementsMethods

3 methods:

13 Sediment Elevation Table

(SET)

33 Marker Horizons (MH)

58 Sediment Traps (ST)

+

+ +

+ + +

Sedimentation Stijn Temmerman

Page 38: FCA - CRT Lippenbroek Tom Maris & Patrick Meire OMES partners

Sedimentation-erosion measurementsMethods

3 methods:

13 Sediment Elevation Table

(SET)

33 Marker Horizons (MH)

58 Sediment Traps (ST)

+

+ +

+ + +

Method developed by USGS

World widely used in marshes

Sedimentation Stijn Temmerman

Page 39: FCA - CRT Lippenbroek Tom Maris & Patrick Meire OMES partners

Sedimentation-erosion measurementsMethods

3 methods:

13 Sediment Elevation Table

(SET)

33 Marker Horizons (MH)

58 Sediment Traps (ST)

+

+ +

+ + +

Measurements every 2 months

Sedimentation Stijn Temmerman

Page 40: FCA - CRT Lippenbroek Tom Maris & Patrick Meire OMES partners

Sedimentation-erosion measurementsMethods

3 methods:

33 Marker Horizons (MH)

58 Sediment Traps (ST)

+ +

+ + +

13 Sediment Elevation Table

(SET)

+Kaoline clay

Perforated plate

Measurements every 2 months

Sedimentation Stijn Temmerman

Page 41: FCA - CRT Lippenbroek Tom Maris & Patrick Meire OMES partners

Sedimentation-erosion measurementsMethods

3 methods:

58 Sediment Traps (ST)

+ +

+ + +

13 Sediment Elevation Table

(SET)

+

33 Marker Horizons (MH)

58 places: sediments sampled for individual tides (13h measurements)

13 places: sediments sampled over periods of 2 months

Sedimentation Stijn Temmerman

Page 42: FCA - CRT Lippenbroek Tom Maris & Patrick Meire OMES partners

Preliminary results

3 methods:

58 Sediment Traps (ST)

+ +

+ + +

13 Sediment Elevation Table

(SET)

+

33 Marker Horizons (MH)

Sedimen-tatie

(g/m²/tij)

0

150

UA - KUL 13h measurement 11/09/06

Sediment balance measured at sluices by WL Borgerhout

Sedimentation Stijn Temmerman

Page 43: FCA - CRT Lippenbroek Tom Maris & Patrick Meire OMES partners

Morphological development of creek systemMethods

Periodic topographic surveying using Total

Station

Every 6 months

Sedimentation Stijn Temmerman

Page 44: FCA - CRT Lippenbroek Tom Maris & Patrick Meire OMES partners

Morphological development of creek systemMethods

Length profile of creeks

Cross section profiles of

creeks

Planimetric position of

creeks

Sedimentation Stijn Temmerman

Page 45: FCA - CRT Lippenbroek Tom Maris & Patrick Meire OMES partners

Morphological development of creek systemMethods

Length profile of creeks

Cross section profiles of

creeks

Length profile of main creek - 17/02/06

0

0.5

1

1.5

2

2.5

3

0 50 100 150 200 250 300 350 400 450

distance from inlet sluice (m)

ele

vatio

n (

m T

AW

)

Planimetric position of

creeks

Sedimentation Stijn Temmerman

Page 46: FCA - CRT Lippenbroek Tom Maris & Patrick Meire OMES partners

Morphological development of creek systemMethods

Cross section profiles of

creeks

Planimetric position of

creeks

Length profile of creeks

Cross-section 1 of main creek (at first bridge ) - 17/02/06

1.0

1.5

2.0

2.5

3.0

3.5

0 2 4 6 8 10 12 14 16 18 20

distance along cross-section (m)

elev

atio

n (m

TA

W)

Sedimentation Stijn Temmerman

Page 47: FCA - CRT Lippenbroek Tom Maris & Patrick Meire OMES partners

FishingFishingFishingFishing

Page 48: FCA - CRT Lippenbroek Tom Maris & Patrick Meire OMES partners

FishingFishing

Page 49: FCA - CRT Lippenbroek Tom Maris & Patrick Meire OMES partners

Water quality monitoring

Monitoring at the bridgeGeneral water quality by ECOBE

Suspended matter: transport and characteristics by VUB (Hydrology)

Water balance and sediments (at in- and outlet sluices)by Waterbouwkundig Laboratorium

Page 50: FCA - CRT Lippenbroek Tom Maris & Patrick Meire OMES partners

0

25

50

75

100

125

150

175

5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

time (hour)

oxy

gen

(%

sat

)

ST

AG

NA

NT

ST

AG

NA

NT

INFLOW OUTFLOW

0

10

20

30

40

50

60

5 6 7 8 9 10 11 12 13 14 15 16 17 18 19sp

eed

(cm

/s)

ST

AG

NA

NT

ST

AG

NA

NT

INFLOW OUTFLOW

Water quality monitoring

Page 51: FCA - CRT Lippenbroek Tom Maris & Patrick Meire OMES partners

Lippenbroek 16-05-06

0

25

50

75

100

125

150

175

5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

time (hour)

oxy

gen

(%

sat

)

ST

AG

NA

NT

ST

AG

NA

NT

INFLOW OUTFLOW

Lippenbroek 16-05-06

0.00

2.00

4.00

6.00

8.00

10.00

12.00

5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

time (hour)

BO

D5

(mg

/l)

ST

AG

NA

NT ST

AG

NA

NTINFLOW OUTFLOW

Lippenbroek 16-05-06

5.00

6.00

7.00

8.00

9.00

10.00

11.00

5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

time (hour)

SiO

2 (m

g/l

)

ST

AG

NA

NT

ST

AG

NA

NT

INFLOW OUTFLOW

Lippenbroek 16-05-06

1.00

2.00

3.00

4.00

5.00

5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

time (hour)

NO

3-N

(m

g/l

)

ST

AG

NA

NT

ST

AG

NA

NTINFLOW OUTFLOW

Lippenbroek 16-05-06

0

10

20

30

40

50

60

5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

time (hour)

spee

d (

cm/s

)

ST

AG

NA

NT

ST

AG

NA

NT

INFLOW OUTFLOW

Water quality monitoring

Page 52: FCA - CRT Lippenbroek Tom Maris & Patrick Meire OMES partners

Lippenbroek 25/10/2006

7.20

7.30

7.40

7.50

6 7 8 9 10 11 12 13 14 15 16 17 18

time (hour)

pH

Lippenbroek 25/10/2006

1400

1600

1800

2000

2200

6 7 8 9 10 11 12 13 14 15 16 17 18

time (hour)

Sp

Co

nd

S/c

m)

Water quality monitoring

INFLOW OUTFLOW

Bad mixing of the water mass in the Lippenbroek?

Page 53: FCA - CRT Lippenbroek Tom Maris & Patrick Meire OMES partners

Suspended matter: transport (at the bridge)

LIPPENBROEK - May 16, 2006 ( spring tide, 5.9m at Lippenbroek)

0

10

20

30

40

50

60

05 06 07 08 09 10 11 12 13 14 15 16 17 18 19

Time in hours GMT+1

Su

spen

ded

Mat

ter

Con

cen

trat

ion

mg.

l-1

0.0

0.1

0.2

0.3

0.4

0.5

0.6

Water V

elocity in m

.s-1

SPM, surface bridge 1

SPM, surface bridge 2

Water velocity, surface bridge 1

Page 54: FCA - CRT Lippenbroek Tom Maris & Patrick Meire OMES partners

Transport of suspended matter through the main gully

LIPPENBROEK - July 03, 2006 (spring tide, 5.35m at Lippenbroek)

0

10

20

30

40

50

60

09 10 11 12 13 14 15 16 17 18 19 20 21 22 23

Time GMT+1

Su

sp

en

de

d M

atte

r C

on

cen

tra

tio

n m

g.l-

1

0.0

0.1

0.2

0.3

Wa

ter Ve

loc

ity in m

.s-1

SPM - surface

SPM - bottom

water velocity

Page 55: FCA - CRT Lippenbroek Tom Maris & Patrick Meire OMES partners

Transport of suspended matter through the main gully

LIPPENBROEK - September 11, 2006 (spring tide, 6.21m at Lippenbroek)

0

20

40

60

80

100

120

140

160

180

200

06 07 08 09 10 11 12 13 14 15 16 17 18

Time GMT+1

Su

sp

en

de

d M

att

er

Co

nc

en

tra

tio

n m

g.l

-1

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Wa

ter V

elo

city

in m

.s-1

SPM - surface

SPM - bottom

water velocity

Page 56: FCA - CRT Lippenbroek Tom Maris & Patrick Meire OMES partners

Grain-size properties of suspended particles

Coarsest Sand Size

0

50

100

150

200

250

300

350

400

Scheldebottom

Scheldesurface

sluice in gully in gully out sluice out

Gra

in s

ize

in µ

m

Silt 63-16 µm

0

10

20

30

40

50

60

Scheldebottom

Scheldesurface

sluice in gully in gully out sluice out

We

igth

Pe

rce

nt

Sand > 63 µm

0

2

4

6

8

10

12

Scheldebottom

Scheldesurface

sluice in gully in gully out sluice out

We

igth

Pe

rce

nt

Clay < 2 µm

0

20

40

60

80

100

120

Scheldebottom

Scheldesurface

sluice in gully in gully out sluice out

We

igth

Pe

rce

nt

Page 57: FCA - CRT Lippenbroek Tom Maris & Patrick Meire OMES partners

In-situ particle (Floc) near surface and bottom

Jul., 2006

Page 58: FCA - CRT Lippenbroek Tom Maris & Patrick Meire OMES partners

In-situ particle (Floc) near surface and bottom

Oct., 2006

Page 59: FCA - CRT Lippenbroek Tom Maris & Patrick Meire OMES partners

S9 (16/5/2006)

6.5

7.0

7.5

8.0

8.5

9.0

9.5

5 7 9 11 13 15 17 19time

pH

S9 (16/5/2006)

0

50

100

150

200

5 7 9 11 13 15 17 19time

Ox

(% s

at)

S9 (3/7/2006)

6.5

7.0

7.5

8.0

8.5

9.0

9.5

9 11 13 15 17 19 21time

pH

S9 (3/7/2006)

0

50

100

150

200

9 11 13 15 17 19 21time

Ox

(% s

at)

Lippenbroek 16-05-06Stagnant water

0.0

1.0

2.0

3.0

4.0

5.0

6.0

6 8 10 12 14 16 18

time (hour)

SiO

2 (m

g/l

)

Lippenbroek 16-05-06Stagnant water

0.0

1.0

2.0

3.0

6 8 10 12 14 16 18

time (hour)

N (

mg

/l)

NO2-N

NO3-N

NH4-N

Water quality: tidal lake

Page 60: FCA - CRT Lippenbroek Tom Maris & Patrick Meire OMES partners

ULB contribution to the Lippenbroeck study

• Light climate in the main creeks and in the tidal pounds, in the water column and at the surface of the sediments.

• SPM – light attenuation relationship• Photosynthetic parameters of phytoplankton in the

inflow, tidal pounds and outflow.

Page 61: FCA - CRT Lippenbroek Tom Maris & Patrick Meire OMES partners

Oxygen & water depth - 25 october 2006

0

20

40

60

80

100

120

04:00 06:00 08:00 10:00 12:00 14:00 16:00 18:00

(% saturation)

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

(m)Oxygen Water depth

Page 62: FCA - CRT Lippenbroek Tom Maris & Patrick Meire OMES partners

Turbidity and light attenuation coefficient kd - 25 october 2006

0

5

10

15

20

25

30

35

40

5:00 7:00 9:00 11:00 13:00 15:00 17:00 19:00

(arbitrary units)

0.0

1.0

2.0

3.0

4.0

5.0

6.0

7.0

8.0

(m-1)

Page 63: FCA - CRT Lippenbroek Tom Maris & Patrick Meire OMES partners

Photosynthetically Active Radiation (PAR) - 25 october 2006

0

100

200

300

400

500

600

700

800

7:00 9:00 11:00 13:00 15:00 17:00 19:00

(µE m-2 s-1) Incident light Sediment surface

Page 64: FCA - CRT Lippenbroek Tom Maris & Patrick Meire OMES partners

FINAL DATA

Environmental variablesTaxaStratum

st1st2st3

S1

S10

Site

Sam

pli

ng

un

its

Season

spring

summer

autumn

winter

Ref3 (mudflat)

Ref2 (reed)

Ref1 (willow)

Quadrat

Q1

Q6

Page 65: FCA - CRT Lippenbroek Tom Maris & Patrick Meire OMES partners

Impact on

estuary

Impact of FCA – CRT on the estuary

Ring Dike Low FCA dike

CRT

Outlet

Inlet

polder area

Estuarine functions

Page 66: FCA - CRT Lippenbroek Tom Maris & Patrick Meire OMES partners

Impact of FCA – CRT on the estuary

averaged oxygen saturation (data 2000)

Model results: Oxygen Saturation

Page 67: FCA - CRT Lippenbroek Tom Maris & Patrick Meire OMES partners

Decreasing denitrification withIncreasing CRT surface

Denitrification Current water quality

0123456789

10

60 100 196

mean inundated surface (ha)

de

nit

rifi

ca

tio

n(m

mo

lN/m

3/d

)

pelagial

benthic

Impact of FCA – CRT on the estuary

Model results: denitrification

loss of pelagic denitrification

gain of benthic denitrification

loss of pelagic denitrification

gain of benthic denitrification

Denitrification future O2-saturation > 25%

0,0

0,5

1,0

1,5

2,0

2,5

60 100 196

mean inundated surface (ha)d

enit

rifi

cati

on

(m

mo

lN/m

3/d

)

pelagial

bentic

Page 68: FCA - CRT Lippenbroek Tom Maris & Patrick Meire OMES partners

Thanks...