23
Familial Essential Tremor Gene Identification Using Exome Sequencing Anjali Shah Rutgers University, Class of 2015 Summer Undergraduate Research Fellowship Ross Lab

Familial ET gene identification using exome sequencing

Embed Size (px)

Citation preview

Page 1: Familial ET gene identification using exome sequencing

Familial Essential Tremor Gene Identification Using Exome Sequencing

Anjali ShahRutgers University, Class of 2015

Summer Undergraduate Research Fellowship

Ross Lab

Page 2: Familial ET gene identification using exome sequencing

INTRODUCTION

• Most common movement disorder• Average age of onset is 35-45 years• Main symptom is action tremor• Criteria (Movements Disorder Society):

Symmetrical Kinetic Postural Bilateral

• Motor Symptoms: Problems with gait and balance Neuropathy Rigidity

• Age is a major risk factor for ET

Page 3: Familial ET gene identification using exome sequencing

ENVIRONMENTAL RISK FACTORS

• Approximately 50% of ET cases are non-familial suggesting environmental risk factors play a significant role (Louis et al. 2010)

• Environmental toxins (Louis et al. 2008):• β-carboline alkaloids • Lead• Pesticides

Page 4: Familial ET gene identification using exome sequencing

GENETIC FACTORS• Familial inheritance is high ( 50-60%)• Various patterns of inheritance in families:

Autosomal dominant with low penetrance Multifactorial inheritance

Interplay between more than one gene and environmental factors Non- Mendelian pattern of inheritance

MA S, DAVIS TL, BLAIR MA et al. Familial essential tremor with apparent autosomal dominant inheritance: Should we also consider other inheritance modes? Mov Disord 2006;21:1368–74

Page 5: Familial ET gene identification using exome sequencing

LINKAGE STUDIES IN FAMILIES • Linkage studies identified 3 susceptible loci for familial ET:

• ETM1 (chromosome 3q13) (Gulcher et al. 1997)• 20 million base pairs • ~100 genes• Candidate ET gene- DRD3 (dopamine receptor D3 gene)

• ETM2 (chromosome 2p25-p22) (Higgins et al. 1997)• 41 million base pairs• ~100 genes• Candidate ET gene- HS1BP3 (heat shock1-binding protein 3)

• ETM3 (chromosome 6p23) (Shatunov et al. 2006)• 1.8 million base pairs• 7 genes

Page 6: Familial ET gene identification using exome sequencing

POPULATION STUDY

GWAS Study (Stefansson et al. 2009):

• 305,624 SNPs were tested for association with ET in

452 cases and 14,394 controls

• Reached the genome-wide significance level with 1

marker in Leucine-rich repeat and Ig domain

containing Nogo receptor interacting protein-1 gene

(LINGO1)

• Some studies replicate the findings and some do not.

Page 7: Familial ET gene identification using exome sequencing

GENOME SEQUENCING

• First human genome was fully sequenced in 2003

• It took 13 years and $2.7 billion

NOW:• Life Technologies introduced a

sequencer that can decode a human genome in one day for $1000

Page 8: Familial ET gene identification using exome sequencing

NEXT GENERATION EXOME SEQUENCING

• Nonsense mutation p.Q290X in FUS/TLS (fused

in sarcoma/translocated in liposarcoma)

(Merner. N et al. 2013)

• Screening of 270 ET cases revealed 2 additional

rare variants- p. P431L and p. R216C

• Both variants were found to be highly

conserved and pathogenic by bioinformatics

software.

• 2 other studies

• Parmalee et al. 2012

• Labbé et al. 2013

Did not detect any FUS variants in ET

Page 9: Familial ET gene identification using exome sequencing

MY PROJECT

Exome Sequencing of 2 individuals from a family

1200 shared SNPs

Narrowed down to 3

Sequenced using 3730 Sequencer of variants in Controls and ET series

Non-synonymous variants shared

Segregated in affected members of the family, not seen in controls, rare

in public data

Objective- Find a rare variant that caused ET in the family.

Page 10: Familial ET gene identification using exome sequencing

7/27/2013

Diagnosis 1 = ET (or postural tremor) Diagnosis 2 = ET (or post. tremor)

FAMILY 324

Page 11: Familial ET gene identification using exome sequencing

7/27/2013

Diagnosis 1 = ET (or postural tremor) Diagnosis 2 = ET (or post. tremor)

FAMILY 324

Sent for exome sequencing

Page 12: Familial ET gene identification using exome sequencing

EXOME SEQUENCING

• Objective- To find novel, non-synonymous variants that segregated within the affected family members and that were not seen frequently in public databases

• 20,000 variants in each person

• 1200 shared variants

• 71 Non-synonymous variants shared between the 2

affected family members

• 18 variants were either Sequenced or Genotyped

Page 13: Familial ET gene identification using exome sequencing

Chr Gene Base change AA

ET ET ET ET ET ?dx ?dx U U U U U U UControls

(%)EVS MAF

(%)s_31 s_8 8 18 20 24 22 32 33 58 64 19 43 7

12 DDX55 C > A S450R                             012 P2RX7 G > A R264H                             0 0.04712 KNTC1 G > T V1012L                             0 0.03715 DENND4A T > C S1839G                             010 AGAP6 G > A R565Q                             0.2213 MIPEP A > G L197P                             015 AGPHD1 T > A Y145X                             0.039 KIAA2026 G > C T834R                             0

12 POLE C > T V1016M                             0 0.11612 NOC4L G > A R346H                             0 0.01220 C20orf96 C > G S117T                             0.0118 TCEB3C T > G E356A                             015 CEP152 A > G W867R                             09 FAM22G C > T P457S                             0.07

15 DMXL2 C > A A2372S                            4 FRG1 C > T P91S                            1 HRNR G > C A2706G                            7 PMS2L5 C > T R9X                                

Carrier

Non-carrier

VARIANTS IDENTIFIED

Page 14: Familial ET gene identification using exome sequencing

Chr Gene Base change AA

ET ET ET ET ET ?dx ?dx U U U U U U UControls

(%)EVS MAF

(%)s_31 s_8 8 18 20 24 22 32 33 58 64 19 43 7

12 DDX55 C > A S450R                             012 P2RX7 G > A R264H                             0 0.04712 KNTC1 G > T V1012L                             0 0.03715 DENND4A T > C S1839G                             010 AGAP6 G > A R565Q                             0.2213 MIPEP A > G L197P                             015 AGPHD1 T > A Y145X                             0.039 KIAA2026 G > C T834R                             0

12 POLE C > T V1016M                             0 0.11612 NOC4L G > A R346H                             0 0.01220 C20orf96 C > G S117T                             0.0118 TCEB3C T > G E356A                             015 CEP152 A > G W867R                             09 FAM22G C > T P457S                             0.07

15 DMXL2 C > A A2372S                            4 FRG1 C > T P91S                            1 HRNR G > C A2706G                            7 PMS2L5 C > T R9X                                

Carrier

Non-carrier

VARIANTS IDENTIFIED

Page 15: Familial ET gene identification using exome sequencing

7/27/2013

Diagnosis 1 = ET (or postural tremor) Diagnosis 2 = ET (or post. tremor)

Carrier

Non- carrier

DDX55 Ser450Arg (rs143479625)

Page 16: Familial ET gene identification using exome sequencing

DDX55 SUMMARY

• C>A base change Serine to Arginine AA change

• Sequenced in:

ET Cases(N=267)Controls(N=282)

No positives

Page 17: Familial ET gene identification using exome sequencing

7/27/2013

Diagnosis 1 = ET (or postural tremor) Diagnosis 2 = ET (or post. tremor)

Carrier

Non- carrier

KIAA2026 Thr834Arg rs191841054

Page 18: Familial ET gene identification using exome sequencing

KIAA2026 SUMMARY

• C>G base change Threonine to Arginine AA change

• Sequenced in:

ET Cases(N=267)Controls(N=282)

No positives

• C>T base change Threonine to Isoleucine

AA change at the same position

• Sequenced in Controls and ET Cases

• 1 positive ET Case (Familial Case)

Control- CC

Family Het- CG

ET Het- CT

Page 19: Familial ET gene identification using exome sequencing

7/27/2013

Diagnosis 1 = ET (or postural tremor) Diagnosis 2 = ET (or post. tremor)

Carrier

Non- carrier

POLE V1016M (rs147692158)

Page 20: Familial ET gene identification using exome sequencing

POLE SUMMARY

• G>A base change Valine to Methionine AA change

• Sequenced in:

ET Cases(N=267)Controls(N=282)

1 positive in ET series (Sporadic case)

Control- GG

ET Het- GA

Page 21: Familial ET gene identification using exome sequencing

CANDIDATE GENES

• DDX55• DEAD box protein 55 • Chromosome 12• Encodes for DEAD box protein (ASP-ALA-GLU-

ALA)• Alteration of RNA secondary structure• Ribosome and spliceosome assembly

• KIAA2026• Uncharacterized KIAA protein• Chromosome 9

• POLE• DNA polymerase epsilon catalytic subunit A enzyme• Chromosome 12

Page 22: Familial ET gene identification using exome sequencing

FUTURE STUDIES

• Genotype more ET samples for these variants

• Sequence the whole genomic region to see if there are other variants in the promoter or intronic regions that could be risk variants

• Functional study of the associated variants1. Role of the mutated variants in cells 2. Create an in-vivo model

Page 23: Familial ET gene identification using exome sequencing

ACKNOWLEDGEMENTS

Entire Ross Lab: Owen RossAlexandra OrtolazaSruti RayaproluRonnie WaltonCatherine LabbéKotaro Ogaki

SURF Coordinators:David AusejoNell Robinson

Benefactors:David A. and Linda B. Stein