82
Extended Finite Element Method with Global Enrichment K. Agathos 1 E. Chatzi 2 S. P. A. Bordas 3,4 D. Talaslidis 1 1 Institute of Structural Analysis and Dynamics of Structures Aristotle University Thessaloniki 2 Institute of Structural Engineering ETH Z¨ urich 3 Research Unit in Engineering Sciences Luxembourg University 4 Institute of Theoretical, Applied and Computational Mechanics Cardiff University 2015 K. Agathos et al. GE-XFEM 2015 1 / 82

Extended Finite Element Method with Global Enrichment · Extended Finite Element Method with Global Enrichment K. Agathos1 E. Chatzi2 S. P. A. Bordas3,4 D. Talaslidis1 1Institute

  • Upload
    others

  • View
    33

  • Download
    0

Embed Size (px)

Citation preview

Page 1: Extended Finite Element Method with Global Enrichment · Extended Finite Element Method with Global Enrichment K. Agathos1 E. Chatzi2 S. P. A. Bordas3,4 D. Talaslidis1 1Institute

Extended Finite Element Method with GlobalEnrichment

K. Agathos1 E. Chatzi2 S. P. A. Bordas3,4 D. Talaslidis1

1Institute of Structural Analysis and Dynamics of StructuresAristotle University Thessaloniki

2Institute of Structural EngineeringETH Zurich

3Research Unit in Engineering SciencesLuxembourg University

4Institute of Theoretical, Applied and Computational MechanicsCardiff University

2015

K. Agathos et al. GE-XFEM 2015 1 / 82

Page 2: Extended Finite Element Method with Global Enrichment · Extended Finite Element Method with Global Enrichment K. Agathos1 E. Chatzi2 S. P. A. Bordas3,4 D. Talaslidis1 1Institute

OutlineProblem statement

Governing equationsWeak Form

Global enrichment XFEMMotivationRelated worksCrack representationTip enrichmentJump enrichmentPoint-wise matchingIntegral matchingDisplacement approximationDefinition of the Front Elements

Numerical examples2D convergence study3D convergence study

ConclusionsReferencesK. Agathos et al. GE-XFEM 2015 2 / 82

Page 3: Extended Finite Element Method with Global Enrichment · Extended Finite Element Method with Global Enrichment K. Agathos1 E. Chatzi2 S. P. A. Bordas3,4 D. Talaslidis1 1Institute

Problem statement Governing equations

3D body geomery

ct

t

c0Γc

x

y

z

Γ = Γ0 ∪ Γu ∪ Γt ∪ Γc

Γc = Γtc ∪ Γ0

c

K. Agathos et al. GE-XFEM 2015 3 / 82

Page 4: Extended Finite Element Method with Global Enrichment · Extended Finite Element Method with Global Enrichment K. Agathos1 E. Chatzi2 S. P. A. Bordas3,4 D. Talaslidis1 1Institute

Problem statement Governing equations

Governing equationsEquilibrium equations and boundary conditions:

∇ · σ + b = 0 in Ω

u = u on Γu

σ · n = t on Γt

σ · n = 0 on Γ0c

σ · n = tc on Γtc

Kinematic equations:

ε = ∇su

Constitutive equations:

σ = D : ε

K. Agathos et al. GE-XFEM 2015 4 / 82

Page 5: Extended Finite Element Method with Global Enrichment · Extended Finite Element Method with Global Enrichment K. Agathos1 E. Chatzi2 S. P. A. Bordas3,4 D. Talaslidis1 1Institute

Problem statement Weak Form

Weak form of equilibrium equations

Find u ∈ U such that ∀v ∈ V0∫Ω

σ(u) : ε(v) dΩ =

∫Ω

b · v dΩ +

∫Γt

t · v dΓ +

∫Γt

c

tc · v dΓtc

where :

U =

u|u ∈

(H1 (Ω)

)3,u = u on Γu

and

V =

v |v ∈

(H1 (Ω)

)3, v = 0 on Γu

K. Agathos et al. GE-XFEM 2015 5 / 82

Page 6: Extended Finite Element Method with Global Enrichment · Extended Finite Element Method with Global Enrichment K. Agathos1 E. Chatzi2 S. P. A. Bordas3,4 D. Talaslidis1 1Institute

Global enrichment XFEM Motivation

Motivation

I XFEM for industrially relevant (3D) crack problems

I Requires robust methods for stress intensity evaluation.

I Requires low solution times and ease of use.I but standard XFEM leads to

I Ill-conditioning of the stiffness matrix for “large” enrichment domains.I Lack of smoothness and accuracy of the stress intensity factor field

along the crack front.I Blending issues close at the boundary of the enriched region.I Problem size for propagating cracks (“old” front-dofs must be kept for

stability of time integration schemes).

K. Agathos et al. GE-XFEM 2015 6 / 82

Page 7: Extended Finite Element Method with Global Enrichment · Extended Finite Element Method with Global Enrichment K. Agathos1 E. Chatzi2 S. P. A. Bordas3,4 D. Talaslidis1 1Institute

Global enrichment XFEM Motivation

Global enrichment XFEMThere exists different approaches to alleviate the above difficulties:

I Preconditioning (e.g. Moes; Menk and Bordas)

I Ghost penalty (Burman)

I Stable XFEM/GFEM (Banerjee, Duarte, Babuska, Paladim, Bordas) -behaviour for realistic 3D crack not clear.

I Corrected XFEM/GFEM (Fries, Loehnert)

I SIF-oriented (goal-oriented) error estimation methods for SIFs(Rodenas, Estrada, Ladeveze, Chamoin, Bordas)

I Restrict the variability of the enrichment within the enriched domain:doc-gathering, cut-off XFEM (Laborde, Renard, Chahine, Salun andthe French team ;-)

K. Agathos et al. GE-XFEM 2015 7 / 82

Page 8: Extended Finite Element Method with Global Enrichment · Extended Finite Element Method with Global Enrichment K. Agathos1 E. Chatzi2 S. P. A. Bordas3,4 D. Talaslidis1 1Institute

Global enrichment XFEM Motivation

Global enrichment XFEM

An XFEM variant is introduced which:

I Extends dof gathering to 3D through global enrichment.

I Employs point-wise matching of displacements.

I Employs integral matching of displacements.

I Enables the application of geometrical enrichment to 3D.

K. Agathos et al. GE-XFEM 2015 8 / 82

Page 9: Extended Finite Element Method with Global Enrichment · Extended Finite Element Method with Global Enrichment K. Agathos1 E. Chatzi2 S. P. A. Bordas3,4 D. Talaslidis1 1Institute

Global enrichment XFEM Related works

Related works

Similar concepts to the ones introduced herein can be found:

I In the work of Laborde et al.→ dof gathering→ point-wise matching

(Laborde, Pommier, Renard, & Salaun, 2005)

I In the work of Chahine et al.→ integral matching

(Chahine, Laborde, & Renard, 2011)

K. Agathos et al. GE-XFEM 2015 9 / 82

Page 10: Extended Finite Element Method with Global Enrichment · Extended Finite Element Method with Global Enrichment K. Agathos1 E. Chatzi2 S. P. A. Bordas3,4 D. Talaslidis1 1Institute

Global enrichment XFEM Related works

Related works

I In the work of Langlois et al.→ discretization along the crack front

(Langlois, Gravouil, Baieto, & Rethore, 2014)

I In the s-finite element method→ superimposed mesh

(Fish, 1992)

K. Agathos et al. GE-XFEM 2015 10 / 82

Page 11: Extended Finite Element Method with Global Enrichment · Extended Finite Element Method with Global Enrichment K. Agathos1 E. Chatzi2 S. P. A. Bordas3,4 D. Talaslidis1 1Institute

Global enrichment XFEM Crack representation

Crack representationLevel set functions:

I φ (x) is the signed distance from the crack surface.

I ψ (x) is a signed distance function such that:

→ ∇φ · ∇ψ = 0

→ φ (x) = 0 and ψ (x) = 0 defines the crack front

Polar coordinates:

r =√φ2 + ψ2, θ = arctan

ψ

)

K. Agathos et al. GE-XFEM 2015 11 / 82

Page 12: Extended Finite Element Method with Global Enrichment · Extended Finite Element Method with Global Enrichment K. Agathos1 E. Chatzi2 S. P. A. Bordas3,4 D. Talaslidis1 1Institute

Global enrichment XFEM Crack representation

Crack representation

crack surface crack extensioncrack front

) = 0x(ψ

)x(ψ

)x(φ

x) = 0x(φ

r

θ

K. Agathos et al. GE-XFEM 2015 12 / 82

Page 13: Extended Finite Element Method with Global Enrichment · Extended Finite Element Method with Global Enrichment K. Agathos1 E. Chatzi2 S. P. A. Bordas3,4 D. Talaslidis1 1Institute

Global enrichment XFEM Tip enrichment

Tip enrichment

Enriched part of the approximation for tip elements:

ute (x) =∑K

NgK (x)

∑j

Fj (x) cKj

NgK are the global shape functions to be defined.

Tip enrichment functions:

Fj (x) ≡ Fj (r , θ) =

[√r sin θ2 ,

√r cos θ2 ,

√r sin θ2 sin θ,

√r cos θ2 sin θ

]

K. Agathos et al. GE-XFEM 2015 13 / 82

Page 14: Extended Finite Element Method with Global Enrichment · Extended Finite Element Method with Global Enrichment K. Agathos1 E. Chatzi2 S. P. A. Bordas3,4 D. Talaslidis1 1Institute

Global enrichment XFEM Tip enrichment

Geometrical enrichment

I Enrichment radius re is defined.

I Nodal values ri of variable r are computed.

I The condition ri < re is tested.

I If true for all nodes of an element, the element is tip enriched.

K. Agathos et al. GE-XFEM 2015 14 / 82

Page 15: Extended Finite Element Method with Global Enrichment · Extended Finite Element Method with Global Enrichment K. Agathos1 E. Chatzi2 S. P. A. Bordas3,4 D. Talaslidis1 1Institute

Global enrichment XFEM Jump enrichment

Jump enrichmentJump enrichment function definition:

H(φ) =

1 for φ > 0

− 1 for φ < 0

Shifted jump enrichment functions are used throughout this work.

-1.0

-0.5

0.0

0.5

1.0

-1.0

-0.5

0.0

0.5

1.0

-1.0

-0.5

0.0

0.5

1.0

-1.0

-0.5

0.0

0.5

1.0

-1.0

-0.5

0.0

0.5

1.0

-1.0

-0.5

0.0

0.5

-1.0

-0.5

0.0

0.5

1.0

-1.0

-0.5

0.0

0.5

1.0

0.0

0.5

1.0

1.5

)1H−)φ(H(1N)φ(H1N)φ(H

K. Agathos et al. GE-XFEM 2015 15 / 82

Page 16: Extended Finite Element Method with Global Enrichment · Extended Finite Element Method with Global Enrichment K. Agathos1 E. Chatzi2 S. P. A. Bordas3,4 D. Talaslidis1 1Institute

Global enrichment XFEM Jump enrichment

Enrichment strategy

Motivation for an alternative enrichment strategy:

I Tip enrichment functions are derived from the first term of theWilliams expansion.

I Displacements consist of higher order terms as well.

I Those terms are represented by:

→ the FE part

→ spatial variation of the tip enrichment functions

K. Agathos et al. GE-XFEM 2015 16 / 82

Page 17: Extended Finite Element Method with Global Enrichment · Extended Finite Element Method with Global Enrichment K. Agathos1 E. Chatzi2 S. P. A. Bordas3,4 D. Talaslidis1 1Institute

Global enrichment XFEM Jump enrichment

Enrichment strategy

I In the proposed method:

→ no spatial variation is allowed

→ higher order terms can only be approximated by the FE part

I Higher order displacement jumps can not be represented in tipelements.

K. Agathos et al. GE-XFEM 2015 17 / 82

Page 18: Extended Finite Element Method with Global Enrichment · Extended Finite Element Method with Global Enrichment K. Agathos1 E. Chatzi2 S. P. A. Bordas3,4 D. Talaslidis1 1Institute

Global enrichment XFEM Jump enrichment

Enrichment strategyProposed enrichment strategy:

er

Tip enriched node

Tip and jump enriched node

Jump enriched node

Tip enriched elements

Jump enriched element

crack front

crack surface

Both tip and jump enrichment is used for tip elements that contain thecrack.

K. Agathos et al. GE-XFEM 2015 18 / 82

Page 19: Extended Finite Element Method with Global Enrichment · Extended Finite Element Method with Global Enrichment K. Agathos1 E. Chatzi2 S. P. A. Bordas3,4 D. Talaslidis1 1Institute

Global enrichment XFEM Point-wise matching

Tip and Regular ElementsTip enriched element Regular element

1u2u

1a

2a

1 2

1u

1 2

2u

Kjc)2x(jFj

∑KgNK

Kjc)1x(jFj

∑KgNK

Displacement approximations of regular and tip elements:

ur (x) =∑

INI (x) uI +

∑J

NJ (x) aJ

ut (x) =∑

INI (x) uI +

∑K

NgK (x)

∑j

Fj (x) cKj

K. Agathos et al. GE-XFEM 2015 19 / 82

Page 20: Extended Finite Element Method with Global Enrichment · Extended Finite Element Method with Global Enrichment K. Agathos1 E. Chatzi2 S. P. A. Bordas3,4 D. Talaslidis1 1Institute

Global enrichment XFEM Point-wise matching

Tip and Regular Elements

Tip enriched element Regular element

1u2u

1a

2a

1 2

1u

1 2

2u

Kjc)2x(jFj

∑KgNK

Kjc)1x(jFj

∑KgNK

Displacements are matched by imposing the condition:

ur (xI) = ut (xI)

K. Agathos et al. GE-XFEM 2015 20 / 82

Page 21: Extended Finite Element Method with Global Enrichment · Extended Finite Element Method with Global Enrichment K. Agathos1 E. Chatzi2 S. P. A. Bordas3,4 D. Talaslidis1 1Institute

Global enrichment XFEM Point-wise matching

Tip and Regular Elements

Tip enriched element Regular element

1u2u

1a

2a

1 2

1u

1 2

2u

Kjc)2x(jFj

∑KgNK

Kjc)1x(jFj

∑KgNK

Parameters aI are obtained:

aI =∑K

NgK (XI)

∑j

Fj(XI)cKj

K. Agathos et al. GE-XFEM 2015 21 / 82

Page 22: Extended Finite Element Method with Global Enrichment · Extended Finite Element Method with Global Enrichment K. Agathos1 E. Chatzi2 S. P. A. Bordas3,4 D. Talaslidis1 1Institute

Global enrichment XFEM Point-wise matching

Tip and Regular Elements

Tip enriched element Regular element

1u2u

1a

2a

1 2

1u

1 2

2u

Kjc)2x(jFj

∑KgNK

Kjc)1x(jFj

∑KgNK

Parameters aI can be expressed as:

aI =∑K

∑j

T t−rIKj cKj

K. Agathos et al. GE-XFEM 2015 22 / 82

Page 23: Extended Finite Element Method with Global Enrichment · Extended Finite Element Method with Global Enrichment K. Agathos1 E. Chatzi2 S. P. A. Bordas3,4 D. Talaslidis1 1Institute

Global enrichment XFEM Point-wise matching

Tip and Jump Elements

Displacement approximations of tip and jump elements:

uj (x) =∑

INI (x) uI +

∑J

NJ (x) aJ +∑

LNL (x) (H (x)− HL)bL +

+∑M

NM (x) (H (x)− HM)btM ,

ut (x) =∑

INI (x) uI +

∑J

NJ (x) (H (x)− HJ)bJ +

+∑K

NgK (x)

∑j

Fj (x) cKj

K. Agathos et al. GE-XFEM 2015 23 / 82

Page 24: Extended Finite Element Method with Global Enrichment · Extended Finite Element Method with Global Enrichment K. Agathos1 E. Chatzi2 S. P. A. Bordas3,4 D. Talaslidis1 1Institute

Global enrichment XFEM Point-wise matching

Tip and Jump ElementsJump enriched element

1tb)1H−)cx(H(

2tb)2H−)cx(H(

Tip enriched element

1

2

1

21u

2u

1u

2u

1a

2a1b)1H−)cx(H(

2b)2H−)cx(H(

1b)1H−)cx(H(

2b)2H−)cx(H(

Kjc)1x(jFj

∑KgNK

Kjc)2x(jFj

∑KgNK

Kjc)cx(jFj

∑KgNK

Kjc)cx(jFj

∑KgNK

Point-wise matching condition:

uj (xn) = ut (xn)

K. Agathos et al. GE-XFEM 2015 24 / 82

Page 25: Extended Finite Element Method with Global Enrichment · Extended Finite Element Method with Global Enrichment K. Agathos1 E. Chatzi2 S. P. A. Bordas3,4 D. Talaslidis1 1Institute

Global enrichment XFEM Point-wise matching

Tip and Jump Elements

The condition is imposed:I at nodes → parameters aI are obtainedI at additional points → parameters bt

I are obtained:

(H(Xl )− HI) btI =

∑K

NgK (Xl )

∑j

Fj(Xl )cKj −∑

INI(Xl )aI

Parameters btI can be reformulated as:

btI =

∑K

∑j

T t−jIKj cKj

K. Agathos et al. GE-XFEM 2015 25 / 82

Page 26: Extended Finite Element Method with Global Enrichment · Extended Finite Element Method with Global Enrichment K. Agathos1 E. Chatzi2 S. P. A. Bordas3,4 D. Talaslidis1 1Institute

Global enrichment XFEM Point-wise matching

Selection of additional points

jump node

jump element tip element

tip node

crack tip

1 2 3

4 5 6

a

b

pointspoint-wise matching

The condition is imposed at the points where the crack intersects elementedges or faces.

K. Agathos et al. GE-XFEM 2015 26 / 82

Page 27: Extended Finite Element Method with Global Enrichment · Extended Finite Element Method with Global Enrichment K. Agathos1 E. Chatzi2 S. P. A. Bordas3,4 D. Talaslidis1 1Institute

Global enrichment XFEM Point-wise matching

Selection of additional points3D case:

1

23

4

56

12

12

3

45

6

12

3

4

tip node

a

b

c

d

ef

a

b

c

d

a

b

c

d

a

b

e

f

crack sur

face

a) Point-wise matching at an edge b) Point-wise matching at a face

c) Point-wise matching at several faces d) Point-wise matching at several faces

pointsmatchingpoint-wise

K. Agathos et al. GE-XFEM 2015 27 / 82

Page 28: Extended Finite Element Method with Global Enrichment · Extended Finite Element Method with Global Enrichment K. Agathos1 E. Chatzi2 S. P. A. Bordas3,4 D. Talaslidis1 1Institute

Global enrichment XFEM Point-wise matching

Selection of additional points

Special case:

jump node

jump element

tip element

tip node

crack tip

1 2

3 4 5

6 7 8

a

b

pointspoint-wise matching

I Edge 3-4 does not belong to atip element.

I Evaluating the tip enrichmentfunctions at 3-4 leads to errors.

I The values obtained from edge4-7 will be used for 3-4.

K. Agathos et al. GE-XFEM 2015 28 / 82

Page 29: Extended Finite Element Method with Global Enrichment · Extended Finite Element Method with Global Enrichment K. Agathos1 E. Chatzi2 S. P. A. Bordas3,4 D. Talaslidis1 1Institute

Global enrichment XFEM Point-wise matching

Selection of additional points

In order to implement the above procedure:

I Point-wise matching elements are looped upon prior to the assembly.

I Parameters bti are computed and stored.

Parameters bti can be computed for all nodes.

The whole procedure is computationally inexpensive.

K. Agathos et al. GE-XFEM 2015 29 / 82

Page 30: Extended Finite Element Method with Global Enrichment · Extended Finite Element Method with Global Enrichment K. Agathos1 E. Chatzi2 S. P. A. Bordas3,4 D. Talaslidis1 1Institute

Global enrichment XFEM Integral matching

Integral matching

Motivation:

I For P1 elements and topological enrichment a loss of accuracy occurs.

I The effect is more pronounced for mode I loading.

I This is attributed to the displacement jump between regular and tipelements.

I A possible solution is the addition of one layer of tip elements.

K. Agathos et al. GE-XFEM 2015 30 / 82

Page 31: Extended Finite Element Method with Global Enrichment · Extended Finite Element Method with Global Enrichment K. Agathos1 E. Chatzi2 S. P. A. Bordas3,4 D. Talaslidis1 1Institute

Global enrichment XFEM Integral matching

Hierarchical functions

The addition of hierarchical blending functions is proposed.

Those functions:

I Eliminate the displacement jump in a weak sense.

I For linear quadrilateral elements assume the form:

Nh (ξ1, ξ2) =(1− |ξ1|) (1 + ξ2)

2

K. Agathos et al. GE-XFEM 2015 31 / 82

Page 32: Extended Finite Element Method with Global Enrichment · Extended Finite Element Method with Global Enrichment K. Agathos1 E. Chatzi2 S. P. A. Bordas3,4 D. Talaslidis1 1Institute

Global enrichment XFEM Integral matching

Integral matchingDisplacements along the edges of regular and jump elements:

ur (ξ1, ξ2) =∑

INI (ξ1, ξ2) uI +

∑J

NJ (ξ1, ξ2) aJ + Nh (ξ1, ξ2) ah

ut (ξ1, ξ2) =∑

INI (ξ1, ξ2) uI +

∑K

NgK (x)

∑j

Fj (x) cKj

Integral matching condition:∫S

(ur − ut) dS = 0

Coefficients ah are obtained as:

ahi =

∑K

∑j

T hiKjcKj

K. Agathos et al. GE-XFEM 2015 32 / 82

Page 33: Extended Finite Element Method with Global Enrichment · Extended Finite Element Method with Global Enrichment K. Agathos1 E. Chatzi2 S. P. A. Bordas3,4 D. Talaslidis1 1Institute

Global enrichment XFEM Integral matching

Integral matching-Mode I

Mode I, hierarchical functions are used to eliminate displacement jumps ina weak sense:

displacement jump

tip element

regular element

hNKjc)x(jFj

∑)x(K

gNK

1

2

3

4

1 2

K. Agathos et al. GE-XFEM 2015 33 / 82

Page 34: Extended Finite Element Method with Global Enrichment · Extended Finite Element Method with Global Enrichment K. Agathos1 E. Chatzi2 S. P. A. Bordas3,4 D. Talaslidis1 1Institute

Global enrichment XFEM Integral matching

Integral matching-Mode II

Mode II, displacement jumps almost vanish in a weak sense:

regular element

tip element

displacement jump

Kjc)x(jFj

∑)x(K

gNK

1 2

3

4

1 2

K. Agathos et al. GE-XFEM 2015 34 / 82

Page 35: Extended Finite Element Method with Global Enrichment · Extended Finite Element Method with Global Enrichment K. Agathos1 E. Chatzi2 S. P. A. Bordas3,4 D. Talaslidis1 1Institute

Global enrichment XFEM Integral matching

Integral matchingImposition of integral matching condition:

tip node

1 2 3

4

5

6

789

10

11

matchingintegral

tip element

crack surface

K. Agathos et al. GE-XFEM 2015 35 / 82

Page 36: Extended Finite Element Method with Global Enrichment · Extended Finite Element Method with Global Enrichment K. Agathos1 E. Chatzi2 S. P. A. Bordas3,4 D. Talaslidis1 1Institute

Global enrichment XFEM Displacement approximation

Displacement approximationDisplacement approximation for the whole domain:

u (x) =∑I∈N

NI (x) uI +∑

J∈N j

NJ (x) (H (x)− HJ)bJ +

+∑

K∈N sNg

K (x)∑

jFj (x) cKj + upm (x) + uim (x)

upm (x) =∑

I∈N t1

NI (x)∑K

∑j

T t−rIKj cKj +

+∑

J∈N t2

NJ (x) (H (x)− HJ)∑K

∑j

T t−jIKj cKj

uim (x) =∑

I∈N h

NhI (x)

∑K

∑j

T hIKjcKj

Nodal sets:

N set of all nodes in the FE mesh.

N j set of jump enriched nodes.

N s set of superimposed nodes which will be described next.

N t1 set of transition nodes between tip and regular elements.

N t2 set of transition nodes between tip and jump elements.

N h set of edges where the blending functions are added.

K. Agathos et al. GE-XFEM 2015 36 / 82

Page 37: Extended Finite Element Method with Global Enrichment · Extended Finite Element Method with Global Enrichment K. Agathos1 E. Chatzi2 S. P. A. Bordas3,4 D. Talaslidis1 1Institute

Global enrichment XFEM Definition of the Front Elements

Front elements

A superimposed mesh is used to provide a basis for weighting tipenrichment functions.

Desired properties:

I Satisfaction of the partition of unity property.

I Spatial variation only along the direction of the crack front.

K. Agathos et al. GE-XFEM 2015 37 / 82

Page 38: Extended Finite Element Method with Global Enrichment · Extended Finite Element Method with Global Enrichment K. Agathos1 E. Chatzi2 S. P. A. Bordas3,4 D. Talaslidis1 1Institute

Global enrichment XFEM Definition of the Front Elements

Front elements

Special elements are employed which are both:

I 1D → shape functions vary only along one dimension

I 3D → they are defined in a three-dimensional domain

K. Agathos et al. GE-XFEM 2015 38 / 82

Page 39: Extended Finite Element Method with Global Enrichment · Extended Finite Element Method with Global Enrichment K. Agathos1 E. Chatzi2 S. P. A. Bordas3,4 D. Talaslidis1 1Institute

Global enrichment XFEM Definition of the Front Elements

Front elements

tip enriched elements crack front

FE mesh

front element boundaries front element node

front element

I A set of nodes along the crackfront is defined.

I Such points are also required forSIF evaluation.

I A good starting point for frontelement thickness is h.

K. Agathos et al. GE-XFEM 2015 39 / 82

Page 40: Extended Finite Element Method with Global Enrichment · Extended Finite Element Method with Global Enrichment K. Agathos1 E. Chatzi2 S. P. A. Bordas3,4 D. Talaslidis1 1Institute

Global enrichment XFEM Definition of the Front Elements

Front elementsVolume corresponding to two consecutive front elements.

crack front

crack surface

boundaryfront element

Different element colors correspond to different front elements.

K. Agathos et al. GE-XFEM 2015 40 / 82

Page 41: Extended Finite Element Method with Global Enrichment · Extended Finite Element Method with Global Enrichment K. Agathos1 E. Chatzi2 S. P. A. Bordas3,4 D. Talaslidis1 1Institute

Global enrichment XFEM Definition of the Front Elements

Open crack fronts

Front element definition:

I Unit vectors ei are defined parallel to the element directions:ei = xi+1−xi

|xi+1−xi| .

I For every nodal point i a unit vector ni is defined: ni =ei+ei−1|ei+ei−1| .

I A plane is defined that passes through the node: ni · (x0 − xi) = 0.

I The element volume is defined by the planes corresponding to itsnodes.

K. Agathos et al. GE-XFEM 2015 41 / 82

Page 42: Extended Finite Element Method with Global Enrichment · Extended Finite Element Method with Global Enrichment K. Agathos1 E. Chatzi2 S. P. A. Bordas3,4 D. Talaslidis1 1Institute

Global enrichment XFEM Definition of the Front Elements

Open crack fronts

Vectors associated with front elements.

1−in

1−i1−ie in

ie+1ini

+ 1i

front element

K. Agathos et al. GE-XFEM 2015 42 / 82

Page 43: Extended Finite Element Method with Global Enrichment · Extended Finite Element Method with Global Enrichment K. Agathos1 E. Chatzi2 S. P. A. Bordas3,4 D. Talaslidis1 1Institute

Global enrichment XFEM Definition of the Front Elements

Closed crack fronts

a) Application of the method used for open crack fronts to closed crackfronts → front elements overlap.

b) Method used for closed crack fronts → overlaps are avoided.

a) b)

cx

K. Agathos et al. GE-XFEM 2015 43 / 82

Page 44: Extended Finite Element Method with Global Enrichment · Extended Finite Element Method with Global Enrichment K. Agathos1 E. Chatzi2 S. P. A. Bordas3,4 D. Talaslidis1 1Institute

Global enrichment XFEM Definition of the Front Elements

Closed crack fronts

Element definition using an additional point (xc):

I Vectors ei are defined for every element.

I Point xc is defined as: xc =

n∑i=1

xc

n .

I Vectors nci joining points i to the internal point xc are defined:nci = xc − xi.

K. Agathos et al. GE-XFEM 2015 44 / 82

Page 45: Extended Finite Element Method with Global Enrichment · Extended Finite Element Method with Global Enrichment K. Agathos1 E. Chatzi2 S. P. A. Bordas3,4 D. Talaslidis1 1Institute

Global enrichment XFEM Definition of the Front Elements

Closed crack fronts

I Vectors nni normal to vectors ei and nci are defined: nni = ei × nci.

I Vectors ni are defined: ni = nti×nci|nti×nci| .

I Planes normal to the vectors ni are defined: ni · (x0 − xi) = 0.

I Element volumes are defined as in the open crack front case.

K. Agathos et al. GE-XFEM 2015 45 / 82

Page 46: Extended Finite Element Method with Global Enrichment · Extended Finite Element Method with Global Enrichment K. Agathos1 E. Chatzi2 S. P. A. Bordas3,4 D. Talaslidis1 1Institute

Global enrichment XFEM Definition of the Front Elements

Closed crack fronts

Vectors used in the definition of front elements.

1−ii

in

+1in

+1cin

cin

ie

cx

K. Agathos et al. GE-XFEM 2015 46 / 82

Page 47: Extended Finite Element Method with Global Enrichment · Extended Finite Element Method with Global Enrichment K. Agathos1 E. Chatzi2 S. P. A. Bordas3,4 D. Talaslidis1 1Institute

Global enrichment XFEM Definition of the Front Elements

Closed crack frontsDiscretization of a non-planar closed crack front using an additional pointxc.

cx

front element

plane projection

K. Agathos et al. GE-XFEM 2015 47 / 82

Page 48: Extended Finite Element Method with Global Enrichment · Extended Finite Element Method with Global Enrichment K. Agathos1 E. Chatzi2 S. P. A. Bordas3,4 D. Talaslidis1 1Institute

Global enrichment XFEM Definition of the Front Elements

Front element parameter

A function similar to the level sets is defined which varies along the crackfront.

= 1η= 2η

= 3η

= 4η

= 5η = 6η= 7η

front node

front element

K. Agathos et al. GE-XFEM 2015 48 / 82

Page 49: Extended Finite Element Method with Global Enrichment · Extended Finite Element Method with Global Enrichment K. Agathos1 E. Chatzi2 S. P. A. Bordas3,4 D. Talaslidis1 1Institute

Global enrichment XFEM Definition of the Front Elements

Front element parameter

Evaluation of the parameter for a point x0:

Plane equations corresponding to the nodes of each element are evaluated:

fi (x0) = ni · (x0 − xi)

fi+1(x0) = ni+1 · (x0 − xi+1)

K. Agathos et al. GE-XFEM 2015 49 / 82

Page 50: Extended Finite Element Method with Global Enrichment · Extended Finite Element Method with Global Enrichment K. Agathos1 E. Chatzi2 S. P. A. Bordas3,4 D. Talaslidis1 1Institute

Global enrichment XFEM Definition of the Front Elements

Front element parameter

Once fi and fi+1 are obtained:

I If fi < 0 or fi+1 > 0 the point lies outside the element

I If fi = 0 or fi+1 = 0 the point lies on the plane corresponding to nodei or i + 1: η = i or η = i + 1

I If fi > 0 and fi+1 < 0 the point lies inside the element

K. Agathos et al. GE-XFEM 2015 50 / 82

Page 51: Extended Finite Element Method with Global Enrichment · Extended Finite Element Method with Global Enrichment K. Agathos1 E. Chatzi2 S. P. A. Bordas3,4 D. Talaslidis1 1Institute

Global enrichment XFEM Definition of the Front Elements

Front element parameterFor points lying inside front elements:

I Integer Part: ηi = iI Fractional part:

1x

2x0x ie

in

+1in

1t2t

ie

x = x0 + tei t ∈ R

t1 =ni · (x0 − xi)

ni · ei

t2 =ni+1 · (x0 − xi+1)

ni+1 · ei

x1 = x0 + t1ei

x2 = x0 + t2ei

K. Agathos et al. GE-XFEM 2015 51 / 82

Page 52: Extended Finite Element Method with Global Enrichment · Extended Finite Element Method with Global Enrichment K. Agathos1 E. Chatzi2 S. P. A. Bordas3,4 D. Talaslidis1 1Institute

Global enrichment XFEM Definition of the Front Elements

Front element parameterI Fractional part:

1x

2x0x ie

in

+1in

1t2t

ie

x1 = x0 + t1ei

x2 = x0 + t2ei

x10 = x0 − x1

x12 = x2 − x1

ηf =|x10||x12|

Finally:

η = ηi + ηf

K. Agathos et al. GE-XFEM 2015 52 / 82

Page 53: Extended Finite Element Method with Global Enrichment · Extended Finite Element Method with Global Enrichment K. Agathos1 E. Chatzi2 S. P. A. Bordas3,4 D. Talaslidis1 1Institute

Global enrichment XFEM Definition of the Front Elements

Front element shape functions

Linear 1D shape functions are used:

Ng (ξ) =

[1− ξ2

1 + ξ

2

]

I ξ is the local coordinate of the superimposed element.

I Those functions are used to weight tip enrichment functions.

K. Agathos et al. GE-XFEM 2015 53 / 82

Page 54: Extended Finite Element Method with Global Enrichment · Extended Finite Element Method with Global Enrichment K. Agathos1 E. Chatzi2 S. P. A. Bordas3,4 D. Talaslidis1 1Institute

Global enrichment XFEM Definition of the Front Elements

Front element shape functions

Definition of the front element parameter used for shape functionevaluation.

ξ1x

2x

in

+1inie

mx 0x 1−=ξ5.0−=ξ

= 0ξ5.= 0ξ

= 1ξboundaryfront element

nodefront element

K. Agathos et al. GE-XFEM 2015 54 / 82

Page 55: Extended Finite Element Method with Global Enrichment · Extended Finite Element Method with Global Enrichment K. Agathos1 E. Chatzi2 S. P. A. Bordas3,4 D. Talaslidis1 1Institute

Global enrichment XFEM Definition of the Front Elements

Front element shape functions

The evaluation of ξ is almost identical to the evaluation of ηf :

ξ =2 x12 · xm0

|x12|2

where

x12 = x2 − x1

xm0 = x0 − xm

xm =x1 + x2

2

K. Agathos et al. GE-XFEM 2015 55 / 82

Page 56: Extended Finite Element Method with Global Enrichment · Extended Finite Element Method with Global Enrichment K. Agathos1 E. Chatzi2 S. P. A. Bordas3,4 D. Talaslidis1 1Institute

Numerical examples 2D convergence study

2D convergence study

I An L× L square domain with an edge crack of length a is considered.

I Boundary conditions are provided by the Griffith problem.

I Both topological and geometrical enrichment are used.

I The alternative jump enrichment strategy is not used.

K. Agathos et al. GE-XFEM 2015 56 / 82

Page 57: Extended Finite Element Method with Global Enrichment · Extended Finite Element Method with Global Enrichment K. Agathos1 E. Chatzi2 S. P. A. Bordas3,4 D. Talaslidis1 1Institute

Numerical examples 2D convergence study

2D convergence studyuΓ

L

L

a

node where boundary conditions are applied

I Dimensions of the problem: L = 1 unit, a = 0.5 units.I Material parameters: E = 100 units and ν = 0.0.I Mesh consists of n × n linear quadrilateral elements,

n = 11, 21, 41, 61, 81, 101 .K. Agathos et al. GE-XFEM 2015 57 / 82

Page 58: Extended Finite Element Method with Global Enrichment · Extended Finite Element Method with Global Enrichment K. Agathos1 E. Chatzi2 S. P. A. Bordas3,4 D. Talaslidis1 1Institute

Numerical examples 2D convergence study

2D convergence study

Acronyms used for the 2D convergence study

Acronym DescriptionFEM The FE part of the approximation

XFEM Standard XFEM (with shifted enrichment functions)XFEMpm1 XFEM using dof gathering and point-wise matchingXFEMpm2 XFEMpm1 with the additional p.m. condition of subsectionGE-XFEM XFEMpm2 with integral matching (Global Enrichment XFEM)

K. Agathos et al. GE-XFEM 2015 58 / 82

Page 59: Extended Finite Element Method with Global Enrichment · Extended Finite Element Method with Global Enrichment K. Agathos1 E. Chatzi2 S. P. A. Bordas3,4 D. Talaslidis1 1Institute

Numerical examples 2D convergence study

L2 and energy norms

11 21 41 61 8110110

−4

10−2

n

error

11 21 41 61 8110110

−4

10−2

n

error

XFEM, E

XFEM, L2

XFEMpm1, E

XFEMpm1, L2

XFEMpm2, E

XFEMpm2, L2

GE−XFEM, E

GE−XFEM, L2

Mode I, re=0.00 Mode II, r

e=0.00

11 21 41 61 8110110

−5

10−3

10−1

n

error

11 21 41 61 81101

10−4

10−2

n

error

XFEM, E

XFEM, L2

XFEMpm1, E

XFEMpm1, L2

XFEMpm2, E

XFEMpm2, L2

GE−XFEM, E

GE−XFEM, L2

Mode I, re=0.12 Mode II, r

e=0.12

K. Agathos et al. GE-XFEM 2015 59 / 82

Page 60: Extended Finite Element Method with Global Enrichment · Extended Finite Element Method with Global Enrichment K. Agathos1 E. Chatzi2 S. P. A. Bordas3,4 D. Talaslidis1 1Institute

Numerical examples 2D convergence study

L2 and energy norms

Convergence rates

re = 0.00 re = 0.12Mode I Mode II Mode I Mode II

XFEM E 0.491 0.493 1.030 0.982XFEM L2 0.908 0.928 1.980 1.955

XFEMpm1 E 0.483 0.489 1.243 1.211XFEMpm1 L2 1.044 0.984 2.355 1.773XFEMpm2 E 0.483 0.479 1.245 1.179XFEMpm2 L2 1.022 1.414 2.311 2.151GE-XFEM E 0.477 0.476 1.156 1.140GE-XFEM L2 1.326 1.446 2.086 2.100

K. Agathos et al. GE-XFEM 2015 60 / 82

Page 61: Extended Finite Element Method with Global Enrichment · Extended Finite Element Method with Global Enrichment K. Agathos1 E. Chatzi2 S. P. A. Bordas3,4 D. Talaslidis1 1Institute

Numerical examples 2D convergence study

Stress intensity factors

11 21 41 61 8110

−4

10−3

10−2

10−1

100

n

KI error (%

)

Mode I

11 21 41 61 8110110

−3

10−2

10−1

100

nKII error (%

)

Mode II

XFEM, re=0.00

XFEM, re=0.12

GE−XFEM, re=0.00

GE−XFEM, re=0.12

101

Convergence rates for the SIFs

r = 0.00 r = 0.12Mode I Mode II Mode I Mode II

XFEM 1.071 1.005 2.195 2.021GE-XFEM 0.759 1.246 2.545 2.029

K. Agathos et al. GE-XFEM 2015 61 / 82

Page 62: Extended Finite Element Method with Global Enrichment · Extended Finite Element Method with Global Enrichment K. Agathos1 E. Chatzi2 S. P. A. Bordas3,4 D. Talaslidis1 1Institute

Numerical examples 2D convergence study

Conditioning

Condition numbers of the system matrices produced by XFEM andGE-XFEM.

11 21 41 61 81 101

104

108

1012

n

condit

ion n

um

ber

FEM (slope=0.889)

XFEM, re=0.00 (slope=1.019)

XFEM, re=0.12 (slope=8.952)

GE−XFEM, re=0.00 (slope=1.000)

GE−XFEM, re=0.12 (slope=2.004)

Condition numbers of the FE part are also plotted.

K. Agathos et al. GE-XFEM 2015 62 / 82

Page 63: Extended Finite Element Method with Global Enrichment · Extended Finite Element Method with Global Enrichment K. Agathos1 E. Chatzi2 S. P. A. Bordas3,4 D. Talaslidis1 1Institute

Numerical examples 3D convergence study

3D convergence study

A benchmark problem is proposed which:

I Includes the full solution for the whole crack.

I Involves variation of the SIFs along the crack front.

I Involves a curved crack front.

K. Agathos et al. GE-XFEM 2015 63 / 82

Page 64: Extended Finite Element Method with Global Enrichment · Extended Finite Element Method with Global Enrichment K. Agathos1 E. Chatzi2 S. P. A. Bordas3,4 D. Talaslidis1 1Institute

Numerical examples 3D convergence study

3D convergence study

I A penny crack in an infinite solid is considered.

I Evaluation of L2 and energy norms is possible.

I An Lx × Ly × Lz parallelepiped domain with a penny crack of radius ais used.

I Analytical displacements are imposed as boundary conditions.

I A uniform normal and shear load is applied at the crack faces.

K. Agathos et al. GE-XFEM 2015 64 / 82

Page 65: Extended Finite Element Method with Global Enrichment · Extended Finite Element Method with Global Enrichment K. Agathos1 E. Chatzi2 S. P. A. Bordas3,4 D. Talaslidis1 1Institute

Numerical examples 3D convergence study

3D convergence study

xL

yL

zLa

ctΓ

xy

z

node where boundary conditions are applied

I Uniform normal and shear loads of magnitude 1 are applied at Γtc .

I Problem dimensions: Lx = Ly = 2Lz = 0.4 units and a = 0.1 unit.I Material parameters: E = 100 units and ν = 0.3.I Mesh consists of nx × ny × nz hexahedral elements,

nx = ny = 2nz = n and n ∈ 21, 41, 61, 81, 101.K. Agathos et al. GE-XFEM 2015 65 / 82

Page 66: Extended Finite Element Method with Global Enrichment · Extended Finite Element Method with Global Enrichment K. Agathos1 E. Chatzi2 S. P. A. Bordas3,4 D. Talaslidis1 1Institute

Numerical examples 3D convergence study

3D convergence study

Acronyms used for the 3D convergence study

Acronym DescriptionXFEM Standard XFEM (with shifted enrichment functions)

GE-XFEM The proposed method (Global Enrichment XFEM)GE-XFEM1 The proposed method without the new enrichment strategy

K. Agathos et al. GE-XFEM 2015 66 / 82

Page 67: Extended Finite Element Method with Global Enrichment · Extended Finite Element Method with Global Enrichment K. Agathos1 E. Chatzi2 S. P. A. Bordas3,4 D. Talaslidis1 1Institute

Numerical examples 3D convergence study

L2 and energy normsInfluence of the crack front mesh density in the energy (E ) and L2 norms.

4 8 16 32 64 12810

−3

10−2

10−1

nf

error

GE−XFEM, E, re=0.00

GE−XFEM, L2, re=0.00

GE−XFEM, E, re=0.02

GE−XFEM, L2, re=0.02

nf is the number of elements along the front.

K. Agathos et al. GE-XFEM 2015 67 / 82

Page 68: Extended Finite Element Method with Global Enrichment · Extended Finite Element Method with Global Enrichment K. Agathos1 E. Chatzi2 S. P. A. Bordas3,4 D. Talaslidis1 1Institute

Numerical examples 3D convergence study

L2 and energy norms

Influence of the enrichment radius (re) in the energy (E ) and L2 norms forthe 31× 61× 61 mesh.

0 1 2 3 410

−3

10−2

10−1

re/h

error

GE−XFEM, E

GE−XFEM, L2

GE−XFEM1, E

GE−XFEM1, L2

The proposed enrichment strategy improves the behavior of the solution.

K. Agathos et al. GE-XFEM 2015 68 / 82

Page 69: Extended Finite Element Method with Global Enrichment · Extended Finite Element Method with Global Enrichment K. Agathos1 E. Chatzi2 S. P. A. Bordas3,4 D. Talaslidis1 1Institute

Numerical examples 3D convergence study

L2 and energy norms

21 41 61 81 10110

−3

10−2

10−1

n

error

21 41 61 81 10110

−3

10−2

10−1

n

error

XFEM, E

XFEM, L2

GE−XFEM, E

GE−XFEM, L2

re=0.00 r

e=2.2h

re=0.02

21 41 61 81 10110

−3

10−2

10−1

n

err

or

21 41 61 81 10110

−3

10−2

10−1

n

err

or

XFEM, E

XFEM, L2

GE−XFEM1, E

GE−XFEM1, L2

GE−XFEM, E

GE−XFEM, L2

re=0.04

K. Agathos et al. GE-XFEM 2015 69 / 82

Page 70: Extended Finite Element Method with Global Enrichment · Extended Finite Element Method with Global Enrichment K. Agathos1 E. Chatzi2 S. P. A. Bordas3,4 D. Talaslidis1 1Institute

Numerical examples 3D convergence study

L2 and energy norms

Convergence rates

re = 0.00 re = 2.2h re = 0.02 re = 0.04XFEM E 0.492 0.686 0.911 1.015XFEM L2 1.009 1.405 1.824 1.976

GE-XFEM1 E - - 1.016 0.706GE-XFEM1 L2 - - 1.481 0.289GE-XFEM E 0.558 0.850 1.057 0.988GE-XFEM L2 1.535 1.594 1.753 1.448

K. Agathos et al. GE-XFEM 2015 70 / 82

Page 71: Extended Finite Element Method with Global Enrichment · Extended Finite Element Method with Global Enrichment K. Agathos1 E. Chatzi2 S. P. A. Bordas3,4 D. Talaslidis1 1Institute

Numerical examples 3D convergence study

Stress intensity factorsMode I, II and III stress intensity factors for the 21× 41× 41 mesh.

0 10 20 30 40 50 60 70 80 900

2%

4%

θ

KI

0 10 20 30 40 50 60 70 80 900

3%

6%

θ

KII

0 10 20 30 40 50 60 70 80 900

5%

10%

θ

KIII

0 10 20 30 40 50 60 70 80 900

1.5%

3%

θ

KI

0 10 20 30 40 50 60 70 80 900

2%

4%

θ

KII

0 10 20 30 40 50 60 70 80 900

4%

8%

θ

KIII

XFEM

GE−XFEM

re=0.00 r

e=0.02

K. Agathos et al. GE-XFEM 2015 71 / 82

Page 72: Extended Finite Element Method with Global Enrichment · Extended Finite Element Method with Global Enrichment K. Agathos1 E. Chatzi2 S. P. A. Bordas3,4 D. Talaslidis1 1Institute

Numerical examples 3D convergence study

Stress intensity factorsMode I, II and III stress intensity factors for the 41× 81× 81 mesh.

0 10 20 30 40 50 60 70 80 900

0.75%

1.5%

θ

KI

0 10 20 30 40 50 60 70 80 900

2%

4%

θ

KII

0 10 20 30 40 50 60 70 80 900

8%

16%

θ

KIII

0 10 20 30 40 50 60 70 80 900

0.75%

1.5%

θ

KI

0 10 20 30 40 50 60 70 80 900

0.75%

1.5%

θ

KII

0 10 20 30 40 50 60 70 80 900

3%

6%

θ

KIII

XFEM

GE−XFEM

re=0.00 r

e=0.02

K. Agathos et al. GE-XFEM 2015 72 / 82

Page 73: Extended Finite Element Method with Global Enrichment · Extended Finite Element Method with Global Enrichment K. Agathos1 E. Chatzi2 S. P. A. Bordas3,4 D. Talaslidis1 1Institute

Numerical examples 3D convergence study

Conditioning

I Conditioning of the proposed method is compared to XFEM.

I The number of iterations required by the solver is used as an estimate.

I A comparison of the time needed to solve the resulting systems ofequations is also provided.

I A CG solver with a diagonal preconditioner is used.

K. Agathos et al. GE-XFEM 2015 73 / 82

Page 74: Extended Finite Element Method with Global Enrichment · Extended Finite Element Method with Global Enrichment K. Agathos1 E. Chatzi2 S. P. A. Bordas3,4 D. Talaslidis1 1Institute

Numerical examples 3D convergence study

Conditioning

Influence of the crack front mesh density in the number of iterations forthe 31× 61× 61 mesh.

4 8 16 32 64 128200

250

300

350

400

450

nf

iter

atio

ns

GE−XFEM, re=0.00 (slope=0.021)

GE−XFEM, re=0.02 (slope=0.119)

nf is the number of elements along the front.

K. Agathos et al. GE-XFEM 2015 74 / 82

Page 75: Extended Finite Element Method with Global Enrichment · Extended Finite Element Method with Global Enrichment K. Agathos1 E. Chatzi2 S. P. A. Bordas3,4 D. Talaslidis1 1Institute

Numerical examples 3D convergence study

Conditioning

Number of iterations required for three different enrichment radii.

21 41 61 81 10110

2

103

104

n

iter

atio

ns

XFEM, re=0.00 (slope=0.045)

XFEM, re=0.02 (slope=2.206)

XFEM, re=0.04 (slope=2.552)

GE−XFEM, re=0.00 (slope=0.547)

GE−XFEM, re=0.02 (slope=0.894)

GE−XFEM, re=0.04, (slope=1.248)

K. Agathos et al. GE-XFEM 2015 75 / 82

Page 76: Extended Finite Element Method with Global Enrichment · Extended Finite Element Method with Global Enrichment K. Agathos1 E. Chatzi2 S. P. A. Bordas3,4 D. Talaslidis1 1Institute

Numerical examples 3D convergence study

Conditioning

Performance of the PCG solver.

0 400 80010

−50

10−40

10−30

10−20

10−10

100

iterations

error

0 400 800 1200 160010

−50

10−40

10−30

10−20

10−10

100

iterations

error

XFFEM, re=0.00

XFEM, re=0.02

GE−XFEM, re=0.00

GE−XFEM, re=0.02

21x41x41 mesh 41x81x81 mesh

K. Agathos et al. GE-XFEM 2015 76 / 82

Page 77: Extended Finite Element Method with Global Enrichment · Extended Finite Element Method with Global Enrichment K. Agathos1 E. Chatzi2 S. P. A. Bordas3,4 D. Talaslidis1 1Institute

Numerical examples 3D convergence study

Number of additional dofs

Total number of enriched dofs

Mesh FE dofs XFEM dofs XFEM dofs XFEM dofs GE-XFEM(re = 0.00) (re = 0.02) (re = 0.04) dofs

11× 21× 21 17,424 2,232 2,232 5,856 69621× 41× 41 116,424 5,376 11,904 42,288 1,92031× 61× 61 369,024 9,456 37,752 137,280 4,46441× 81× 81 847,224 14,424 84,696 320,664 7,512

51× 101× 101 1,623,024 20,376 162,528 620,184 11,544

K. Agathos et al. GE-XFEM 2015 77 / 82

Page 78: Extended Finite Element Method with Global Enrichment · Extended Finite Element Method with Global Enrichment K. Agathos1 E. Chatzi2 S. P. A. Bordas3,4 D. Talaslidis1 1Institute

Conclusions

Conclusions

A method was introduced which:

I Employs point-wise and integral matching.

I Uses a novel enrichment strategy.

I Generalizes and extends the dof gathering approach to 3D.

I Is applicable to general 3D problems.

K. Agathos et al. GE-XFEM 2015 78 / 82

Page 79: Extended Finite Element Method with Global Enrichment · Extended Finite Element Method with Global Enrichment K. Agathos1 E. Chatzi2 S. P. A. Bordas3,4 D. Talaslidis1 1Institute

Conclusions

Conclusions

A benchmark problem was proposed which:

I Involves a curved crack front.

I Enables the computation of L2 and energy norms for the 3D case.

K. Agathos et al. GE-XFEM 2015 79 / 82

Page 80: Extended Finite Element Method with Global Enrichment · Extended Finite Element Method with Global Enrichment K. Agathos1 E. Chatzi2 S. P. A. Bordas3,4 D. Talaslidis1 1Institute

Conclusions

Conclusions

Advantages of the method:

I It improves accuracy almost in every case.

I Enables the application of geometrical enrichment in 3d applications.

I Reduces the number of additional dofs.

I Reduces computational cost in every case.

K. Agathos et al. GE-XFEM 2015 80 / 82

Page 81: Extended Finite Element Method with Global Enrichment · Extended Finite Element Method with Global Enrichment K. Agathos1 E. Chatzi2 S. P. A. Bordas3,4 D. Talaslidis1 1Institute

Conclusions

Conclusions

Possible disadvantages:

I When the enrichment radius exceeds a certain value, the L2 normincreases.

I The method is not straightforward to implement in existing XFEMcodes.

I The additional point wise-matching constraints are complex toimplement for higher order elements.

K. Agathos et al. GE-XFEM 2015 81 / 82

Page 82: Extended Finite Element Method with Global Enrichment · Extended Finite Element Method with Global Enrichment K. Agathos1 E. Chatzi2 S. P. A. Bordas3,4 D. Talaslidis1 1Institute

Conclusions

BibliographyChahine, E., Laborde, P., & Renard, Y. (2011). A non-conformal

eXtended Finite Element approach: Integral matching Xfem.Applied Numerical Mathematics.

Fish, J. (1992). The s-version of the finite element method. Computers &Structures.

Laborde, P., Pommier, J., Renard, Y., & Salaun, M. (2005). High-orderextended finite element method for cracked domains. InternationalJournal for Numerical Methods in Engineering.

Langlois, C., Gravouil, A., Baieto, M., & Rethore, J. (2014).Three-dimensional simulation of crack with curved front with directestimation of stress intensity factors. International Journal forNumerical Methods in Engineering.

K. Agathos et al. GE-XFEM 2015 82 / 82