27
Experimental Measurements and Numerical Simula4ons in a 3Turbine Array of 45:1 Scale DOE RM1 Turbines Alberto Aliseda Danny Sale Teymour Javaherchi Nick Stelzenmuller

Experimental,Measurements,and

  • Upload
    others

  • View
    3

  • Download
    0

Embed Size (px)

Citation preview

Page 1: Experimental,Measurements,and

Experimental  Measurements  and  Numerical  Simula4ons  in  a  3-­‐Turbine  Array  of  45:1  Scale  DOE  RM1  Turbines  

Alberto Aliseda!Danny Sale!

Teymour Javaherchi!Nick Stelzenmuller!

Page 2: Experimental,Measurements,and
Page 3: Experimental,Measurements,and

WHAT IS TIDAL ENERGY? Background Design Experiment Single Turbine Results Array Results

LABORATORY-SCALE ROTOR GEOMETRY

I Maximize chord-based Reynoldsnumber

I Choose foil to minimize Reynoldsnumber effects

I Match performance and optimum tipspeed ratio with blade-elementmomentum design code

I Attempt to match power extractionand wake characteristics at scale, notgeometry

0.2 0.4 0.6 0.8 10.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2x 10

5

r/R Normalized spanwise coordinate

Chord

−bas

ed R

eynold

s num

ber

U=0.5 m/s

U=0.7 m/s

U=0.9 m/s

U=1.1 m/s

Transition?

Solid lines represent DOE RM 1Dotted lines represent lab−scale rotor

DOE RM 1 Turbine Scaling down process!

Page 4: Experimental,Measurements,and

WHAT IS TIDAL ENERGY? Background Design Experiment Single Turbine Results Array Results

LABORATORY-SCALE ROTOR GEOMETRY

I Maximize chord-based Reynoldsnumber

I Choose foil to minimize Reynoldsnumber effects

I Match performance and optimum tipspeed ratio with blade-elementmomentum design code

I Attempt to match power extractionand wake characteristics at scale, notgeometry

6 7 8 9 10 110

0.1

0.2

0.3

0.4

0.5

TSR

Eff

icie

ncy

Full−scale DOE RM 1 efficiency(predicted from BEMT)

Lab−scale DOE RM 1 experimental efficiency

Geometrically-scaled DOE RM 1 Turbine Performance!

Page 5: Experimental,Measurements,and

6 7 8 9 10 110

0.1

0.2

0.3

0.4

0.5

TSR

Eff

icie

ncy

Full−scale DOE RM 1 efficiency(predicted from BEMT)

Lab−scale DOE RM 1 experimental efficiency

WHAT IS TIDAL ENERGY? Background Design Experiment Single Turbine Results Array Results

LABORATORY-SCALE ROTOR GEOMETRY

I Maximize chord-based Reynoldsnumber

I Choose foil to minimize Reynoldsnumber effects

I Match performance and optimum tipspeed ratio with blade-elementmomentum design code

I Attempt to match power extractionand wake characteristics at scale, notgeometry

Performance-scaled !DOE RM 1 Turbine!

Page 6: Experimental,Measurements,and

DOE  RM1  @  45:1  scale  Similarity  based  on  performance  curves  

WHAT IS TIDAL ENERGY? Background Design Experiment Single Turbine Results Array Results

LABORATORY-SCALE TURBINE45 cm diameter rotor

Page 7: Experimental,Measurements,and

Experimental  CondiAons  Rechord  ~  105              Tip  Speed  Ra4o  (TSR)  =  4.5-­‐8  

Blockage  Ra4o  =  20%  

30

Figure 4.1: Photograph of the Bamfield Marine Science Centre flume

4.1.1 Flume dimensions and specifications

The BMSC flume has a width of 2 m, a depth of up to 1 m, and 12.3 m test section

length with full optical access. The pumps that drive the flow are capable of a

volumetric flow rate of approximately 1 m3/s, which results in a freestream flow speed

of 0.5 m/s. This flow speed was judged to be too slow to produce adequate Reynolds

numbers, which are shown to be Re ⇠ 60, 000 at this flow speed in Figure 3.3. To

increase the flow speed, and thus the Reynolds number, a partition was constructed

in the flume, which can be seen in Figure 4.1. This partition halved the flume width

from 2 m to 1 m, doubled the maximum flow speed, and doubled the blockage ratio.

Page 8: Experimental,Measurements,and

Three  Different  Array  ConfiguraAons  1.  Array  of  two  coaxial  turbines.    

2.  Array  of  three  coaxial  turbines.  

3.  Array  of  three  turbines  with  lateral  offset.  

Page 9: Experimental,Measurements,and

Measurement  LocaAons:    Two  Turbines  Coaxially  Mounted  

WHAT IS TIDAL ENERGY? Background Design Experiment Single Turbine Results Array Results

TWO CO-AXIAL TURBINES AT VARIOUS SPACINGS

Page 10: Experimental,Measurements,and

Performance  for  Two  Coaxial  Turbines:  Experimental  Measurements    

WHAT IS TIDAL ENERGY? Background Design Experiment Single Turbine Results Array Results

TWO CO-AXIAL TURBINES PERFORMANCE

5.5 6 6.5 7 7.5 8 8.5 90

0.1

0.2

0.3

0.4

0.5

TSR

Eff

icie

ncy

Performance curves for two co−axially arranged turbinesat various separation distances

Upstream turbine

5D downstream turbine

8D downstream turbine

11D downstream turbine

14D downstream turbine

Page 11: Experimental,Measurements,and

Performance  of  Two  Coaxial  Turbines:  Comparison  of  Experiments  and  SimulaAons  

Page 12: Experimental,Measurements,and

WHAT IS TIDAL ENERGY? Background Design Experiment Single Turbine Results Array Results

TURBINE ARRAYS: THREE CO-AXIAL TURBINES

Measurement  LocaAons:    Three  Turbines  Mounted    Coaxially    

Page 13: Experimental,Measurements,and

3-­‐Turbine  Coaxial  Array  Performance  Comparison  of  Experiments  and  SimulaAons  

Downstream  separaAon  5D  

Page 14: Experimental,Measurements,and

EvoluAon  of  the  available  KineAc  Energy  Flux  a  3-­‐Turbine  Coaxial  Array  

Downstream  separaAon  5D  

Page 15: Experimental,Measurements,and

Evolution of TKE contours in a 3-Turbine Coaxial Array!

Downstream  separaAon  5D  

Page 16: Experimental,Measurements,and

3-­‐Turbine  Offset  Array  Performance  Comparison  of  Experiments  and  SimulaAons  

Page 17: Experimental,Measurements,and

3-­‐Turbine  Offset  Array  Performance  LES  SimulaAons  

Page 18: Experimental,Measurements,and

InvesAgaAon  of  the  Flume  Blockage  Effect    

ε  =  20  %  ε  =  10  %  ε  =    5    %   *  

•  Increase  in  blockage  leads  into  increase  in  efficiency  (verAcal  shi[  of  Cp  curve).  

•  Increase  in  blockage  shi[s  the  peak  of  efficiency  toward  higher  TSR  values    

         (horizontal  shi[  of  Cp  curve).  

Page 19: Experimental,Measurements,and

Summary and Conclusions!

•  Three Turbines Array present non-monotonic performance: third turbine has higher efficiency than middle turbine!

•  Confinement plays a increasingly important role for higher number of turbines and lateral offset in the Array.!

•  Agreement between experimental and numerical results is best for single turbine and optimum TSR. !

•  Angular velocity fluctuations in the experiments, and enhanced wake recovery, not captured by simulations, leads to numerical/experimental divergence with lower TSRs, larger arrays and higher confinement.!

Page 20: Experimental,Measurements,and

RMS  of  Normalized  Rota4onal  Velocity  Temporal  Evolu4on  (TSR  =  6.15,  7.16)  

Page 21: Experimental,Measurements,and

   Array  of  Three  Turbines  with  Lateral  Offset  

•  ObservaAon  of  similar  physics  compared  to  results  from  array  of  two  &  three  coaxial  turbines.  

•  Downstream  turbines’  efficiency  increase  monotonically  with  the  TSR  value.  

Page 22: Experimental,Measurements,and

3-­‐Turbine  1/4D  Lateral  Offset    Array  Performance  

Page 23: Experimental,Measurements,and

Reynolds-­‐number  Dependent  Performance  

5 6 7 8 9 10 11 120.25

0.3

0.35

0.4

0.45

0.5

TSR

Eff

icie

ncy

Single turbine efficiency at various flow speeds, averaged over one minute

0.52 m/s flowspeed0.61 m/s flowspeed0.65 m/s flowspeed0.71 m/s flowspeed0.75 m/s flowspeed0.90 m/s flowspeed

Page 24: Experimental,Measurements,and

Turbine  Comparison  for  Performance  

5 6 7 8 9 10 11 12 130

0.1

0.2

0.3

0.4

0.5

TSR

Eff

icie

ncy

Turbine 1Turbine 2Turbine 3

Page 25: Experimental,Measurements,and

PIV  Velocity  Profiles  in  the  Wake  turbine  

0.4 0.5 0.6 0.7 0.8 0.9 1 1.10

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

Norm

aliz

ed v

erti

cal

dis

tance

fro

m c

ente

rlin

e

Normalized streamwise velocity

Rotor tip

Free surface

Streamwise velocity profiles for TSR 7

2D up

2D down

3D down

5D down

7D down

Page 26: Experimental,Measurements,and

Results  of  BEM  study  (3/3)  Effect  of  blockage  on  efficiency  

 

•   Blockage  increases  the  efficiency.  •   Blockage  shi[s  the  peak  of  efficiency  to  the  right.  •   Blockage  delays  the  peak  of  efficiency  of  the  two  downstream  turbines.  

  Source  :  S.  J.  Miley’s  catalog  of  airfoils  

α(r)= arctanVinc(r )rω

+ β(r)

Angle  of  adack  :  

Page 27: Experimental,Measurements,and

3-­‐Turbine  1/4D  Lateral  Offset    Array  Performance  

Downstream  separaAon  5D