35
Ewolucja Wszechświata Wykład 3

Ewolucja Wszechświata

  • Upload
    jered

  • View
    46

  • Download
    0

Embed Size (px)

DESCRIPTION

Ewolucja Wszechświata. Wykład 3. Teoria inflacji. Problemy, które trzeba wyjaśnić: Problem horyzontu Problem monopoli magnetycznych Problem płaskości Wszechświata. Problem horyzontu. ?. 13,7 mld lat świetlnych. 3 · 10 27 cm. - PowerPoint PPT Presentation

Citation preview

Page 1: Ewolucja Wszechświata

Ewolucja Wszechświata

Wykład 3

Page 2: Ewolucja Wszechświata

Teoria inflacji

Problemy, które trzeba wyjaśnić:

• Problem horyzontu

• Problem monopoli magnetycznych

• Problem płaskości Wszechświata

Page 3: Ewolucja Wszechświata

Problem horyzontu

Niezależnie od jakości teleskopów, nie możemy obserwować dowolnie odległych obiektów. Największa odległość, w której światło zdążyło dotrzeć do obserwatora w czasie istnienia Wszechświata wynosi :

cTR

Gdzie: T – wiek Wszechświata, c – prędkość światła

Horyzont można też zdefiniować podstawiając do prawa Hubble’a maksymalną prędkość ucieczki galaktyk równą prędkości światła:

cTcH

RRHc 1

?

?

13,7 mld lat świetlnych?3·1027 cm

Page 4: Ewolucja Wszechświata

Obserwujemy we wszystkich kierunkach wysoką jednorodność Wszechświata, zarówno w skali wielkoskalowej (galaktyki, gromady galaktyk), jak i promieniowania mikrofalowego, którego natężenie i temperatura są identyczne we wszystkich kierunkach z dokładnością do 1/1000.

A B

Punkty A i B nie mogły ze sobą oddziaływać od początku istnienia Wszechświata, więc skąd ta jednorodność...?

Problem horyzontu

Nasza galaktyka

Page 5: Ewolucja Wszechświata

Horyzont zdarzeń

3·10-25 cm

T = 3·1028 K

Ekspansja o czynnik 1028

3 mm

Wiek = 10-35 s

T = 3K

3·1027 cm

Obecny horyzont zdarzeń

Wiek = 1017 s

W wieku 10-35 s Wszechświat składał się z ogromnej liczby niezależnych, rozdzielonych obszarów?? Sprzeczność z obserwowaną jednorodnością!

Problem horyzontu

Page 6: Ewolucja Wszechświata

Problem monopoli magnetycznych

Gdy Wszechświat miał 10-35 s i temperaturę 3·1028 K występowała unifikacja trzech oddziaływań: silnego, słabego i elektromagnetycznego.

Teorie opisujące Wszechświat w tych warunkach przewidują powstanie ogromnej liczby monopoli magnetycznych – cząstek o masach 1016 razy większych niż masa protonu. Z obliczeń wynika, że monopoli byłoby teraz tysiące razy więcej niż protonów czy neutronów.

Monopol jest pozostałością po chaosie, jaki istniał we wczesnym Wszechświecie. Ponieważ Wszechświat był podzielony na obszary nie oddziaływujące ze sobą, niejednorodności nie mogły się wyrównać i tworzyły się monopole.

Jednak monopole nie są obserwowane!

Page 7: Ewolucja Wszechświata

Problem płaskości Wszechświata

Dane obserwacyjne i teoretyczne przewidywania ograniczają dzisiejszą wartość do przedziału od 0,1 do 2.

k

Względna gęstość materii we Wszechświecie:

> 1 Wszechświat zamknięty (rozszerzanie zakończy się i rozpocznie zmniejszanie

< 1 Wszechświat otwarty (rozszerzanie będzie trwać w nieskończoność)

Początkowa wartość było bardzo niestabilna i jakiekolwiek odchylenie od wartości 1 szybko wzrosłoby w czasie.

Page 8: Ewolucja Wszechświata

Aby dzisiejsza mieściła się w żądanym przedziale, początkowa jej wartość musiała być równa jedności z dokładnością większą niż 1 na 10-15.

Początkowy Wszechświat był bardzo płaski!

Warunki początkowe Wszechświata zostały dostrojone z wielką precyzją, aby mógł powstać dzisiejszy świat. Małe wahanie na początku ewolucji Wszechświata sprawiłoby, że zapadłby się w krótkim czasie lub materia tak szybko by się oddalała, że nie powstałyby gwiazdy i planety.

Skąd to wykalibrowanie warunków początkowych?

Problem płaskości Wszechświata

Page 9: Ewolucja Wszechświata

Wszechświat inflacyjny

Pierwsze 10-43 s – czas Plancka – brak teorii opisującej Wszechświat w tym stanie.

Po upływie czasu Plancka Wszechświat o temperaturze 1014 GeV podlegał Wielkiej Unifikacji Oddziaływań (oddziaływania silne, słabe i elektromagnetyczne nie różniły się).

Wszechświat zawierał obszary „fałszywej próżni” wypełnione ogromną energią (pola Higgsa).

„Fałszywa próżnia” to obszar o zadziwiających własnościach:

•jej gęstość nie zmienia się wraz z rozszerzaniem się

•wytwarza ona ujemne ciśnienie

Z ciśnieniem jako formą energii związana jest grawitacja.

Ujemne ciśnienie prowadzi do odpychającej siły grawitacyjnej – odpowiada tej sytuacji niezerowa stała kosmologiczna .

Nastąpiła ekspansja!

Page 10: Ewolucja Wszechświata

33

82

2

2

R

kcGH

Wszechświat inflacyjny

Wzór kosmologiczny:

gdzie: r

rH

Te człony maleją gwałtownie podczas rozszerzania

Zostaje:

3

2

r

rrr

3

Rozwiązanie rónania:

ttr

3exp)(

Ekspansja wykładnicza!

Page 11: Ewolucja Wszechświata

Wszechświat inflacyjny

Wykładnicza ekspansja zakończyła się w chwili 10-34 s po Wielkim Wybuchu.

Jak powiększył się w tym czasie Wszechświat?

)exp3

exp)( tHttr

Załóżmy, że inflacja zaczęła się w chwili T = H-1 = 10-36 s

4399 10exp ettHr

rpoczkon

pocz

kon

Wszechświat powiększył się w ułamku sekundy do rozmiarów wielokrotnie przekraczających wszystko co możemy obserwować!

Page 12: Ewolucja Wszechświata

Inflacja zakończyła się przejściem fazowem – „fałszywa próżnia” zamieniła się w próżnię prawdziwą wypełnioną cząstkami. Towarzyszyło temu wyzwolenie ogromnej energii, która ponownie „podgrzała” Wszechświat

Wszechświat inflacyjny

Analogia:

woda

Podczas przejścia fazowego uwalnia się energia

lód

Uwolniona energia

Page 13: Ewolucja Wszechświata

Wszechświat inflacyjny

Po zakończeniu okresu inflacji Wszechświat rozszerza się dalej ze stałą kosmologiczną równą zeru.

Teorię inflacji zaproponował w 1981 roku Alan Guth teoretyk fizyki cząstek elementarnych zajmujący się Teorią Wielkiej Unifikacji.

Page 14: Ewolucja Wszechświata

Wszechświat inflacyjny

Rozwiązanie problemu jednorodności Wszechświata:

3·10

27 cm

3·10-25 cm

przyspieszona

ekspansja

Obserwowalny Wszechświat powstał z bardzo małego jednorodnego obszaru.

Page 15: Ewolucja Wszechświata

Wszechświat w chwili, gdy podlegał Wielkiej Unifikacji Oddziaływań, nie był podzielony na obszary nie oddziaływujące ze sobą.

Wszechświat inflacyjny

Monopole nie powstawały.

Rozwiązanie problemu monopoli:

Page 16: Ewolucja Wszechświata

Rozwiązanie problemu płaskości Wszechświata:

Wszechświat inflacyjny

Z równania Friedmana dla Wszechświata inflacyjnego można otrzymać związek:

tt

3

4exp1)(

Oznacza on, że szybko dąży do jedności

Obecny Wszechświat jest płaski!

Page 17: Ewolucja Wszechświata

Pomiary promieniowania mikrofalowego wykonane przez sondę wystrzeloną 30.06.2001.

Wynik otrzymany w roku 2003:

Wszechświat jest płaski!

02,002,1 tot

Analizowano fluktuacje natężenia promieniowania mikrofalowego w 5 przedziałach częstości od 23GHz (13 mm) do 94 GHz (3,2 mm)

Potwierdzenie doświadczalne teorii inflacji

Page 18: Ewolucja Wszechświata

Światy równoległe?

Teoria inflacji otwiera olbrzymie pole do spekulacji.

Jedna z hipotez (której nigdy nie sprawdzimy!) mówi, że nasz Wszechświat jest jednym z wielu (może nieskończenie wielu) wszechświatów zawartych w „metawszechświecie”.

Każdy z tych Wszechświatów powstał z subatomowego obszaru przestrzeni i stał się większy niż nasz widzialny Wszechświat w czasie krótszym od 10-30 s. Mogły one powstawać w różnych miejscach i czasach.

Hipotezy tej nie możemy zweryfikować doświadczalnie, bo nasze obserwacje nie mogą wyjść poza horyzont zdarzeń w naszym Wszechświecie!

Page 19: Ewolucja Wszechświata

Inflacja - podsumowanie

Różne odmiany modeli inflacyjnych mają następujące cechy wspólne:

•Pusta przestrzeń, nie będąca prawdziwą próżnią kipi energią.

•Energia ta powoduje, że pęcherzyk przestrzeni rozszerza się z fantastyczną prędkością w czasie pierwszych chwil istnienia Wszechświata

•Pod koniec tej fazy rozszerzania, około 10-34 s od Wielkiego Wybuchu, dochodzi do przejścia fazowego, które tworzy prawdziwą próżnię i ogromną liczbę cząstek oraz bardzo silnie ogrzewa Wszechświat.

•Po zakończeniu inflacji Wszechświat (który kiedyś był subatomowym pęcherzykiem przestrzeni) rozszerza się tak, jak przewiduje teoria Wielkiego Wybuchu, która powstała przed modelem inflacyjnym

Page 20: Ewolucja Wszechświata

Ciemna materia

Zmierzona gęstość materii jest daleka od jedności:

006,0lumi

04,0b

Gęstość materii świecącej:

Gęstość materii barionowej:

Z teorii inflacji i z pomiaru promieniowania mikrofalowego wynika, że = 1

Większość naszego Wszechświata stanowi ciemna materia!

Page 21: Ewolucja Wszechświata

Ciemna materia

Rotacja galaktyk

W analizie ruchu gwiazdy wokół centrum galaktyki wykorzystujemy prawo grawitacji Newtona.

dr

r

dVCałą masę galaktyki dzielimy na 2

części:

1. Leżącą bliżej środka galaktyki niż gwiazda

2. Leżącą dalej od środka galaktyki

Masa galaktyki zawarta w elemencie dV :

drrdM 2 Więc siła grawitacji od masy w elemencie dV działająca na gwiazdę:

drdFr

dF 2

1

Siły od przeciwległych elementów równoważą się

Page 22: Ewolucja Wszechświata

Ciemna materiaRotacja galaktyk

Efektywna siła grawitacji pochodzi tylko od masy leżącej bliżej środka niż gwiazda.

2

2

R

RGmM

R

mv

Siła odśrodkowa równoważy siłę grawitacji.

R

RGMv

)( Prędkość gwiazd na peryferiach

galaktyki powinna maleć, gdy rośnie R

Page 23: Ewolucja Wszechświata

Ciemna materiaModel krzywej rotacji galaktyki NGC 6946.

Masa galaktyki (w funkcji odległości od środka) została rozłożona na cztery składowe: 1 - jądro o masie 5 x 109 mas Słońca i promieniu 120 parseków (pc); 2 - zagęszczenie centralne o masie 1,4 x 1010 mas Słońca i promieniu 750 parseków; 3 - dysk o masie 1,3 x 1011 mas Słońca, promieniu 6 kiloparseków (kpc) i grubości 0,5 kpc; 4 - sferyczne halo o masie 2 x 1011 mas Słońca i promieniu 10 kpc.

Niebieska linia odpowiada całkowitej prędkości rotacji.

Page 24: Ewolucja Wszechświata

Galaktykę otacza sferyczne halo o rozmiarach znacznie większych niż rozmiary galaktyki.

Ciemna materia

Galaktyka

Gromady kuliste otaczające galaktykę

Page 25: Ewolucja Wszechświata

Ciemna materia

Poszukiwania ciemnej materii w dużo większej skali – pomiary prędkości galaktyk w gromadach.

Ponad 60 lat temu Fritz Zwicky badał przesunięcia dopplerowskie galaktyk tworzących gromadę w Warkoczu Bereniki.

Całkowita masa gromady okazała się kilkaset razy większa niż suma mas galaktyk oszacowana na podstawie znajomości jasności i mas pojedyńczych gwiazd.

Page 26: Ewolucja Wszechświata

Ciemna materia

Pomiary prowadzone w ostatnich 30 latach pokazują, że wiele galaktyk ma olbrzymie, masywne halo zbudowane z ciemnej materii.

Dodatkowe potwierdzenie tej hipotezy otrzymano badając ruch dwóch położonych blisko siebie galaktyk wokół wspólnego środka masy.

Droga Mleczna i Wielka Mgławica w Andromedzie zbliżają się do siebie z prędkością względną 270 km/s – masy muszą być dużo większe niż suma mas gwiazd.

Masa ciemnej materii wydaje się być 5 – 10 razy większa niż materii widzialnej.

Page 27: Ewolucja Wszechświata

Niezależne potwierdzenie dużych mas gromad galaktyk uzyskuje się dzięki zjawisku soczewkowania grawitacyjnego, tj. ugięcia promieni świetlnych przez pole grawitacyjne. Ze względu na duże masy gromad, efekt ten jest stosunkowo łatwo i często obserwowany. Jednocześnie, wskutek ogniskowania wiązki światła wzmocnieniu ulega obserwowana jasność bardzo odległych galaktyk i kwazarów.

Soczewkowanie grawitacyjne

Page 28: Ewolucja Wszechświata

Soczewkowanie grawitacyjne

Gromada galaktyk A2218 zniekształca obrazy odległych galaktyk. Na pierwszym planie widać jasne galaktyki z gromady; cienkie świetliste łuki są wydłużonymi i zakrzywionymi koncentrycznie wokół środka masy obrazami galaktyk tła. Rozmieszczenie i kształt łuków pozwalają wyznaczyć rozkład masy tej gromady. Fot. HST/NASA.

Page 29: Ewolucja Wszechświata

Zaginanie promieni świetlnych galaktyki spiralnej przez pole grawitacyjne gromady galaktyk Cl0024+1654. Znajdujące się na pierwszym planie żółtawe galaktyki gromady uginają promienie świetlne niebieskiej galaktyki spiralnej. W wyniku tego powstało pięć oddzielnych obrazów tej galaktyki: jeden blisko środka zdjęcia, a pozostałe cztery - rozmieszczone w przybliżeniu wzdłuż okręgu "na godzinach" 4, 8, 9 i 10. Gromada Cl0024+1654 znajduje się w gwiazdozbiorze Ryb, w odległości około 1500 megaparseków (Mpc); galaktyka spiralna - mniej więcej dwa razy dalej. Fot. HST/NASA.

Soczewkowanie grawitacyjne

Page 30: Ewolucja Wszechświata

Ciemna materia

Inne sposoby badania wpływu grawitacji:

Satelita ROSAT ROentgen SAtelite

W 1992 roku Satelita ROSAT zbadał promieniowanie rentgenowskie emitowane z grupy trzech galaktyk (NGC2300) w gwiazdozbiorze Cefeusza

Grupa jest zanurzona w obszarze emitującym promieniowanie rentgenowskie, mającym średnicę ponad miliona lat świetlnych – energia tego promieniowania jest 10 miliardów razy większa niż energia wysyłana ze Słońca w postaci światła widzialnego.

Page 31: Ewolucja Wszechświata

Ciemna materia

1. Promieniowanie rengenowskie jest emitowane przez gorący gaz.

2. Natężenie i częstość promieniowania rentgenowskiego mówi o tym, ile jest tego gazu i jaką ma temperaturę.

3. Można obliczyć, jaką masę musi zawierać gromada galaktyk, aby gaz nie rozproszył się w przestrzeni.

4. Należy oszacować całkowitą masę zawartą w świecących gwiazdach.

Porównanie mas otrzymanych w 3 i 4 kroku prowadzi do wniosku, że większość masy w gromadzie NGC2300 to ciemna materia

50 razy więcej ciemnej materii niż widzialnej!

Page 32: Ewolucja Wszechświata

Ciemna materia

Całkowitą masę materii można ocenić również w obszarach dużo większych niż gromady galaktyk, mierząc wielkoskalowe przepływy, które odchylają ruch galaktyk od globalnego przepływu Hubble’a.

Analizy statystyczne przeprowadzone przez Marca Davisa dowodzą, że przepływy takie istnieją i świadczą o występowaniu ciemnej materii w największych skalach odległości. Jest jej co najmniej 10 razy więcej niż zwykłej materii.

Z obserwacji wynika,że ciemna materia jest rozmieszczona bardziej jednorodnie niż świecąca, choć też tworzy skupiska.

Page 33: Ewolucja Wszechświata

Ciemna materia

Czym jest ciemna materia?

Wiemy czym nie jest: nie składa się z barionów i leptonów.

•Obserwacje w 1994 r. wykonane przez Kosmiczny Teleskop Hubble’a wykluczyły słabo świecące czerwone karły.

•Kolejny kandydat – ciemne mniejsze ciała jak: planety, komety, planetoidy (MACHO – MAssive Compact Halo Object) również nie może stanowić głównego składnika ciemnej materii .

Page 34: Ewolucja Wszechświata

Ciemna materia

Czym jest ciemna materia?

Nieznane do tej pory cząstki: struny kosmiczne, cząstki supersymetryczne, monopole magnetyczne i wiele innych.

Neutrina i antyneutrina - cząstki o masach niewiele większych od zera – Wszechświat zawiera około miliarda razy więcej neutrin niż protonów czy neutronów – neutrina stanowią nie więcej niż połowę ciemnej materii.

Poszukiwania tych cząstek niezwykle trudne, bo oddziaływują ze zwykłą materią tylko grawitacyjnie i słabo.

Page 35: Ewolucja Wszechświata

Ciemna materia

Ciemnej materii poszukuje się także w laboratoriach.

Podziemne laboratorium pod tamą Oroville w Kaliforni – poszukiwania WIMP (Weacly Interacting Massive Particles)

WIMP –hipotetyczne cząstki o masie 10 – 100 GeV.

Przypuszcza się, że w każdej sekundzie 100 000 wimpów przechodzi przez każdy cm2 Ziemi, w tym również przez nasze ciała.