38
Electrostatic Boundary value problems Sandra Cruz-Pol, Ph. D. INEL 4151 ch6 Electromagnetics I ECE UPRM Mayagüez, PR

Electrostatic Boundary value problems

  • Upload
    ingrid

  • View
    59

  • Download
    1

Embed Size (px)

DESCRIPTION

Electrostatic Boundary value problems. Sandra Cruz-Pol, Ph. D. INEL 4151 ch6 Electromagnetics I ECE UPRM Mayagüez, PR. Last Chapters: we knew either V or charge distribution, to find E,D. NOW: Only know values of V or Q at some places (boundaries). Some applications. - PowerPoint PPT Presentation

Citation preview

Page 1: Electrostatic Boundary value problems

Electrostatic Boundary value

problems

Sandra Cruz-Pol, Ph. D.INEL 4151 ch6

Electromagnetics IECE UPRM

Mayagüez, PR

Page 2: Electrostatic Boundary value problems

Last Chapters: we knew either V or charge distribution, to find E,D.

NOW: Only know values of V or Q at some places (boundaries).

Page 3: Electrostatic Boundary value problems

Some applications Microstrip lines capacitance Microstrip disk for microwave equipment

Page 4: Electrostatic Boundary value problems

To find E, we will use:

Poisson’s equation:

Laplace’s equation: (if charge-free)

They can be derived from Gauss’s Law

02 V

vV 2

VEED v

Page 5: Electrostatic Boundary value problems

Depending on the geometry:

We use appropriate coordinates:cartesian:

cylindrical:

spherical:

vV 2

v

zV

yV

xV

2

2

2

2

2

2

v

zVVV

2

2

2

2

2

11

vV

rV

rrVr

rr

2

2

2222

2 sin1sin

sin11

Page 6: Electrostatic Boundary value problems

Procedure for solving eqs.

1. Choose Laplace (if no charge) or Poisson 2. Solve by Integration if one variable or by3. Separation of variables if many variables4. Apply B.C.5. Find V, then E=-DV, D=E, J=sE6. Also, if necessary:

SnD S

dSJIdSQ S

Page 7: Electrostatic Boundary value problems

P.E. 6.1 In a 1-dimensional device, the charge density is given by

If E=0 at x=0 and V=0 at x=a, find V and E.

Evaluating B.C.

vV 2

axov /

v

xV

2

2

BAxaxV o

6

3

xo

x aAaxa

xVE ˆ

2

0A

6

2aB o 333

6xa

axV o

xo a

axE ˆ

2

2

axov /

Page 8: Electrostatic Boundary value problems

45o

P.E. 6.3 two conducting plates of size 1x5m are inclined at 45o to each other with a gap of width

4mm separating them as shown below. Find approximate charge per plate

if plates are kept at 50V potential difference and medium between them has permittivity of 1.5

Applying B.C. V(0)=0,V(o=45)=Vo=50

aVaVE

o

o ˆˆ1

012

2

22

VV

02

2

V

o

oVV

ED o

ons

VD )0(

)/ln(1

0

abLVdzdVdSQo

oL

z

b

ao

os

1m

BAV

Page 9: Electrostatic Boundary value problems

P.E. 6.3 two conducting plates of size 1x5m are inclined at 45o to each other with a gap of width

4mm separating them as shown below.

permittivity of 1.5Applying B.C. V(0)=0,V(o=45)=Vo=50

)/ln( abLVQ

Coo

)/ln( abLVQo

o

45o

a b

)/ln( abLVQ

Coo

mmmma o 226.52/45sin

2/4 nCVpFCVQ

F

mmmmm

VQ

C

o

o

o

22)50(44410444

226.51000ln)5(

4/5.1

12

Page 10: Electrostatic Boundary value problems

detail

45o

a b

abrecha

hipotenusaopuestoo 2/

245sin

mmmma o 226.52/45sin

2/4

Page 11: Electrostatic Boundary value problems

P.E. 6.5 Determine the potential function for the region inside the rectangular trough of

infinite length whose cross section is shown. The potential V

depends on x and y. Vo=100V, b=2a=2m,

find V and E at:a) (x, y)=(a, a/2)b) (x, y)=(3a/2, a/4)

oVaybxVybxV

aybxVayxV

),0(0)0,0(0)0,(0)0,0(

y

xb

aV=Vo

V=0

V=0V=0

02

2

2

2

yV

xV

Page 12: Electrostatic Boundary value problems

P.E. 6.5 (cont.) Since it’s 2 variables, use Separation of Variables

y

xb

aV=Vo

V=0

V=0V=0

)()(),( yYxXyxV

0"" XYYX

YY

XX ""

0"0"

YYXX

einseparablVaYxXaxVYYxXxV

bXyYbXybVXyYXyV

o

)()(),(0)0(0)0()()0,(0)(0)()(),(0)0(0)()0(),0(

Page 13: Electrostatic Boundary value problems

Let’s examine 3 Possible Cases

A. =0B. <0C. >0

Page 14: Electrostatic Boundary value problems

Case A: If =o

BAxX

00

AB

0)()(0)(

yYxXVxX

y

xb

a

V=Vo

V=0

V=0V=0

0"0"

YYXX

This is a trivial solution, therefore cannot be equal to zero.

0)(0)0(

..

bXX

CB

Page 15: Electrostatic Boundary value problems

Case B: <o

xBxBXor

eAeAX xx

sinhcosh

:issolution general

21

21

00sinh

0

2

2

1

BbB

B

2 0" 2 XX

This is another trivial solution, therefore cannot be equal to zero.

0)(0)0(

..

bXX

CB

Page 16: Electrostatic Boundary value problems

Case C: >o

xgxgXor

eCeCX

o

xjxjo

sincos

:issolution general

1

1

0sin0

1

bggo

2 0" 2 XX

0)(0)0(

..

bXX

CB

4,3,2,1

0sin

nb

nb

22

sin)(

:solutions of seriesA

bn

bxngxX nn

Page 17: Electrostatic Boundary value problems

Case C: >o

yhyhY o sinhcosh:issolution generalwith

1 0oh0)0(..Y

CB

0" 2 YY 4,3,2,1

nb

n

xhyYn sinh)( 1

byn

bxnhgyYxXyxV nnnnn

sinhsin)()(),(

byn

bxncyxV n

nn

sinhsin),(1

By superposition, the combination is also a solution:

Page 18: Electrostatic Boundary value problems

Cont.

ban

bxncVaxV n

non

sinhsin),(1

dxb

xnb

xmb

ancdxb

xmVb

nn

o

b sinsinsinhsin010

nmnm

dxmxnx2/

0sinsin

0

B.C. at y=a

If we multiply by sin factor and integrate on x:

dxb

xmb

ancdxb

xnVb

no

b 2

00

sinsinhsin

dxb

xnb

ancb

xnnbV

b

n

b

o

2cos121sinhcos

00

Orthogonality property of sine and cosine:

Page 19: Electrostatic Boundary value problems

2

sinhcos1 bb

ancnn

bVn

o

dxb

xnb

ancb

xnnbV

b

n

b

o

2cos121sinhcos

00

bann

byn

bxn

VyxVn

o

sinh

sinhsin4),(5,3,1

evennoddn

bann

V

co

n

0

sinh

4

Flux linesEquipotential lines

V=Vo

V=0

V=0

Page 20: Electrostatic Boundary value problems

Find V(a,a/2) where Vo=100V, b=2a=2m

V

nn

ynxn

Vn

51.442

1sinh

2sinh

2sin400

5,3,1

Flux linesEquipotential lines

V=Vo

V=0

V=0

bann

ban

ban

VaaVn

o

sinh

2sinhsin4)

2,(

5,3,1

Page 21: Electrostatic Boundary value problems

Find E at (a,a/2)

yx

oddn

o ab

ynb

xnab

ynb

xn

banb

VyxE ˆcoshsinˆsinhcossinh

14),(

yx ayVa

xVVE ˆˆ

V/mˆ25.99

ˆ...)0074.0035.01703.08192.9411.3127.1912.115(

ˆ2/coshsinsinh

1400ˆ0

y

y

yoddn

x

a

a

aban

ban

banb

aE

Page 22: Electrostatic Boundary value problems

Resistance and Capacitance

Page 23: Electrostatic Boundary value problems

Resistance If the cross section of a conductor is not

uniform we need to integrate:

Solve Laplace eq. to find VThen find E from its differentialAnd substitute in the above equation

S

l

SdE

ldE

IVR

s

Page 24: Electrostatic Boundary value problems

P.E. 6.8 find Resistance of disk of radius b and central hole of radius a.

S

oo

SdEV

IVR

s

0112

2

2

2

2

zVVV

01

V

BAV lnoVbV

aVBC

)(0)(

:

aabVV o ln

/ln

ˆddVVE

ˆ

/ln abVo

)/ln(2

abtVSdEI o

S

ss

ˆddzSd

s tab

o2)/ln(

a

t

b

Page 25: Electrostatic Boundary value problems

Capacitance Is defined as the ratio of

the charge on one of the plates to the potential difference between the plates:

Assume Q and find V (Gauss or Coulomb)

Assume V and find Q (Laplace)

And substitute E in the equation.

FaradsldE

SdE

VQC

l

S

Page 26: Electrostatic Boundary value problems

Capacitance

1. Parallel plate2. Coaxial 3. Spherical

Page 27: Electrostatic Boundary value problems

Parallel plate Capacitor Charge Q and –Q

orx

s

xsn

aE

aD

ˆ

ˆ

Dielectric,

Plate area, S

SQ

s

dS

VQC

SQddx

SQldEV

dd

00

SESdEQ x

Page 28: Electrostatic Boundary value problems

Coaxial Capacitor Charge +Q & -Q

LESdEQ 2

abL

VQC

ln

2

Dielectric,

Plate area, S

SQd

SQdSEV

dd

00

++

+

+

+

--

-

--

-

-

-

-

c

ab

LQd

LQldEV

a

b

ln2

ˆˆ2

Page 29: Electrostatic Boundary value problems

Spherical Capacitor Charge +Q & -Q

24 rEdSEQ r

baVQC

114

ba

Qrdrrr

QldEVa

b

114

ˆˆ4 2

Page 30: Electrostatic Boundary value problems

What is the Earth's charge?

The electrical resistivity of the atmosphere decreases with height to an altitude of about 48 kilometres (km), where the resistivity becomes more-or-less constant. This region is known as the electrosphere. There is about a 300 000 volt (V) potential difference between the Earth's surface and the electrosphere, which gives an average electric field strength of about 6 V/metre (m) throughout the atmosphere. Near the surface, the fine-weather electric field strength is about 100 V/m.

The Earth is electrically charged and acts as a spherical capacitor. The Earth has a net negative charge of about a million coulombs, while an equal and positive charge resides in the atmosphere.

Page 31: Electrostatic Boundary value problems

Capacitors connectionSeries

Parallel

21 CCC

21

111CCC

Page 32: Electrostatic Boundary value problems

Resistance

S

SdE

ldE

IVR

s

ldE

SdE

VQC S

Recall that:

Multiplying, we obtain the Relaxation Time:

Solving for R, we obtain it in terms of C:

s

RC

CR

s

Page 33: Electrostatic Boundary value problems

So In summary we obtained:Capacitor C R=/sC

Parallel Plate

Coaxial

Spherical

ba11

4

Sds

ab

Lln

2dS

Lab

s2

ln

s4

11

ba

Page 34: Electrostatic Boundary value problems

P.E. 6.9 A coaxial cable contains an insulating material

of s1 in its upper half and another material with s2 in its lower half. Radius of central wire is a and of the sheath is b. Find the leakage resistance of length L.

s1

s2

Lab

RLab

R2

21

1

lnln

ss

21

2121 ||

RRRRRRR

21

1ln

ss

Lab

R

They are connected in parallel

Page 35: Electrostatic Boundary value problems

P.E. 6.10a Two concentric spherical capacitors with 1r=2.5 in its outer half and another material with 2r=3.5 in its inner half. The inner radius is a=1mm, b=3mm and c=2mm . Find their C.

1

pFC 53.0

2

c

We have two capacitors in series:

21

21

CCCCC

ba

C

ba

C oror

114

114 2

21

1

Page 36: Electrostatic Boundary value problems

P.E. 6.10b Two spherical capacitors with 1r=2.5 in its

upper half and another material with 2r=3.5 in its lower half. Inner radius is a=1mm and b=3mm. Find their C.1

2

2121 || CCCCC

ddErdSEQ sin2

We have two capacitors in parallel:

22 ErQ

ba

VQC oro 11

2/ 11

pF

ba

C 5.0112 21

ba

Qrdrrr

QldEVa

b

112

ˆˆ2 2

Page 37: Electrostatic Boundary value problems

Method of ImagesWhenever the is a charge in the presence

of a conductor. The conductor serves as a mirror.

Substitute the conductor for a plane at V=0 and the image.

The solution will be valid only for the region above the conductor.

Page 38: Electrostatic Boundary value problems

Line charge above ground plane2

21

1

ˆ2

ˆ2

o

L

o

LEEE

2222 )(ˆ)(ˆ

)(ˆ)(ˆ

2 hzxzhzxx

hzxzhzxxE

o

L

),0,(),,0(),,(),0,(),,0(),,(

2

1

hzxhyzyxhzxhyzyx

VVV

2

1ln2

o

Ldlo

L

o

L

2

21

1 2ˆˆ

2

22

22

)()(ln

2 hzxhzx

o

L