65
6. Electrostatic Boundary-Value Problems

6. Electrostatic Boundary-Value Problems · 2019. 11. 23. · 5 EX 6.1 그림6.1과같이EHD Pump에서ρ 0 =25 mC/m3 인Charge로채워져있고 V 0 =22 kV 일때Pump의압력을구하라

  • Upload
    others

  • View
    2

  • Download
    0

Embed Size (px)

Citation preview

  • 6. Electrostatic Boundary-Value Problems

  • 1

    6.2 Poisson’s and Laplace’s Equation

    )5.6()equations'Laplace( 0V

    0

    )4.6()equations'Poisson(V

    )3.6()V(

    )2.6(VE

    )1.6(ED

    2

    v

    v2

    v

    v

  • 2

    )8.6(0V

    sinr

    1Vsin

    sinr

    1

    r

    Vr

    rr

    1

    )7.6(0z

    VV1V1

    )6.6(0z

    V

    y

    V

    x

    V

    coodinates Sphericalor l,Cylindrica Catesian,in equation sLaplace'

    2

    2

    222

    2

    2

    2

    2

    2

    2

    2

    2

    2

    2

    2

    2

    2

  • 3

    If a solution to Laplace’s equation can be found

    that satisfies the boundary conditions,then the solution is unique.

    6.3 Uniqueness Theorem

  • 4

    6.4 General Procedure for Solving Poisson’sor Laplace Equation

    6.4 Section에서 문제 풀이할 때 사용하는 방정식.

    I/VR

    SdJI

    dSQ

    D

    ED

    VE

    S

    S

    nS

  • 5

    EX 6.1 그림 6.1과 같이 EHD Pump에서 ρ0=25 mC/m3 인 Charge로 채워져 있고V0=22 kV 일 때 Pump의 압력을 구하라.

    Figure 6.1 An electrohydrodynamic

    pump.

    BAzz2

    V

    Azdz

    dV

    dz

    Vd

    V

    20

    0

    02

    2

    02

  • 6

    d

    V

    2

    dz

    dz

    dVE

    Vzd

    V

    2

    dz

    2V

    d

    V

    2

    dA

    VAdd2

    0

    0)dz(V

    VB

    B00V

    V)0z(V

    BAzz2

    V

    000z

    00020

    00

    020

    0

    0

    0

    20

    Figure 6.1 An electrohydrodynamic

    pump.

  • 7

    Figure 6.1 An electrohydrodynamic

    pump.

    00

    d

    0

    002

    00

    d

    0000

    0

    d

    0 z0

    v z3

    0

    z0z

    000

    z

    00020

    SVF

    zd

    V

    2

    d

    2

    zS

    dzd

    V

    2

    dzS

    dzEdS

    xEdF

    dvEdQEdF

    d

    V

    2

    dz

    dz

    dVE

    Vzd

    V

    2

    dz

    2V

  • 8

    2

    33

    00

    00

    d

    0

    002

    00

    d

    0000

    0

    d

    0 z0

    v z3

    0

    z0z

    000z

    m/N550

    10221025

    VS

    Fp

    SVF

    zd

    V

    2

    d

    2

    zS

    dzd

    V

    2

    dzS

    dzEdS

    xEdF

    dvEdQEdF

    d

    V

    2

    dzE

    Figure 6.1 An electrohydrodynamic

    pump.

  • 9

    EX 6.2 그림 (a)에서 전극 사이의 전장을 구하라.

    복사기 원리.

    * 광전도체: 빛을 받으면 전기전도성이 생기는 물질.

    (c)

    0

    a

    d

    x

    (b)

    재결합

    빛E1

    E20

    a

    d

    x

    (a)

    광전도체

    ρsε1

    ε20

    a

    d

    x

  • 10

    2211S

    22

    11n22n11n2n1S

    211

    Sn2n1

    21

    22

    1111

    2

    1

    222

    111

    v2

    22

    AA

    dx

    dV

    dx

    dVEEDD

    aABaA

    )ax(DD

    )ax(V)ax(V

    0BB00

    dABBdA0

    0)0x(V

    0)dx(V

    )ax0(BxAV

    )dxa(BxAV

    BAxV

    00dx

    VdV

    ρsε1

    ε20

    a

    d

    x

  • 11

    ax0ata

    d1/

    )1a/d(

    A

    dx

    dVE

    dxaata

    d1/

    A

    dx

    dVE

    B,B,A,A:unknows4&

    eqs4ofsetconsistentSelf

    AA

    aABaA

    0B

    dAB

    2

    1

    1

    2

    1

    S

    2

    2x2

    2

    1

    1

    2

    1

    S

    1

    1x1

    2121

    2211S

    111

    2

    11

    ρs

    ε1

    ε20

    a

    d

    x

  • 12

    EX 6.3 φ=0 평면의 전위가 0 volt, φ=π/6 평면의 전위가 100 volt 일 때 작은간격으로 분리된 두 면 사이의 전위와 전장을 구하라.

    600

    d

    dV1

    az

    Va

    V1a

    VV)29.3(VE

    600V

    /600AB6/A100

    0BB00

    100)6/(V

    0)0(V

    BAV

    0z

    VV1V1)7.6(0

    d

    Vd1V

    z

    2

    2

    2

    2

    22

    2

    2

    2

    φ0 = π/6

    0 volt 100 volt

    x

    y

    z

  • 13

    aV

    sinr

    1a

    V

    r

    1a

    r

    VV)30.3(

    az

    Va

    V1a

    VV)39.3(

    az

    Va

    y

    Va

    x

    VV)28.3(

    r

    z

    zyx

  • 14

    Bsin

    dAV

    dsin

    AdV

    sin

    A

    d

    dV

    Ad

    dVsin

    0d

    dVsin

    d

    d

    0d

    dVsin

    d

    d

    sinr

    1V

    sinr

    1a

    r

    1a

    ra)30.3(

    0V

    sinr

    1Vsin

    sinr

    1

    r

    Vr

    rr

    1)8.6(

    2

    2

    r

    2

    2

    222

    2

    2

    EX 6.4 θ=π/10 면의 전위가 0 volt, θ=π/6 면의 전위가 50 volt 일 때 작은 간격으로 분리된 두 면 사이의 전위와 전장을 구하라.

    V0z

    θ1

    θ2

    Gap

  • 15

    tan 1 cot

    sin cos

    cscsec

    )2/tan(ln

    )2/tan(

    )2/tan(d

    )2/tan(

    d)2/(sec)2/1(

    )2/cos(/)2/sin()2/(cos2

    d

    )2/sin()2/cos(2

    d

    sin

    d

    2

    2

    2

    22

    secd

    tand

    sind

    cosd

    cosd

    sind

    tantan1

    tantan)tan(

    sincos)2cos(

    sinsincoscos)cos(

    cossin2)2sin(

    sincoscossin)sin(

  • 16

    B)2/tan(lnA

    Bsin

    dAV

    dsin

    AdV

    sin

    A

    d

    dV

    Ad

    dVsin

    0d

    dVsin

    d

    d

    0d

    dVsin

    d

    d

    sinr

    1V

    2

    2

    )20/tan()20/tan(

    )12/tan(ln/50B

    )20/tan(

    )12/tan(ln/50A

    B)12/tan(lnA50

    B)20/tan(lnA0

    50)6/(V

    0)10/(V

    B)2/tan(lnAV

  • 17

    )20/tan(

    )12/tan(ln/

    sinr

    50

    sinr

    A

    d

    dV

    r

    1E

    )20/tan()20/tan(

    )12/tan(ln/50))2/ln(tan(

    )20/tan(

    )12/tan(ln/50

    B))2/ln(tan(AV

    )20/tan()20/tan(

    )12/tan(ln/50B

    )20/tan(

    )12/tan(ln/50A

    sinr

    1a

    r

    1a

    ra)30.3(

    0V

    sinr

    1Vsin

    sinr

    1

    r

    Vr

    rr

    1)8.6(

    r

    2

    2

    222

    2

    2

  • 18

    EX 6.5 길이가 무한대인 사각형 관내의 전위 분포를 구하라.

    y

    a

    0b

    0VV

    0V

    x

    0

    2

    2

    2

    22

    V)a(Y)x(X)a,x(V

    0)0(Y0)0(Y)x(X)0,x(V

    0)b(X0)y(Y)b(X)y,b(V

    0)0(X0)y(Y)0(X)y,0(V

    0YY

    0XX

    Y

    Y

    X

    X

    0XYYX

    )y(Y)x(X)y,x(V

    0y

    V

    x

    VV

  • 19

    y

    a

    0b

    0VV

    0V

    x

    sMeaningles:0)x(X

    0A0Ab0)b(X

    0B0)0(X

    BAxX

    0X

    0XX

    0:1Case

  • 20

    dxAX

    dX

    AXdx

    dX

    AXdx

    dX

    XdX2dx

    dXd

    0dx

    dXX

    dx

    dX

    dx

    d

    2

    1

    0Xdx

    dX

    dx

    Xd

    dx

    dX

    0XX

    0XX

    0:2Case

    22

    22

    222

    22

    22

    2

    2

    2

    2

    Bxi

    di

    cos

    dcosi1

    1sini

    )sini(d1

    1XA

    XA

    d1

    BxAX

    dX

    dxAX

    dX

    2

    2

    22

    22

    y

    a

    0b

    0VV

    0V

    x

  • 21

    it

    it

    Cit

    Cit

    etsinitcos

    eC

    ee

    etsinitcos

    Cit)tsinitln(cos

    xlnx

    dx

    idttsinitcos

    )tsinit(cosd

    idt)tsinit(cos)tsinit(cosd

    tcositsindt

    )tsinit(cosd

    참고

  • 22

    y

    a

    0b

    0VV

    0V

    x

    x2

    x1

    xBxB

    )Bx(2)Bx(

    )Bx()Bx(222

    )Bx(2

    2

    i

    eAeA

    eeA

    eeA

    X

    1eXeA

    XeA

    eXA

    1XA

    eXA

    1XA

    XA

    1XA

    ln

    siniXA

    )siniln(cos

    eln

    i)Bx(

    iBx

  • 23

    y

    a

    0b

    0VV

    0V

    x

    sMeaningles:0)x(X

    0B

    0B

    bsinhB000)bx(X

    01B00)0x(X

    xsinhBxcoshB

    2

    eexsinh

    2

    eexcosh

    eAeAX

    2

    1

    2

    1

    21

    xx

    xx

    x2

    x1

  • 24

    - β=0는해의더하기에서의미가없음.- n이Minus인경우 Plus인경우의 sine 함수의상수배이기때문에해를고려할필요가없음.

    b

    ynsinhhY

    0YY

    b

    xnsing)x(X

    ...,3,2,1n,b

    n

    nbnsin0bsin

    0bsinbsing000)bx(X

    0g01g00)0x(X

    xsingxcosg

    eCeC)x(X

    0XX

    0XX

    0:3Case

    nn

    2

    nn

    1

    00

    10

    xi1

    xi0

    2

    1nn

    nnn

    b

    ynsinh

    b

    xnsinc)y,x(V

    b

    ynsinh

    b

    xnsinhg)y,x(V

    합해의여러

    0YY

    0XX

    y

    a

    0b

    0VV

    0V

    x

  • 25

    짝수

    홀수

    n,0

    n,

    b

    ansinhn

    V4

    c

    ...,6,4,2m,0

    ...,5,3,1m,m

    V4

    )mcos1(m

    V2

    b

    amsinhc

    )mcos1(m

    bV

    2

    b

    b

    amsinhc

    dxb

    xmsinVdx

    b

    xmsin

    b

    amsinhc

    dxb

    xmsinV

    b

    ansinh

    b

    xnsinc

    dxb

    xmsin)a,x(V

    Vb

    ansinh

    b

    xnsinc)a,x(V

    b

    ynsinh

    b

    xnsinc)y,x(V

    0

    n

    00

    m

    0m

    b

    00b

    02

    m

    b

    0 01n

    n

    b

    0

    01n

    n

    1nn

    ,..5,3,1n

    0

    b

    ansinhn

    b

    ynsinh

    b

    xnsin

    V4)y,x(V

    y

    a

    0b

    0VV

    0V

    x

  • 26

    0

    b

    x)nm(sin

    )nm(

    b

    b

    x)nm(sin

    )nm(

    b

    dxb

    x)nm(cos

    b

    x)nm(cos

    dxb

    xnsin

    b

    xmsin2

    )nm:1case(

    )cos()cos(sinsin2

    sinsincoscos)cos(

    sinsincoscos)cos(

    dxb

    xnsin

    b

    xmsin

    b

    0

    b

    0

    b

    0

    b

    0

    b

    0

    계산

    tan 1 cot

    sin cos

    cscsec

    2

    22

    secd

    tand

    sind

    cosd

    cosd

    sind

    tantan1

    tantan)tan(

    sincos)2cos(

    sinsincoscos)cos(

    cossin2)2sin(

    sincoscossin)sin(

  • 27

    tan 1 cot

    sin cos

    cscsec

    2

    22

    secd

    tand

    sind

    cosd

    cosd

    sind

    tantan1

    tantan)tan(

    sincos)2cos(

    sinsincoscos)cos(

    cossin2)2sin(

    sincoscossin)sin(

    2

    bdx

    b

    xmsin

    b

    b

    xm2sin

    m2

    bx

    dxb

    xm2cos1

    dxb

    xmsin2

    )nm:2case(

    dxb

    xmsin

    b

    xmsin

    b

    02

    b

    0

    b

    0

    b

    02

    b

    0

    계산

    2

    22

    sin21

    sincos)2cos(

  • 28

    EX 6.6 Ex 6.5에서 V0가 다음 값을 가질 때 전위 분포를 구하라.

    y

    a

    0b

    0VV

    0V

    xb

    a3sinh

    b

    y3sinh

    b

    x3sin10)y,x(V

    b

    a3sinh/10c

    b

    a3sinhc10

    3n,0c

    b

    ansinh

    b

    xnsinc

    b

    x3sin10V)a,x(V

    )19.5.6(b

    ynsinh

    b

    xnsinc)y,x(V

    bx0,ay,b

    x3sin10V)a(

    33

    n

    1nn0

    1nn

    0

    ,..5,3,1n

    0

    b

    ansinhn

    b

    ynsinh

    b

    xnsin

    V4)y,x(V

  • 29b

    a5sinh10

    b

    y5sinh

    b

    x5sin

    b

    asinh

    b

    ysinh

    b

    xsin2

    )y,x(V

    b

    a5sinh10

    1c

    b

    a5sinhc

    10

    1

    b

    a5sinh

    2c

    b

    asinhc2

    5,1n,0c

    b

    ansinh

    b

    xnsinc

    b

    x5sin

    10

    1

    b

    xsin2)a,x(V

    )19.5.6(b

    ynsinh

    b

    xnsinc)y,x(V

    bx0,ay,b

    x5sin

    10

    1

    b

    xsin2V)b(

    55

    11

    n

    1nn

    1nn

    0

    y

    a

    0b

    0VV

    0V

    x

    ,..5,3,1n

    0

    b

    ansinhn

    b

    ynsinh

    b

    xnsin

    V4)y,x(V

  • 30

    EX 6.7 전하가 없는 영역에서 𝛻2V(ρ, φ, z)의 분리된 미분방정식을 구하라.

    zsinhczcoshcZ

    )7.7.6(0ZZ

    z

    Z

    Z

    1

    z

    Z

    Z

    11R

    R

    1

    0z

    ZR

    RZRZ

    )z(Z)()(RV

    0z

    VV1V1V

    21

    2

    2

    2

    2

    2

    2

    2

    2

    2

    2

    2

    2

    2

    2

    2

    2

    2

    2

    2

    2

    2

    ftBessel:)r(JR

    )11.7.6(0R)(RR

    sinccosc

    )10.7.6(0

    1R

    R

    R

    R

    1R

    R

    n

    2222

    43

    2

    2

    2

    222

    2

    2

    22

    2

    2

  • 31

    1. Choose a suitable coordinate system

    2. Assume Vo as the potential difference between conductor terminals

    3. Solve Laplace’s Equation to obtain V, then E and I in Eq. (6.16)

    4. Obtain R as Vo/I

    6.5 Resistance and Capacitance

    )16.6(SdE

    LdE

    SdJ

    LdE

    I

    VR

    uniform) isty conductivi theifonly (validS

    lR

    )17.6(LdEVVV1

    221

  • 32

    1. Assuming Q and determining V in terms of Q (Gauss’s Law): Section A-C

    a) Choose a suitable coordinate system

    b) Let the two conducting plates carry charges +Q and –Q

    c) Determine E (Coulomb’s or Gauss’s Law), then V (a function of Q)

    d) Obtain C = Q/V

    2. Assuming V and determining Q in terms of V (Laplace’s Eq.) : Ex 6.10/14

    a) Choose a suitable coordinate system

    b) Assume V0 as the potential difference between conductor terminals

    c) Solve Laplace’s Equation to obtain V, then Ed) Obtain Q as a function of V

    e) Obtain C = Q/V

    )18.6(LdE

    SdE

    V

    QC

  • 33

    Figure 6.12 A two-conductor capacitor.

  • 34

    A. Parallel-Plate Capacitor

    )22.6(d

    S

    V

    QC

    )21.6(S

    Qd

    adxaS

    Q

    LdEV

    )20.6(aS

    Q

    )a(E

    )19.6(S

    Q

    xd

    0 x

    1

    2

    x

    xS

    S

    Dielectric ε

    Plate area S x

    E

    1

    2

  • 35

    Figure 6.13 (a) Parallel-plate capacitor.

    (b) Fringing effect due to a parallel-plate capacitor.

    (a)

    Dielectric ε

    Plate area S x

    E

    1

    2

  • 36

    )24.6(C2

    QQV

    2

    1CV

    2

    1W

    QV2

    1

    C2

    Q

    S

    d

    2

    Q

    S

    Q

    S

    d

    d

    Q

    d

    C/Q

    d

    VE

    S2

    )Sd(Qdv

    S

    Q

    2

    1dvE

    2

    1W

    )23.6(

    d

    SC

    d

    S

    V

    QC

    C

    C

    22

    E

    22

    22

    2

    v

    2

    v2

    E

    00

    0r

  • 37

    B. Coaxial Capacitor

    ρ

    L

    Dielectric ε

    )28.6(

    a

    bln

    L2

    V

    QC

    )b27.6(a

    bln

    L2

    Q

    )a27.6()a(daL2

    Q

    LdEV

    )26.6(aL2

    QE

    )25.6(L2ESdEQ

    a

    b

    1

    2

  • 38

    C. Spherical Capacitor

    )32.6(

    b

    1

    a

    1

    4

    V

    QC

    )31.6(b

    1

    a

    1

    4

    Q

    )a(drar4

    Q

    LdEV

    )30.6(ar4

    QE

    )29.6(r4ESdEQ

    a

    b rr2

    1

    2

    r2

    2r

    2

    1 r

    Dielectric ε

    a

    b

  • 39

    )35.6(RC

    LdE

    SdE

    V

    QC)17.6(

    SdE

    LdE

    I

    VR)16.6(

    )34.6(CCC

    )33.6(CC

    CCC

    C

    1

    C

    1

    C

    1

    21

    21

    21

    21

    C1 C2

    (b)

    C1

    C2

    (a)

  • 40F1007.7

    2

    104

    36

    104

    )39.6(a4

    1R,a4C

    )38.6(4

    b

    1

    a

    1

    R,

    b

    1

    a

    1

    4C

    )37.6(L2

    a

    bln

    R,

    a

    bln

    L2C

    )36.6(C

    RRCS

    dR,

    d

    SC

    4

    79

    지구

  • 41

    )a/ln()a/bln(

    VV

    )a/bln(/aVlnB

    )a/bln(/VA

    BblnAVV)b(V

    BalnA00)a(V

    BlnAV

    AddV

    Ad

    dV

    0d

    dV

    d

    d

    0d

    dV

    d

    d1

    0z

    VV1V1V

    0

    0

    0

    00

    2

    2

    2

    2

    2

    2

    EX 6.8 (a) 90o로 구부러진 도체의 ρ=a와 ρ=b 사이의 저항을 구하라.

    ab

    t

    전도율=σx

    y

    z

  • 42

    t

    )a/bln(2

    I

    VR

    )a/bln(

    Vt

    2

    ddz)a/bln(

    V

    SdJI

    EJ

    )a/bln(

    V

    d

    dVE

    )a/ln()a/bln(

    VV

    0

    0

    2/

    0

    t

    00

    0

    0

    aV

    sinr

    1a

    V

    r

    1a

    r

    VV)30.3(

    az

    Va

    V1a

    VV)29.3(

    az

    Va

    y

    Va

    x

    VV)28.3(

    r

    z

    zyx

    ab

    t

    전도율=σx

    y

    z

  • 43

    EX 6.8 (b) 90o로 구부러진 도체의 z=0와 z=t 사이의 저항을 구하라.

    )ab(

    t4

    I

    VR

    t4/)ab(Vddt

    VdSJI

    t

    VEJ

    t

    V

    dz

    dVE

    zt

    VV

    t/VAV)tz(V

    0B0)0z(V

    BAzV

    0z

    V

    0z

    VV1V1V

    220

    220

    b

    a

    2/

    00

    z

    0zz

    0z

    0

    00

    2

    2

    2

    2

    2

    2

    2

    2

    ab

    t

    전도율=σx

    y

    z

  • 44

    )ab(

    t4

    4

    )ab(

    t

    S

    LR

    22

    22

    방법다른

  • 45

    EX 6.9 무한 동축 Cable의 단위 길이당 ρ=a, ρ=b 사이의 저항과 단위 길이당Conductance를 구하라. a와 b 사이는 도전율 σ인 물질로 채워져 있다.

    )a/ln()a/bln(

    VV

    )a/bln(/aVlnB

    )a/bln(/VA

    BblnAVV)b(V

    BalnA00)a(V

    BlnAV

    0d

    dV

    d

    d1

    0z

    VV1V1V

    8.6Ex

    0

    0

    0

    00

    2

    2

    2

    2

    2

    2

    유사과

  • 46

    )a/bln(

    2

    2

    )a/bln(

    1

    LL2

    )a/bln(

    1

    RL

    1G

    L2

    )a/bln(

    I

    VR

    )a/bln(

    VL

    2ddz

    )a/bln(

    VSdJI

    EJ

    )a/bln(

    V

    d

    dVE

    )a/ln()a/bln(

    VV

    0

    02

    0

    L

    00

    0

    0

  • 47

    b

    1

    a

    1b

    1

    r

    1

    VV

    a

    1

    b

    1/

    b

    VB

    a

    1

    b

    1/VA

    0Bb

    A)br(V

    100Ba

    A)ar(V

    Br

    AV

    r

    A

    dr

    dV

    0dr

    dVr

    dr

    d

    0dr

    dVr

    dr

    d

    r

    1V

    V

    sinr

    1Vsin

    sinr

    1

    r

    Vr

    rr

    1V)62.3(

    00

    0

    2

    2

    2

    2

    2

    2

    2

    222

    2

    2

    2

    EX 6.10 도체 이중 구각에서 V(r=a)=100 volt, V(r=b)=0 volt일 때 V, Er 분포를 구하라. 사이 물질은 εr=2.5 일 때 총전하와 Capacitance를 구하라.

    Er

    a=10 cm

    b=30 cm

  • 48

    b

    1

    a

    1

    4

    V

    QC

    b

    1

    a

    1

    V4

    ddsinr

    b

    1

    a

    1r

    V

    dSEQ

    b

    1

    a

    1/

    r

    V

    r

    A

    dr

    dVE

    r0

    0

    0r0

    0

    2

    02

    2

    0r0

    r

    20

    2r

    반지름 r인 축구공껍데기 적분

    aV

    sinr

    1a

    V

    r

    1a

    r

    VV)30.3(

    az

    Va

    V1a

    VV)29.3(

    az

    Va

    y

    Va

    x

    VV)28.3(

    r

    z

    zyx

    Er

    a=10 cm

    b=30 cm

  • 49

    θ는 Zenith Angle이고φ는Azimuthal Angle.

    φ

    z

    x

    y

    θ

    rdφ

    r

    dr

    rsinθdφ

    rdθρ=rsinθ

    adrdr

    addrsinr

    addsinrSd r2

  • 50

    EX 6.11 V0를 가정하고 Q를 유도하여 평면사이의 C=εS/d 를 유도하라.

    S0VV

    0V

    x

    d

    d

    S

    V

    QC

    d

    SV

    dSd

    VdS

    dx

    dVdSEdSDdSQ

    xd

    VV

    .volt0

    .voltV

    BAxV

    0dx

    VdV

    0

    0

    0nnS

    00

    2

    22

    가정라고하판을

    가정라고상판을그림의

  • 51

    EX 6.12 Capacitance를 구하라. d=5mm, S=30cm2.

    41r

    62r

    2/d

    2/d

    )a(

    1r 2r

    2/w 2/w)b(

    )(d2

    SCCC

    Capacitor)b(

    d

    S2

    CC

    CCC

    2/d

    SC

    2/d

    SC

    Capacitor)a(

    2r1r0

    21

    2r1r

    2r1r0

    21

    21

    2r02

    1r01

    연결병렬의

    연결직렬의

  • 52

    EX 6.13 a=1cm, b=2.5cm이고 극판사이에 εr=(10+ρ)/ρ 인 유전체가 있다. ρ는 cm 단위 이다. 단위 길이당 Capacitance를 구하라.

    적분을 위한Closed Surface

    La

    b

    L

    dL 방향

    a10

    b10ln

    2

    LV

    Q

    L

    C

    a10

    b10ln

    L2

    Q

    10

    d

    L2

    Q

    dL2

    QV

    L2

    QE

    L2ESdEQ

    0

    0

    a

    b0

    a

    b

  • 53Figure 6.21 Image system: (a) charge configurations above a perfectly conducting plane, (b) image configuration with the conducting

    plane replaced by equipotential surface.

    The Image Theory states that a given charge configuration above an infinite grounded perfect conducting plane may be replaced by the charge configuration itself, its image, and an equipotential surface in the place of the conducting plane.

    6.6 Method of Image

  • 54

    310

    1

    1kv

    10

    1kv2

    )xx(4

    )xx(QE

    )xx(QE

    xx4

    QV

    )xx(QV

    x=-x1

    E(x=∞)=0V(x=∞)=0

    Q

    δ(x-x0)

    x0 x0+Δx

    x

    1/Δx

    Δx

    )x(fdx)xx()x(f

    )zz()yy()xx()xx(

    00

    kkkk

  • 55

    x1

    Metal

    E(x=∞)=0V(x=∞)=0

    320

    23

    10

    1

    2k1kv

    2010

    2k1kv2

    )xx(4

    )xx(Q

    )xx(4

    )xx(QE

    )xx(Q)xx(QE

    xx4

    Q

    xx4

    QV

    )xx(Q)xx(QV

    δ(x-x0)

    x0 x0+Δx

    x

    1/Δx

    Δx

    x1

    x2=-x1

    E(x=∞)=0V(x=∞)=0

  • 56

    Metal

    x1

    Metal

    E(x=∞)=0V(x=∞)=0

    x1

    x2=-x1

    E(x=∞)=0V(x=∞)=0

  • 57

    A. A point Charge Above a Grounded Conducting Plane

    )45.6(])hz(yx[

    1

    ])hz(yx[

    1

    4

    QV

    r4

    Q

    r4

    Q

    VVV

    )44.6(

    ])hz(yx[

    a)hz(ayax

    ])hz(yx[

    a)hz(ayax

    4

    QE

    )43.6()hz,y,x()h,0,0()z,y,x(r

    )42.6()hz,y,x()h,0,0()z,y,x(r

    )41.6(r4

    rQ

    r4

    rQ

    )40.6(EEE

    2/12222/12220

    2010

    2/3222

    zyx

    2/3222

    zyx

    0

    2

    1

    320

    2

    31o

    1

  • 58

    Figure 6.22 (a) Point charge and grounded conducting plane.

    (b) Image configuration and field lines.

  • 59

    )49.6(Q

    |]h[

    Qh

    )(d2

    1]h[2

    2

    QhQ

    )48.6(]h[

    dd

    2

    QhQ

    dddxdy

    )47.6(]hyx[2

    QhdxdydSQ

    )46.6(]hyx[2

    Qh

    |ED

    ])hz(yx[

    a)hz(ayax

    ])hz(yx[

    a)hz(ayax

    4

    QE

    02/122

    022/322

    i

    0 2/322

    2

    0i

    2

    0 0

    2/3222Si

    2/3222

    0zn0nS

    2/3222

    zyx

    2/3222

    zyx

    0

  • 60

    2

    0 0dddxdy

    y

    z

    x

    ρ

    dρdρdφ

    dxdy

    x

    z

    y

  • 61

    B. A Line Charge above a Grounded Conducting Plane

    y

    zP(x,y,z)

    (0,y,h)

    (0,y,-h)x

    h

    -h

    )55.6(ln2

    ln2

    ln2

    VVV

    )54.6()hz(x

    a)hz(ax

    )hz(x

    a)hz(ax

    2E

    )53.6()hz,0,x()h,y,0()z,y,x(

    )52.6()hz,0,x()h,y,0()z,y,x(

    )51.6(a2

    a2

    )50.6(EEE

    2

    1

    0

    L

    20

    L1

    0

    L

    22zx

    22zx

    0

    L

    2

    1

    220

    L1

    10

    L

  • 62

    )59.6(

    dsechdx

    tanhx

    h

    dh

    (6.58)length)unit per (charge hx

    dxhdx

    )57.6()hx(

    h|ED

    )56.6()hz(x

    )hz(xln

    2V

    ln2

    V)55.6(

    )hz(x

    a)hz(ax

    )hz(x

    a)hz(ax

    2E(6.54)

    L

    2

    2/

    2/L

    22L

    Si

    22L

    0zz0nS

    2/1

    22

    22

    0

    L

    2

    1

    0

    L

    22zx

    22zx

    0

    L

  • 63

    EX 6.14 그림 (a)와 같이 두 개의 반 무한 평면 사이에 점전하 Q가 (a,0,b)에 있다.전위를 구하고 Q에 작용하는 힘을 구하라.

    x

    z

    b

    a

    )a(

    Q

    x

    z

    b

    aQ

    Q2

    Q

    Q4

    a

    a2

    b2

    b

    )b(

    Q

    Q3

    Q

    Q1

    z22/322x22/3220

    2

    z20

    2

    2/322zx

    0

    2

    x20

    2

    4131211

    2224

    2223

    2222

    2221

    43210

    ab

    1

    )ba(

    ba

    a

    1

    )ba(

    a

    16

    Q

    a)b2(4

    Q

    ])b2()a2[(

    ab2aa2

    4

    Qa

    )a2(4

    Q

    FFFF

    ])bz(y)ax[(r

    ])bz(y)ax[(r

    ])bz(y)ax[(r

    ])bz(y)ax[(r

    r

    1

    r

    1

    r

    1

    r

    1

    4

    QV

  • 64

    Figure 6.25 Point charge between two

    semi-infinite conducting walls inclined

    at 60° to each other.

    1

    360N

    imageofNumber

    o