34
ECE 307: Electricity and Magnetism Fall 2012 Instructor: J.D. Williams, Assistant Professor Electrical and Computer Engineering University of Alabama in Huntsville 406 Optics Building, Huntsville, Al 35899 Phone: (256) 824-2898, email: [email protected] Course material posted on UAH Angel course management website Textbook: M.N.O. Sadiku, Elements of Electromagnetics 5 th ed. Oxford University Press, 2009. Optional Reading: H.M. Shey, Div Grad Curl and all that: an informal text on vector calculus, 4 th ed. Norton Press, 2005. All figures taken from primary textbook unless otherwise cited.

Electrostatic Boundary Value - Electrical & Computer

  • Upload
    others

  • View
    4

  • Download
    0

Embed Size (px)

Citation preview

ECE 307: Electricity and Magnetism

Fall 2012

Instructor: J.D. Williams, Assistant Professor

Electrical and Computer Engineering

University of Alabama in Huntsville

406 Optics Building, Huntsville, Al 35899

Phone: (256) 824-2898, email: [email protected]

Course material posted on UAH Angel course management website

Textbook:

M.N.O. Sadiku, Elements of Electromagnetics 5th ed. Oxford University Press, 2009.

Optional Reading:

H.M. Shey, Div Grad Curl and all that: an informal text on vector calculus, 4th ed. Norton Press, 2005.

All figures taken from primary textbook unless otherwise cited.

8/17/2012 2

Chapter 6: Electrostatic Boundary Value Problems

• Topics Covered

– Poisson’s and Laplace’s Equations

– Uniqueness Theorem

– General procedures for solving Poisson’s or Laplace’s equations

– Resistance and Capacitance

– Method of Images (quick look re-look into Coulomb’s law)

• Homework: 3, 10, 14, 16, 19, 23, 24, 30, 32, 43, 45, 46, 47,

All figures taken from primary textbook unless otherwise cited.

8/17/2012 3

Resistance

• Recall from Chapter 5, that we defined Resistance as R = L/S

• We can also define it using Ohm’s law as

• The actual resistance in a conductor of non-uniform cross section can be

solved as a boundary value problem using the following steps

– Choose a coordinate system

– Assume that Vo is the potential difference between two conductor terminals

– Solve Laplace’s Eqn. to obtain V. Then Determine E = -V and solve I from

– Finally, R = Vo/I

SdE

ldE

I

VR

SdEI

8/17/2012 4

Capacitance • Capacitance is the ratio of the magnitude of charge on two separated plates

to the potential difference between them

• Note that The negative sign is dropped in the definition above

because we are interested in the absolute value of the voltage drop

• Capacitance is obtained by one of two methods

– Assuming Q, determine V in terms of Q

– Assuming V, determine Q in terms of V

• If we use method 1, take the following steps

– Choose a suitable coordinate system

– Let the two conducting plates carry charges +Q and –Q

– Determine E using Coulomb’s or Gauss’s Law and find the magnitude of

the voltage, V, via integration

– Obtain C=Q/V

ldEV

ldE

SdE

V

QC

8/17/2012 5

Parallel Plate Capacitor • Assume two parallel plates separated by a distance, d, with

charges, +Q and –Q, on them

• The charge density on each plate is

00

0

ˆˆ

ˆ

C

C

d

S

V

QC

S

Qddx

S

QldEV

aS

QaE

aD

r

d

x

xxS

xS

S

QS

QVC

Q

S

dQ

S

SdQdv

S

QW

C

QQVCVW

v

E

E

2

1

22

22

1

22

1

2

1

22

22

2

22

2

22

8/17/2012 6

Coaxial Capacitor • Assume to cylindrical plates of inner radius a and outer

radius b with +Q and –Q on them

• The charge density on each plate is

a

b

L

V

QC

a

b

L

Qd

L

Q

adaL

QldEV

aL

QE

LESdEQ

b

a

b

a

ln

2

ln22

ˆˆ2

ˆ2

2

Coaxial Line Resistance

8/17/2012 7

From the resistance if a coaxial line from the electric potential and

current density

abRG

ab

LI

VR

L

ab

I

VR

ab

VLI

dzdab

VSdJI

L

z

/ln

21

2

/ln1

2

/ln

/ln

2

/ln

0

0

0

0

2

0

0

adzdSd

apply

aab

VEJ

aab

Va

d

dVVE

ˆ

ˆ/ln

ˆ/ln

ˆ

0

0

Conductance

Resistance per

unit length

8/17/2012 8

Spherical Capacitor • Assume two spherical plates of inner radius a and outer radius b with +Q

and –Q on them

• The charge density on each plate is

ba

V

QC

ba

Qdr

r

Q

adrar

QldEV

ar

QE

rESdEQ

b

ar

b

ar

r

r

11

4

11

44

ˆˆ4

ˆ4

4

2

2

2

2

8/17/2012 9

Series and Parallel Capacitance

k

n nCC 1

11

k

n

nCC1

Series Capacitance Parallel Capacitance

8/17/2012 10

d

S

d

SC rr 1010

1

2

2/

d

SC r20

2

2

210

21 rrd

SCCC

21

210

21

21

21

21

0

2

0

21

21

2

2

2

rr

rr

rr

rr

d

S

CC

CCC

d

S

d

S

CC

CCC

d

S

d

SC rr

2

2/ 10101

d

SC r

2

202

Series and Parallel Capacitance

(Example)

8/17/2012 11

Capacitance vs. Resistance

For Common Geometries

RC

ldE

SdE

V

QC

SdE

ldE

I

VR

Parallel Plates

Isolated Sphere a

RaC

baR

ba

C

L

a

b

R

a

b

LC

S

dR

d

SC

4

1,4

4

11

,11

4

2

ln

,

ln

2

,

Between 2 Spheres

Coaxial Cylinders

8/17/2012 12

Poisson’s and Laplace’s

Equations for Electrostatics • Solving for the potential, V, using charge density

• Uniqueness theorem: Although there are many ways to solve Laplace’s equation, there is only one solution for any given set of boundary conditions

• General Procedures for solving:

– Laplace’s Eqn. Poison’s Eqn.

• Direct integration of V is a function of only 1 variable

• If V is a function of 2 or more variables, then apply separation of variables method to reduce dimensionality and solve

– Apply BCs to determine unique solution for V

– Having V, find E,D,J

– Find Q from D: C, from Q and V: and R from V and J

VE

ED v

02 V 02 V

v

v

V

V

2

8/17/2012 13

Uniform Charge Density in

Cylindrical Wire Biased at z=0

BAzz

V

Az

dz

dV

z

V

V

v

v

v

v

2

2

2

2

2

0,

,0

Vdz

VVZ o

General 1-D solution in z

Apply Boundary Conditions

d

VdA

VAdd

dzV

VB

VAzV

ov

ov

o

ov

o

2

20

02

0)0(

2

2

Find V,E,F

areationalcrossS

d

Vdz

zSdvEF

ad

Vdza

z

VVE

Vzd

VdzV

d

ovvvv

zovv

z

oovv

_sec_

22

2

22

0

2

2

8/17/2012

14

1-D Capacitor with Two Dielectrics

axBxAV

axBxAV

ax

BAxV

V

,

,

0

222

111

2

axDD

axVaxV

axBxAV

axBxAV

ax

Vx

Vdx

snn

,

)()(

,

,

0,0

0,

21

21

222

111

2

1

General 1-D solution in x

Apply Boundary Conditions

2211

211

2

22

11

11

)(

0

)0(0

0

AA

aABaAaxV

B

BAxV

dAB

BdAdxV

s

Find E

11

0,

1

ˆ1

ˆ

,

1

ˆˆ

1

21

1

2

1

21

22

1

2

1

21

11

a

d

ax

a

d

aa

d

aAE

dxa

a

d

aaAE

xS

x

xSx

Can solve for V, and F using algebra

Is the weighting fraction of the

dielectric constant for the distance

d+a=1

8/17/2012 15

1-D Capacitor with Two Dielectrics Lets solve the algebra showing that we can get E from V(x=a) and s

2211

21 )()(

AA

aAdaAaxV

s

ax

a

d

aa

d

aAExS

x

0,

1

ˆ1

ˆ

1

2

1

21

22

2211

211

222

1111

)(

0)0(0

0

AA

aABaAaxV

BBAxV

dABBdAdxV

s

1

2

1

211

1

2

1

211

1

211

1211

21

1

1

1

)()(

a

dA

a

a

a

dA

a

daA

Aa

daA

aAdaAaxV

s

dxa

a

d

aaAE xS

x

,

1

ˆˆ

1

2

1

21

11

1

2

1

21

1

2

1

21

2

21

1

2

1

21

1

1

1

1

)()(

1

a

d

a

d

a

d

a

da

A

aAdaAaxV

a

dA

SS

S

8/17/2012 16

1-D Semi-infinite

Intersecting Planes

BAV

VVV

00

12

2

2

2

2

2

mVoltsaE

VoltsV

mVV

aV

aV

VE

/*ˆ600

*600

1,6

,100

ˆ1

ˆ1

00

0

0

General 1-D solution in

Apply Boundary Conditions

Find V and E

0

0

0

0

000 )(

0

)0(0)0(

VBAV

VA

AVV

B

BAV

8/17/2012 17

2-D conducting cones

(1-D Problem)

BA

dA

dAV

yieldsegrationFurther

AV

yieldsegration

VV

rV

2/tanln2/tan

2/tan

sin

_int_

sin

_int

0sin0sinsin

12

2

mV

r

aVE

VV

VV

ar

V

ar

Aa

V

rVE

VV

VVV

/sin

ˆ1.95

1584.0

2/tanln1.95

50,6/,10/

ˆsin

2/tan

2/tanln

ˆsin

ˆ1

2/tan

2/tanln

2/tan

2/tanln

2/tanln2/tan

2/tanln2/tanln

2/tan

2/tanln

021

2

10

12

10

1

2

10

2

10

Apply Boundary Conditions

Find V and E

2/tan

2/tanln

2/tan

2/tanln

2/tanln2/tanln

2/tanln

2/tanln0

2

10

1

20

1202

1

11

VAAV

AAVV

AB

BAV

General 1-D solution in

http://en.wikipedia.org/wiki/List_of_integrals_of_trigonometric_functions

From our Trig Identities we know that

Thus

And again from trig identities

Thus

Integral of 1/sin(a)

8/17/2012 18

csc

1sin

d

d csc

sin

Cd

2tanln

sin

Integral of 1/sin(a) (Method 2)

8/17/2012 19

CCC

Cu

uCuu

duuuu

du

uletdd

2tanln

2

1

cos1

cos1ln

cos1

cos1ln

2

1

1

1ln

2

11ln1ln

2

1

1

1

1

1

2

1

1

cos_,sin

sin

sin

2

2

Using the known trig. identity

From our Trig Identities we know that

Thus

And again from trig identities

Thus

Integral of 1/sin(a)

8/17/2012 20

csc

1sin

d

d csc

sin

Cd

2tanln

sin

Spherical Capacitor Using

Laplace’s Equation

8/17/2012 21

General 1-D solution in r

Br

AV

Adr

dVr

dr

dVr

dr

d

rV

2

2

2

2 01

Apply Boundary Conditions

rbAV

yields

bABBb

A

Vbr

11

/0

0,

abAV

VVar

11

,

0

0

Find E and C

abr

VE

adr

dVVE

ab

brV

V

r

11

ˆ

11

11

2

0

0

ab

VA o

11

ba

V

QC

ba

VQ

ddr

abr

VQ

SdEQ

r

r

r

11

4

11

4

sin11

0

0

00

0

2

0

2

2

00

8/17/2012 22

1-D Laplace’s Eqn. in

Solve for E, J, I, R

Boundary Conditions

BAV

Ad

dV

ln

ab

aVV

aAaABAV

ab

VA

aAbABbAVbV

aABaV

/ln

/ln

/ln)ln(lnln

/ln

lnlnln)(

ln0)(

0

0

0

t

ab

I

VR

ab

VtI

dzdab

VSdJI

adzdSd

apply

aab

VEJ

aab

Va

d

dVVE

t

z

/ln2

/ln2

/ln

ˆ

ˆ/ln

ˆ/ln

ˆ

0

0

0

2/

0

0

0

0

012

d

dV

d

dV

Resistance in a Curved

Metal Bar (1)

8/17/2012 23

1-D Laplace’s Eqn. in z

Solve for E, J, I, R

Boundary Conditions

BAzV

dz

VdV

02

22

zt

VV 0

22

0

22

0

2/

0

0

0

0

4

4

ˆ

ˆ

ˆˆ

ab

t

I

VR

t

abVI

ddt

VSdJI

addSd

apply

at

VEJ

at

Va

dz

dVVE

b

a

z

z

zz

t

VA

AtVtzV

B

BAzV

0

0)(

0

00)0(

Resistance in a Curved

Metal Bar (2)

8/17/2012 24

2-D Rectangular Waveguide

0

2

2

2

22

,0

00,0

00,

00,0

0

VaybxV

ybxV

aybxV

ayxV

y

V

x

VV

Laplace equation for

Cartesian coordinates in 2-D

Separation of Variables

0)()(,

0)0(0)0()(0,

0)(0)()(,

0)0(0)()0(,0

0''

0''

''''

0''''

)()(,

VaYxXaxV

YYxXxV

bXyYbXybV

XyYXyV

YY

XX

Y

Y

X

X

XYYX

yYxXyxV

Boundary Conditions

Where is separation constant

Separated Boundary Conditions

Vo term is inseparable

8/17/2012 25

2-D Rectangular Waveguide

0)(

000

000

0''

xX

AbAbxX

BxX

BAxX

X

X

Case number 1

Case number 2

x

x

eAX

eAX

AxX

dxX

dX

XDX

dx

dD

XD

XX

2

1

1

22

2

2

lnln

0

0''

0

Gives 2 solutions

The second solutions is

The separated set of differential

equations has three possible

solutions:

case 1: =0

case 2: <0

case 3: >0

Applying Boundary Conditions

Integrating twice yields

Yields the trivial Solution

8/17/2012 26

2-D Rectangular Waveguide

0)(

0

sinh0

sinhcosh0

0

0100

sinhcosh)(

)(

2

2

21

1

21

212

211

21

21

xX

B

bB

bBxBbxX

B

BBxX

AAB

AAB

xBxBxX

eAeAxX xx

Case number 2

Again, the trivial solution

where

http://en.wikipedia.org/wiki/Hyperbolic_function

8/17/2012 27

2-D Rectangular Waveguide

Modal periodic

solutions allowed

b

xngxX

nb

n

nbnb

buttrivialgfor

g

bg

bgxgbxX

g

ggxX

nn

sin)(

,...3,2,1,

sin0sin

:_,0_

0

sin0

sincos0

0

0100

1

1

1

10

0

10

Case number 3

101

100

10

10

22

2

2

sincos)(

)(

0

0''

0

jCCg

CCg

xgxgxX

eCeCxX

XjDX

dx

dD

XD

XX

xjxj

http://en.wikipedia.org/wiki/Sine_wave

8/17/2012 28

2-D Rectangular Waveguide

ab

nhV

ahVayY

g

ggyY

yhyhyY

YY

b

n

b

xngxX nn

sinh

sinh

0

0100

sinhcosh)(

0''

0

sin)(

10

10

0

10

10

2

2

222

Case number 3 (cont.)

Solution for Y Case number 3

1

0

1

sinhsin,

sinhsin,

sinhsin,

sinh)(

n

n

n

n

nn

nn

b

an

b

xncVayxV

b

yn

b

xncyxV

b

yn

b

xnhgyxV

b

ynhyY

8/17/2012 29

2-D Rectangular Waveguide

Case number 3 (cont.) Solution for Y

oddn

n

n

n

b

n

b

b

n

b

b

ann

b

yn

b

xn

VyxV

evenn

oddn

b

ann

V

c

n

nn

V

nn

V

b

anc

b

b

ancn

n

bV

dxb

xn

b

anc

b

xnV

dxb

xn

b

ancdx

b

xnV

sinh

sinhsin4

,

,0

,

sinh

4

,...6,4,2,0

,..5,3,1,4

cos12

sinh

2sinhcos1

2cos1

2

1sinhcos

sinsinhsin

0

0

00

0

00

0

0

2

0

0

nm

nmdxnxmx

dxb

xn

b

xm

b

ancdx

b

xmV

b

an

b

xncVayxV

b

b

n

n

b

n

n

,2

,0sinsin

sinsinsinhsin

sinhsin,

0

010

0

1

0

8/17/2012 30

2-D Rectangular Waveguide

Solutions using the solved PDE

b

a

b

y

b

xyxV

n

n

b

ac

b

yn

b

xnc

b

xVayV

n

n

n

3sinh

3sinh

3sin10,

3,0

3,3

sinh

10

sinhsin3

sin10)(1

0

oddn

n

n

n

b

ann

b

yn

b

xn

VyxV

evenn

oddn

b

ann

V

c

b

yn

b

xncyxV

sinh

sinhsin4

,

,0

,

sinh

4

sinhsin,

0

0

1

Given an applied bias condition,

one can find the potential

throughout the waveguide using

the relations presented here

b

a

b

y

b

x

b

a

b

y

b

xyxV

n

b

a

n

n

b

a

c

b

yn

b

xnc

b

x

b

xVayV

n

n

n

5sinh10

5sinh

5sin

sinh

sinh

sin2,

5,5

sinh10

1

5,1,0

1,

sinh

2

sinhsin5

sin10

1sin2)(

1

0

8/17/2012 31

3-D Cylindrical Separation

of Variables

0''

111

0

)()()(,,

011

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

ZZ

z

Z

Z

R

R

z

ZR

RZRZV

zZRzV

z

VVVVV

functionBesselR

cc

zczczZ

guVovides

RRR

Yielding

RV

R

RV

R

_

sincos)(

sinhcosh)(

sin__Pr

0'''

0''

1

01

33

21

2222

2

2

2

222

2

222

Method of Images

• Image theory: A given charge configuration above an infinite grounded perfect

conducting plane may be replaced by a mirror image of the charge configuration and

an equipotential line in place of the conducting plane

• This theory is of significant importance b/c it allows one to significantly simplify

complex problems using symmetry

8/17/2012 32

Method of Images

• Symmetry allows us to examine the total

force at point A (+Q) by placing conducting

ground mirrors half way between A and its

nearest neighbors

• The result is a method of images approach

that allows one to quickly determine the exact

force acting on charge +Q located at point A

given either

– The relative orientation of a grounded

conducting surface near A

– The number and location of charges

near A allowing one to quickly establish

a conducting ground plane evaluation

8/17/2012 33

PA

1

360

o

NNumber of charges

applying force on +Q at

A

2/32222/3222/32222

2

12

1

2cos822

ˆsin2ˆ90cos

90sin90cos

ˆ90sinˆ90cos

22

ˆ2ˆ2

2

ˆ

2

ˆˆ

xyyx

yyxx

yx

yyxx

yx

yyxx

y

y

x

xkq

r

rqkqF

FF

N

i i

ii

N

i

i

x

y

Method of Images

8/17/2012 34

3190

3601

360

o

oo

N

2/32222

2

12

1 22

ˆ2ˆ2

2

ˆ

2

ˆˆ

yx

yyxx

y

y

x

xkq

r

rqkqFF

N

i i

iiN

i

i