16
1 W. Krauss; ISFNT9, Dalian, China, October 1116, 2009 Advanced electrochemical processing of tungsten components for He-cooled divertor application Outline: Motivation for advanced W machining technology Electrochemistry of tungsten Review of ECM processing methods Surface finishing by SECM process CECM process development for W structuring Conclusions W. Krauss , N. Holstein, J. Konys

Electrochemical Processing

Embed Size (px)

Citation preview

Page 1: Electrochemical Processing

1 W. Krauss;   ISFNT‐9, Dalian, China, October 11‐16, 2009

Advanced electrochemical processing of tungsten components for He-cooled divertor application

Outline:

• Motivation for advanced W machining technology

• Electrochemistry of tungsten 

• Review of ECM processing methods

• Surface finishing by S‐ECM process

• C‐ECM process development for W structuring

• Conclusions

W. Krauss, N. Holstein, J. Konys

Page 2: Electrochemical Processing

2 W. Krauss;   ISFNT‐9, Dalian, China, October 11‐16, 2009

He-cooled modular divertor design

He600°C10 MPa

700°C

He600°C10 MPa

700°C

He600°C10 MPa

700°C

Tungsten tileHT brazing

He600°C

10 MPa ODS EUROFERstructure

W-alloy thimble

700°C

HEMSHEMJ

Motivation for Electro-Chemical Methods in He-cooled W divertor

Castellation

Typical W-parts

Risk: Actual processing technology easily introduces defects

Requirements:• Adopted surface machining• Microstruturing• No processing introduced defects• Processes with cost control

Thimble

e.g. slotted flow promoter

Page 3: Electrochemical Processing

3 W. Krauss;   ISFNT‐9, Dalian, China, October 11‐16, 2009

Motivation for Electro-Chemical MethodsTypical defects and failures in W parts by conventional machining

Secondary failures, growing under HHF load

Primary machining defects

HHF results define needs for W-processing• Smooth surfaces• No defects from machining• No sharp edges

Innovative soft machining methods required

Crack growth at machining defect

Post HHF analyses of mock-up. Machining defect caused failure

Mock up # 4

Page 4: Electrochemical Processing

4 W. Krauss;   ISFNT‐9, Dalian, China, October 11‐16, 2009

In theory:Cathodic tungsten should be a accessible material. In praxis (state-of-the-art galvano-technology):Passivation by electrochemically generated oxide layer (d >> 1 μm)

Investigation and development of newelectrolyte systems necessary

Electrochemistry of tungsten towards ECMAdvantages of electrochemistry and tungsten specific requirements

Standard EC reduction potentials Tungsten :E0 = -0,1 2V: WO3 + 4 H+ + 4 e- → W + 2 H2OE0 = -0,0 9V: WO3 + 6 H+ + 4 e- → W + 3 H2O E0 = -0,04 V: W2O5 + 2 H+ 2 e- → W + 3 H2OE0 = -0,03 V: WO3 + 2 H+ + 2 e- → W2O5 + H2O

H HO

H H

tungsten metal

OO

O W

O

O W

WO3 WO3 WO3 WO3 WO3WW

H-H

-

By anodic dissolution metal removal takes place without any mechanical pressure and at low temperatures.

No gradients ΔT, Δp (and resulting forces) between• electrolyte medium and metal surface • metal surface and metal bulk→ no local heating as in EDM working→ no mechanical load

Me0

e-

liquid phase

solid metal phase

p = AtmT = RT...100癈

pliquid = psolidTliquid = Tsolid bulk

Δp = 0ΔT = 0

Δp = 0ΔT = 0

Me+

Me+Me+

e-

Page 5: Electrochemical Processing

5 W. Krauss;   ISFNT‐9, Dalian, China, October 11‐16, 2009

0,0001

0,001

0,01

0,1

1

10

100

1000

-0,5 -0,25 0 0,25 0,5 0,75 1 1,25 1,5 1,75 2 2,25 2,5Potential E [V vs. NHE]

i [m

Acm

-2]

pH = 12 pH = 11 pH = 10 pH = 9 pH = 8 pH = 7 pH = 6 pH = 3 pH = 1

Linear Scanning Voltametry (LSV)Sytem: W / TCEE / PtScan rate: 1 mV/sec

Electrochemical investigations: Potentiostatic Linear Scanning Voltametry

Electrochemistry of tungstenInvestigation / development of ECM electrolytes

W + 3 H2O → WO3 + 6 H+ + 6 e-

W + 2 H2O + 2 OH-→ WO42- + 6 H+ +6 e-

W → W3+ + 3 e-

Does not take place !!!

W0 -> W6+

tungsten metal

H HO

H H

H He-

e-H H

OH H

tungsten metal

OO

O W

O

O W

WO3 WO3 WO3 WO3 WO3WW

H+ H+

H+ H+ H+

H+H+ SEM

H HO

H H

tungsten metal

OO

O W

O

O W

WO3 WO3 WO3 WO3 WO3WW

H-H

-

H H

tungsten metal

W W

WO42-

H-

H-

WO42-

WO42-

WO42-

Page 6: Electrochemical Processing

6 W. Krauss;   ISFNT‐9, Dalian, China, October 11‐16, 2009

Electrochemical reactions

Anodic reaction:W dissolution

Surface treatment

Electro-polishingStructuring

ECMW - Substrate Deposition e.g. W

Cathodic reaction:Electro-chem. deposition

Deposition of layers forBrazing e.g. W-Steel

ProticNi/W

(water based)

AproticW

Electrochemical behavior of tungsten

0,0001

0,001

0,01

0,1

1

10

100

1000

-0,75 -0,5 -0,25 0 0,25 0,5 0,75 1 1,25 1,5 1,75 2 2,25 2,5 2,75 3 3,25E / V (Hg/HgSO4)

i / m

Acm

-2

pH = 12,4

pH = 12

pH = 11

pH = 10

pH = 9

pH = 9

pH = 8

pH = 7

pH = 7

pH = 6

pH = 5

pH = 3

pH = 1

i = f(pH)System: W / TCEE / Pt

v = 1 mV/s, 1000 U/min, d = 16 mm

Applications

Basic investigations

Primary machiningdefects

Ni

WTungsten

Page 7: Electrochemical Processing

7 W. Krauss;   ISFNT‐9, Dalian, China, October 11‐16, 2009

+

e-

e-

-

Inert Cathode

Current

e-

- +

Anodic Connexion

Tungsten-Substrate

Cathodic Connexion

Electro-Chemical-Machining (ECM) of tungstenECM processes and concept definition

Anodization under cath. propulsion

Form cathode Workpiece = Anode

Regioselective dissolution without mask

C-ECM

Application:Surface finishing in micrometer scale

Application:Bulk structuring (Processes M-ECM and C-ECM)

• Basic W-behavior analyzedDifferent ECM concepts defined, evaluated and selected S-ECM, M-ECM and C-ECM (S = surface, M = mask, C = cathode)

Aim:Gaps with high aspect ratios

Aim:Defect free surfaces

cathode = ECM working tool, negative imagevertically mobile

anode = workpieceelectrolyte

agitation by microstep-motor

frameworkcathode guiding

++

--

Page 8: Electrochemical Processing

8 W. Krauss;   ISFNT‐9, Dalian, China, October 11‐16, 2009

Electrochemical tungsten processing S-ECMS-ECM in high aspect ratio

W surface, S-ECM

W surface, EDM

Standard conditions5 min Sono (degasing)S-ECM: 200 mA/cm2, min. 30 min (150 µm)

In high aspect ratio (HAR)-geometries no

convection in deeper region

Diffusion limited current iD

If iECM > iD: electrolyte decomposition

incl. gas evolution

Optimization of process parameters

Tile withcastellation

S-ECM finishingof castellation slots

Page 9: Electrochemical Processing

9 W. Krauss;   ISFNT‐9, Dalian, China, October 11‐16, 2009

cathode = ECM working tool, negative imagevertically mobile

anode = workpieceelectrolyte

agitation by microstep-motor

frameworkcathode guiding

++

--

ECM process variants M‐ECM and C‐ECM:

ECM Requirements 

• Electrolyte development • M‐ECM: anode mask process• C‐ECM: cathode tool

ECM Advantages

• No cracks by ECM process• Surface polishing• residue‐free metal removal

M‐ECM , W disk coated by UV‐mask Novolak

M‐ECM: C‐ECM    Technique conventional installation          complex facilityParameters    current × time = charge          charge + distance + step rate + convectionCathode passive counter electrode       active shaping component (by step motor)Tool design 2‐dim. mask (positive)              3‐dim. electrode (negative)Transformation +2‐dim  g +3‐dim            ‐3‐dim   g +3‐dim

Main differing features

C-ECM scheme

C‐ECMtool

workpiece

tool

workpiece

Processed workpiece

Cathode = ECM working tool

Anode = workpiece

-

+

-

+

-

+

Processed workpieceProcessed workpiece

Cathode = ECM working tool

Anode = workpiece

--

++

--

++

--

++

2 H+ + 2e- → H2

Me → Me2+ + 2e-

M‐ECM

Mask processing UV-lithography Electrochemical Etching Structured workpiece

hν 365 nm

++

--

Anodic W dissolution – bulk shapingVariants of local metal dissolution by ECM

Slotted W diskDepth 800 µm

Restriction by mask stability

Page 10: Electrochemical Processing

10 W. Krauss;   ISFNT‐9, Dalian, China, October 11‐16, 2009

C-ECM of tungsten

Physical parameters for accurate shaping by ECM

Cathode as negative moldNo mask or resists necessaryMoveable 3-D cathode

Potentials EDiss in gap lower as on surface:Less resistance, higher currents, better dissolution.Result: local selectivity in high aspect ratios

Current densityStep rate Gap widthConvectionPulse profile

p = AtmT = RT...100癈

pliquid = psolidTliquid = Tsolid bulk

Δp = 0ΔT = 0

Δp = 0ΔT = 0

Me+ Me+

e-

Me+Me+

Me+

e-

solid metal phase

Me+

Me0

e-

Me0

liquid phase

solid metal phase

Me0

e-

Side gap reaches boundary limit:Side dissolution ceases

Front gap must be fully synchronized with step rate:Constant maximal dissolution rate

Propagation: step rate

Parameters:

Page 11: Electrochemical Processing

11 W. Krauss;   ISFNT‐9, Dalian, China, October 11‐16, 2009

-1100

-1000

-900

-800

-700

-600

-500

-400

-300

-200

-100

0

100

200

300

-2500250500750100012501500175020002250250027503000Abstand AE-GE / μm

E / m

V (H

g/H

gSO

4)

200 mA/cm2 100 mA/cm2 150 mA/cm2 50 mA/cm2

E = d(AE-GE)System: W / SL1 / Pt

i = 200 mA/cm2, 1500 U/min, d0 = 3 mm

C-ECM of tungstenParameter: Gap width

C-ECM: Local selectivity by distance; Reaction zone in a gap of max. 50 μm

Determination of optimal gap distance in dependence of current density

Page 12: Electrochemical Processing

12 W. Krauss;   ISFNT‐9, Dalian, China, October 11‐16, 2009

Without any forced electrolyte flow

Electrolyte flow

Electrolyte flow: 20 and 100 cm3/h

Hydraulic diameter2 mm

Too high electrolyte flow: 500 cm3/h

Convection

C-ECM of tungstenParameter: Electrolyte flow

Forced electrolyte flow

Page 13: Electrochemical Processing

13 W. Krauss;   ISFNT‐9, Dalian, China, October 11‐16, 2009

0,4 mm

ν = 100 HzpH = 10

ν = 0 HzpH = 10

ν = 10HzpH = 10

Hz: 10000 1000 500 100 10 0

C-ECM:Edge steepness as

Function of pulse frequency νDesired

flank profile

C-ECM of tungstenParameter: Pulse current effects

ti tp

Pulse scheme t

i

W + 3 H2O → WO3 + 6 H+ + 6 e-

WO3 + 2 OH- → WO42- + H2O

ν = 10 kHzpH = 10

Page 14: Electrochemical Processing

14 W. Krauss;   ISFNT‐9, Dalian, China, October 11‐16, 2009

0 Hz . . .

. . . 1000 Hz

C-ECM of tungstenParameter: Pulse current effects

cathode = ECM working tool, negative imagevertically mobile

anode = workpieceelectrolyte

agitation by microstep-motor

framework cathode guiding

+

-

Influence of electric currentPulsed DC current

with ti = tp

ti tp

Pulse scheme t

i

W + 3 H2O → WO3 + 6 H+ + 6 e-

WO3 + 2 OH- → WO42- + H2O

Cathode – anode gapD = 50 µm

Page 15: Electrochemical Processing

15 W. Krauss;   ISFNT‐9, Dalian, China, October 11‐16, 2009

C-ECM of tungstenDemonstrators by C-ECM

C-ECM demonstrator cathodes

Generated W-structures

Parallel grooved structure

Angled structure

Page 16: Electrochemical Processing

16 W. Krauss;   ISFNT‐9, Dalian, China, October 11‐16, 2009

Conclusions

Electro‐chemical behavior of tungsten analyzed.

Suitable electrolytes developed for electro‐chemical machining (ECM) of tungsten. 

Three ECM processes successfully developed for different main applications in tungsten machining.

‐ S‐ECM for surface finishing. 

‐ C‐ECM and M‐ECM for W shaping. 

Dependencies of C‐ECM on process parameters analyzed and optimized for C-ECM processing.

Demonstrators successfully fabricated by ECM.

Cooperation with industries started for W processing by C‐ECM.

Benefit from basic electrochemical work on W for deposition of W scales.