Elasticities and Strengths

Embed Size (px)

Citation preview

  • 8/9/2019 Elasticities and Strengths

    1/7

    Home| About| Table of Contents| Advanced Search| Copyright| Feedback| Privacy

    You are here: Chapter:2 General physics

    Section: 2.2 Mechanical properties of materials

    SubSection: 2.2.2 Elasticities and strengths

    Previous Subsection Next Subsection

    Unless otherwise stated this page contains Version 1.0 content(Read more about versions)

    2.2.2 Elasticities and strengths

    Elastic properties isotropic materials

    Listed below are the elastic constants in common use, any two of which are sufficient to define the elastic properties of a

    homogeneous isotropic solid. The two fundamental constants are those which relate change of volume and change of shape to

    applied stress. They are respectively, the bulk modulus K(as inp= K. V/V) and the shear modulus G.

    For many practical purposes, the following constants are commonly used:

    Youngs Modulus, or longitudinal elasticity, E.

    Poissons ratio, = lateral contraction per unit breadth divided by the longitudinal extension per unit length under an applied

    longitudinal stress.

    Compressibility, = 1/K.

    Longitudinal modulus, M, which is the longitudinal modulus for zero lateral strain and determines the velocity of ultrasonic stress

    pulses in solids.

    For a homogeneous isotropic solid, the following relations exist between the constants.

    (a) G=E

    2(1 + )

    (b) K=E

    3 (1 2)

    (c) K=1 EG

    3 3(3GE)

    (d) M= K+4

    G3

    The value of Poissons ratio is usually positive and lies between 0 and , but in some cases it may be negative.

    Elasticities of metals and alloys

    Material

    20 C

    E

    GPa

    G

    GPa

    K

    GPa

    Aluminium . . . . . 70.3 26.1 0.345 75.5

    Bismuth . . . . . . 31.9 12.0 0.330 31.3

    Cadmium . . . . . 49.9 19.2 0.300 41.6

    Chromium . . . . . 279.1 115.4 0.210 160.1

    Copper . . . . . . 129.8 48.3 0.343 137.8

    Gold . . . . . . . 78.0 27.0 0.44 217.0

    Iron (soft) . . . . . 211.4 81.6 0.293 169.8

    Iron (cast) . . . . . 152.3 60.0 0.27 109.5

    Lead . . . . . . 16.1 5.59 0.44 45.8

    Magnesium . . . . . 44.7 17.3 0.291 35.6

    Nickel (unmag., soft) . . 199.5 76.0 0.312 177.3

    ,, ,, hard) . . 219.2 83.9 0.306 187.6

    Niobium . . . . . 104.9 37.5 0.397 170.3

    Platinum . . . . . 168.0 61.0 0.377 228.0

    Silver . . . . . . 82.7 30.3 0.367 103.6

    Tantalum . . . . . 185.7 69.2 0.342 196.3

    Tin . . . . . . . 49.9 18.4 0.357 58.2

    Titanium . . . . . 115.7 43.8 0.321 107.7

    Tungsten . . . . . 411.0 160.6 0.280 311.0

    Vanadium . . . . . 127.6 46.7 0.365 158.0

    Zinc . . . . . . . 108.4 43.4 0.249 72.0

    Brass (70 Zn, 30 Cu) . 100.6 37.3 0.350 111.8

    Constantan . . . . . 162.4 61.2 0.327 156.4

    ticities and strengths 2.2.2 http://www.kayelaby.npl.co.uk/general_physics/2_2/2_2_2.html

    7 19/01/2015 11:19 AM

  • 8/9/2019 Elasticities and Strengths

    2/7

    Hidurax Special . . . 144.5 54.4 0.333 144.1

    Invar (36 Ni, 63.8 Fe, 0.2 C) 144.0 57.2 0.259 99.4

    Nickel Silver . . . . 132.5 49.7 0.333 132.0

    Steel (Mild) . . . . 211.9 82.2 0.291 169.2

    ,, ( C) . . . . 210.0 81.1 0.293 168.7

    ,, ( C hardened) . 201.4 77.8 0.296 165.0

    ,, Tool||. . . . . 211.6 82.2 0.287 165.3

    ,, Tool (hardened)|| . 203.2 78.5 0.295 165.2

    ,, Stainless . . . 215.3 83.9 0.293 166.0

    Tungsten Carbide . . 534.4 219.0 0.22 319.0

    Approx. value or values for materials of variable composition.

    Cu-Ni alloy with Al, Fe and Mn additions.

    Approx. %composition: Cu 55, Ni 8, Zn 27.

    ||Oil hardening non-deforming tool steel of approx. %composition: C 0.98, Mn 1.03, Cr 0.65, W 1.01, V 0.1, remainder Fe.

    Approx. %composition: C 0.02, Si 0.5, Mn 0.7, Ni 2, Cr 18, remainder Fe.

    Elasticities of glasses

    Material

    20 C

    E

    GPa

    G

    GPa

    K

    GPa

    Glass (Heavy Flint) . . . 80.1 31.5 0.27 57.6

    Glass (Crown) . . . . 71.3 29.2 0.22 41.2Quartz (fused) . . . . 73.1 31.2 0.17 36.9

    Several values in these tables are taken from Bradfield (1964).

    Bulk moduli of elements

    Element K

    GPa

    Element K

    GPa

    Element K

    GPa

    Element K

    GPa

    Aluminium . . 75.5 Chlorine Molybdenum 231.0 Selenium . . 8.3

    Antimony . . 42.0 (liq) . . . 1.1 Nickel Silicon . . . 100.0

    Arsenic . . 22.0 Chromium . 160.1 (soft) . . 177.3 Silver . . . 103.6

    Bismuth . . 31.3 Copper . . 137.8 (hard) . . 187.6 Sodium . . 6.3

    Bromine . . 1.9 Gold . . . 217.0 Palladium . 182.0 Sulphur . . 7.7

    Cadmium . . 41.6 Iodine . . . 7.7 Phosphorus . Thallium . . 43.0

    Caesium . . 1.6 Iron . . . 169.8 (red) . 10.9 Tin . . . . 58.2

    Calcium . . 17.2 Lead . . . 45.8 Phosphorus Zinc . . . 72.0

    Carbon . . Lithium . . 11.1 (white) . 4.9

    (diamond) . 542.0 Magnesium . 44.7 Platinum . 228.0

    Carbon Manganese . 118.0 Potassium . 3.1

    (graphite) . 33.0 Mercury . . 25.0 Rubidium . 2.5

    Bradfield (1964).

    Markham (1968).

    Bulk moduli of liquids

    As the pressure increases, Kincreases. In general a rise in temperature decreases the bulk modulus of a liquid; water, however,

    shows a maximum value of Kat about 50 C (see J. H. Poynting and J. J. Thomson (1920) Properties of Matter, London, Charles

    Griffin; Bridgman (1949)).

    Liquid Temp.

    C

    K

    GPa

    Liquid Temp.

    C

    K

    GPa

    Acetic acid, 116 atm 20 1.45 Mercury:

    Amyl alcohol, 8 atm . 17.7 1.12 837 atm . . . 20 26.2

    Benzene, 8 atm . . 17.9 1.10 100200 atm . . 15 30.0

    Butyl alcohol, 8 atm . 17.4 1.13 Methyl acetate, 837 atm 14.3 1.04

    Butyl alcohol, iso-, 8 atm 17.9 1.03 Methyl alcohol, 37 atm . 14.7 0.97

    Carbon bisulphide, 837 atm 15.6 1.16 Olive oil . . . . 20.5 1.60

    Carbon tetrachloride . . 20 1.12 Paraffin oil . . . 14.8 1.62

    Chloroform, 100-200 atm . 20 1.1 Pentane . . . . 20 0.318

    Ether: Petroleum . . . . 16.5 1.46

    150 atm . . . 0 0.689 Propyl alcohol, 8 atm . 17.7 1.04

    9001000 atm . . 0 1.56 Propyl alcohol, iso-, 8 atm 17.8 0.983

    9001000 atm . . 198 0.703 Turpentine . . . 19.7 1.280

    ticities and strengths 2.2.2 http://www.kayelaby.npl.co.uk/general_physics/2_2/2_2_2.html

    7 19/01/2015 11:19 AM

  • 8/9/2019 Elasticities and Strengths

    3/7

    Ethyl acetate, 837 atm . 13.3 0.974 Water:

    Ethyl alcohol: 125 atm . . . 15 2.05

    1500 atm . . 0 1.32 9001000 atm . . 15 2.75

    150200 atm . . 310 0.024 9001000 atm . . 198 1.81

    Ethyl bromide, 837 atm . 99.3 0.343 25003000 atm . . 14.2 3.88

    Ethyl chloride, 837 atm . 15.2 0.662 Water (sea) . . . 2.32

    Glycerine . . . . 20.5 4.03

    Elasticities of plastics

    All plastics are visco-elastic and consequently the elasticity varies considerably with temperature and strain rate. The table below

    gives approximate values at 20 C for slow rates of strain.

    Material E

    GPa

    Material E

    GPa

    ABS . . . . . . 1.43.1 Polyethylene (high density) . . 0.41.3

    Epoxy . . . . . ~3.2 Polyimide . . . . . . . ~3.1

    Nylon 6 (cast) . . . 2.43.1 Polymethylmethacrylate (PMMA) 2.43.4

    Nylon 6 (moulded) . . 0.83.1 Polypropylene . . . . . . 1.11.6

    Nylon 66 . . . . 1.22.9 Polystyrene . . . . . . 2.74.2

    Polybenzoxazole . . . ~3.5 Polytetrafluoroethylene (PTFE) 0.4

    Polycarbonate . . . 2.4 Polyvinylchloride (PVC) . .

    (unplasticised)

    2.44.1

    Temperature coefficient of elastic constants for a range of materials

    Temperature coefficient in

    Et= E15{1 - (t15)}

    Gt= G15{1 - '(t15)}

    At 15C

    104for E

    '104

    for G

    Aluminium . . . . 4.8 5.2

    Brass . . . . . 3.7 4.6

    Copper . . . . . 3.0 3.1

    German silver . . . 6.5

    Gold . . . . . 4.8 3.3

    Iron . . . . . . 2.3 2.8

    Phosphor-bronze . . 3.0

    Platinum . . . . . 0.98 1.0

    Quartz fibre . . . . 1.5 1.1

    Silver . . . . . . 7.5 4.5

    Steel . . . . . . 2.4 2.6Tin . . . . . . 5.9

    Elastic properties anisotropic materials

    Anisotropic materials can be either naturally occurring (e.g. wood) or manufactured (e.g. fibre reinforced composites). In general

    they are characterised by twenty-one independent constants, but this is reduced to nine for orthotropic materials and five for

    transversely isotropic materials. They are frequently planar in form.

    The main engineering constants in use for orthotropic composites are:

    longitudinal modulus of elasticity, E11

    transverse modulus of elasticity, E22

    through-thickness modulus of elasticity, E33

    longitudinal in-plane shear modulus, G12

    longitudinal through-thickness shear modulus, G13

    transverse through-thickness shear modulus, G23

    major Poissons ratio, 12

    minor Poissons ratio, 13

    ticities and strengths 2.2.2 http://www.kayelaby.npl.co.uk/general_physics/2_2/2_2_2.html

    7 19/01/2015 11:19 AM

  • 8/9/2019 Elasticities and Strengths

    4/7

    transverse Poissons ratio, 23

    For unidirectionally reinforced composites, 1 = fibre direction in-plane, 2 = transverse to fibre in-plane and 3 = transverse

    through-thickness (i.e. perpendicular to plane). For other materials, the directions would be defined by other features, such as the

    production length-wise direction. Poissons ratio can be greater than 0.5 for angle-ply or multidirectionally reinforced materials.

    Composites with fully unidirectional reinforcement are approximately transversely isotropic materials (i.e. 2 and 3 directions are

    equal). The following relations exist in this case:

    E33= E22, G13= G12, 13= 12,

    and E22= 2(1 + 23)G23

    For orthotropic symmetry the following relations exist:

    12=

    21,

    23=

    32,

    13=

    31

    E11 E22 E22 E33 E11 E33

    Elasticities of woods

    All woods are elastically anisotropic and in general there are nine independent elastic constants. The values in the table below are

    for some common woods and give the three principal values of Youngs modulus measured along the grain EL, in a radial direction

    ERand tangential direction ET(Hearmon, 1948).

    WoodRelative

    density

    EL

    GPa

    ER

    GPa

    ET

    GPa

    Ash . . . . . . . . 0.7 16 1.6 0.9

    Balsa . . . . . . . 0.2 6 0.3 0.1

    Beech . . . . . . . 0.7 14 2.2 1.1

    Birch . . . . . . . 0.6 16 1.1 0.6

    Mahogany . . . . . . 0.5 12 1.1 0.6

    Oak . . . . . . . . 0.7 11

    Walnut . . . . . . . 0.6 11 1.2 0.6

    Teak . . . . . . . . 0.6 13

    Douglas Fir . . . . . . 0.5 16 1.1 0.8

    Scots Pine . . . . . . 0.5 16 1.1 0.6Spruce . . . . . . . 0.40.5 1016 0.40.9 0.40.6

    Elasticities of fibre-reinforced plastics full set

    Material E11

    GPa

    E22

    GPa

    E33

    GPa

    G12

    GPa

    G13

    GPa

    G23

    GPa

    v12 v21 v23

    High Modulus Carbon Fibre/Epoxy

    unidirectionally reinforced

    specimen 287 7.80 7.75 6.7 6.7 2.5 0.30 0.01 0.55

    High Strength Carbon Fibre/Epoxy

    unidirectionally reinforced

    specimen 172 11.6 11.6 7.8 7.8 3.9 0.36 0.02 0.48

    Elastic Constants measured at NPL by the Ultrasonic Technique (Read and Dean, 1978).

    Elasticities of fibre-reinforced plastics in-plane properties

    Material23 C

    E11

    GPa

    E22

    GPa

    v12 v21

    Injection moulded, discontinuous (long) fibre thermoplastic: glass-fibre/nylon

    (30%fibre by volume) 10.6 7.9 0.34 0.22

    ticities and strengths 2.2.2 http://www.kayelaby.npl.co.uk/general_physics/2_2/2_2_2.html

    7 19/01/2015 11:19 AM

  • 8/9/2019 Elasticities and Strengths

    5/7

    Hot compression moulded, sheet moulding (thermoset) compond (SMC): glass

    fibre strands/filler/polyester resin (62%fibre + filler by volume) 10.0 9.8 0.30 0.31

    Thermoformed (press) moulded, mat + unidirectional fibres/thermoplastic

    glass-fibre/polypropylene (18%fibre by volume) 9.2 4.4 0.41 0.22

    Autoclaved, unidirectional continuous fibre/thermoset resin: glass-fibre/epoxy

    (59%fibre by volume) 47.0 16.4 0.28 0.08

    Autoclaved, unidirectional continuous fibre/thermoset resin: carbo-fibre/epoxy

    (61%

    fibre by volume) 146 9.9 0.30 0.02

    Typical values measured at NPL using mechanical test methods (Sims et al., 1993) actual values depend on fibre type,

    orientation and distribution, also on resin properties and process route.

    Strength properties isotropic materials

    The strength properties of many materials are dependent on the rate of loading and the test temperature. This particularly applies

    to plastics and glass-fibre reinforced plastics. Generally materials will reach their elastic l imit prior to failure.

    Substance Tensile

    strength

    MPa

    Metals

    Aluminium (cast) 90100

    (rolled) 90150

    Brass (66% Cu, 34% Zn) (cast) 150190

    " (rolled) 230270

    Calcium 4260

    Cobalt 260750

    Copper (cast) 120170

    ,, (rolled) 200400

    Gun metal (90% Cu, 10% Sn) 190260

    Iron (cast) 100230

    ,, (wrought) 290450

    Lead (cast) 1217

    Magnesium (cast) 6080

    ,, (extruded) 170190

    Phosphor-bronze (cast) 180280

    Steel (castings). 400600

    Steel (mild) (0.2% C) 430490

    High-carbon spring steel:

    (annealed 700770

    (tempered) 9301080

    (nickel) (5% Ni) 8001000

    (nickel-chromium) 10001500

    Soft solder 5575

    Tin (cast) 2035

    Zinc (rolled) 110150

    Plastics

    Nylon 6 7697

    Nylon 66 6283

    Polyacetal ~69

    Polybenzoxazole 82117

    Polycarbonate 5565

    Polyethylene 2135

    Polyimide 69-104

    Polymethylmethacrylate 50-76

    Polypropylene 30-40

    Polystyrene 34-52

    Miscellaneous

    ticities and strengths 2.2.2 http://www.kayelaby.npl.co.uk/general_physics/2_2/2_2_2.html

    7 19/01/2015 11:19 AM

  • 8/9/2019 Elasticities and Strengths

    6/7

    Catgut 420

    Glass 3090

    Hemp rope 60100

    Leather belt 3050

    Silk fibre 260

    Spider thread 180

    Woods:

    Ash, beech, oak, teak, mahogany 60110

    Fir, pitch-pine 4080 Red or white deal 3070

    White or yellow pine 2050

    Quartz fibre (fused) ~1000

    Wires

    Aluminium 200-450

    Brass 350-550

    Copper (hard-drawn) 400460

    ,, (annealed) 280-310

    Duralumin 400-550 German Silver 460

    Gold 200250

    Iron (charcoal, hard-drawn 540-620

    ,, (annealed) 460

    Molybdenum 11003000

    Nickel 500-900

    Palladium 350450

    Phosphor-bronze (hard-drawn) 6901080

    Platinum 330370

    Pt + 10% Rh 630

    Silver 290

    Steel (ordinary) ~1100

    ,, (tempered) 1550 ,, (pianoforte, hard-drawn) . 18602330

    Tantalum 8001100

    Tungsten 15003500

    Zirconium (annealed) 260390

    ,, (hard-drawn) 1000

    Along the grain

    Strength properties anisotropic materials

    The strength properties of anisotropic materials measured in different directions may differ considerably. Differences in strengthscan be higher than those in elastic properties.

    Ultimate tensile strength properties of fibre-reinforced plastics in-plane properties. (Sims et al., 1993). Typical values;

    actual values depend on fibre type, orientation and distribution; resin properties and process route (NB. 11 = longitudinal

    ultimate tensile strength and 22= transverse ultimate tensile strength).

    Material

    23 C11

    MPa

    22

    MPa

    Injection moulded discontinuous (long) glass-fibre/nylon (30%fibre by volume) 148 113

    Hot comperssion moulded, sheet moulding material (SMC) glass fibre strands/filler/polyester

    resin (62%fibre + filler by volume)

    60

    59

    Thermoformed (press) moulded, mat + unidirectional/thermoplastic glass-fibre/

    polypropylene (18%fibre by volume )

    143 38

    Autoclaved, unidirectional glass-fibre/epoxy (59%fibre by volume) 1139 63

    ticities and strengths 2.2.2 http://www.kayelaby.npl.co.uk/general_physics/2_2/2_2_2.html

    7 19/01/2015 11:19 AM

  • 8/9/2019 Elasticities and Strengths

    7/7

    Autoclaved, unidirectional carbon-fibre/epoxy (61%fibre by volume) 2386 76

    References

    G. Bradfield (1964) Notes on Applied Science No. 30, Use in Industry of Elasticity with the Help of Mechanical Vibrations, HMSO.

    P. W. Bridgman (1949) The Physics of High Pressure, Bell.

    J. A. Ewing (1899) Strength of Material, Cambridge University Press.

    R. F. S. Hearmon (1948). See also R. F. S. Hearmon, Elasticity of Wood and Plywood, Forest Products Research Special Report No.

    7, HMSO.

    M. F. Markham (1968) Measurements made at the NPL.

    B. E. Read and G. D. Dean (1978) The determination of dynamic properties of polymers and composites, Adam Hilger.

    G. D. Sims, W. Nimmo and W. R. Broughton (1993) Data measured at the NPL.

    Others sources of data include,

    W. Bolton (1989) Engineering Materials Pocket Book, Newnes.

    Handbook of Industrial Materials(1992) Elsevier Adv. Tech.

    N. A. Waterman and M. F. Ashby (1992) Elsevier Materials Selector, Elsevier Applied Science.

    G.Sims

    Home| About| Table of Contents| Advanced Search| Copyright| Feedback| Privacy| ^ Top of Page

    This site is hosted and maintained by the National Physical Laboratory 2015.

    ticities and strengths 2.2.2 http://www.kayelaby.npl.co.uk/general_physics/2_2/2_2_2.html