44
Effects of Young Clusters on Forming Solar Systems WITH: Eva M. Proszkow, Anthony Bloch (Univ. Michigan) Philip C. Myers (CfA), Marco Fatuzzo (Xavier University) David Hollenbach (NASA Ames), Greg Laughlin (UCSC) Fred C. Adams University of Michigan Stars to Planets, Univ. Florida

Effects of Young Clusters on Forming Solar Systems WITH: Eva M. Proszkow, Anthony Bloch (Univ. Michigan)…

Embed Size (px)

DESCRIPTION

N-body Simulations of Clusters UV Radiation Fields in Clusters Disk Photoevaporation Model Scattering Encounters Outline

Citation preview

Page 1: Effects of Young Clusters on Forming Solar Systems WITH: Eva M. Proszkow, Anthony Bloch (Univ. Michigan)…

Effects of Young Clusters

on Forming Solar Systems

WITH: Eva M. Proszkow, Anthony Bloch (Univ. Michigan)Philip C. Myers (CfA), Marco Fatuzzo (Xavier University)David Hollenbach (NASA Ames), Greg Laughlin (UCSC)

Fred C. AdamsUniversity of Michigan

Stars to Planets, Univ. Florida

Page 2: Effects of Young Clusters on Forming Solar Systems WITH: Eva M. Proszkow, Anthony Bloch (Univ. Michigan)…

Most stars form in clusters:

In quantitative detail: What effects does the cluster environment haveon solar system formation?

Page 3: Effects of Young Clusters on Forming Solar Systems WITH: Eva M. Proszkow, Anthony Bloch (Univ. Michigan)…

•N-body Simulations of Clusters

•UV Radiation Fields in Clusters

•Disk Photoevaporation Model •Scattering Encounters

Outline

Page 4: Effects of Young Clusters on Forming Solar Systems WITH: Eva M. Proszkow, Anthony Bloch (Univ. Michigan)…

Cumulative Distribution: Fraction of stars that form in stellar aggregates with N < N as function of N

Lada/LadaPorras

Median point: N=300

Page 5: Effects of Young Clusters on Forming Solar Systems WITH: Eva M. Proszkow, Anthony Bloch (Univ. Michigan)…

Simulations of Embedded Clusters

• Modified NBODY2 Code (S. Aarseth)• Simulate evolution from embedded

stage out to ages of 10 Myr• Cluster evolution depends on the

following:–cluster size– initial stellar and gas profiles–gas disruption history–star formation history–primordial mass segregation– initial dynamical assumptions

• 100 realizations are needed to provide robust statistics for output measures

Page 6: Effects of Young Clusters on Forming Solar Systems WITH: Eva M. Proszkow, Anthony Bloch (Univ. Michigan)…

Virial Ratio Q = |K/W|virial Q = 0.5; cold Q = 0.04Mass Segregation: largest

star at center of cluster

Simulation Parameters

( )300Npc0.1NR

*=

Cluster MembershipN = 100, 300, 1000

Cluster Radius

Initial Stellar DensityGas Distribution

Star Formation Efficiency0.33

Embedded Epoch t = 0–5 Myr

Star Formation t = 0-1 Myr

( )*

*

Rr,

rM2

,1 3

s03

0G ==

+= ξ

πρ

ξξρρ

ρ∗∝ r−1

Page 7: Effects of Young Clusters on Forming Solar Systems WITH: Eva M. Proszkow, Anthony Bloch (Univ. Michigan)…

Dynamical Results

•Distribution of closest approaches

•Radial position probability distribution

(given by cluster mass profiles)

I. Evolution of clusters as astrophysical objects

II.Effects of clusters on forming solar systems

Page 8: Effects of Young Clusters on Forming Solar Systems WITH: Eva M. Proszkow, Anthony Bloch (Univ. Michigan)…

Mass Profiles

SubvirialVirial

p

a

a

T 1M)(M

⎟⎟⎠⎞

⎜⎜⎝⎛

+=

ξξξ ξ = r/r0

Simulation p r0 a100 Subvirial

0.69 0.39 2

100 Virial 0.44 0.70 3300 Subvirial

0.79 0.64 2

300 Virial 0.49 1.19 31000 Subvirial

0.82 1.11 2

300 Subvirial

0.59 1.96 3Stellar Gravitational Potential

∫∞ ⎟⎠

⎞⎜⎝⎛

+≡

00 11 duu

p

aψ00

** ψΨ

ρGM T=

Page 9: Effects of Young Clusters on Forming Solar Systems WITH: Eva M. Proszkow, Anthony Bloch (Univ. Michigan)…

Closest Approach Distributions

G=G0b

1000AU ⎛ ⎝ ⎜

⎞ ⎠ ⎟γ

Simulation G0 bC (AU)100 Subvirial 0.166 1.50 713100 Virial 0.059

81.43 1430

300 Subvirial 0.0957

1.71 1030

300 Virial 0.0256

1.63 2310

1000 Subvirial

0.0724

1.88 1190

1000 Virial 0.0101

1.77 3650Typical star experiences one close encounter with impact parameter bC during 10 Myr time span

Page 10: Effects of Young Clusters on Forming Solar Systems WITH: Eva M. Proszkow, Anthony Bloch (Univ. Michigan)…

– Photoevaporation of a circumstellar disk

– Radiation from the background cluster often dominates radiation from the parent star (Johnstone et al. 1998; Adams & Myers 2001)

– FUV radiation (6 eV < E < 13.6 eV) is more important in this process than EUV radiation

– FUV flux of G0 = 3000 will truncate a circumstellar disk to rd over 10 Myr, where

Effects of Cluster Radiation on Forming/Young Solar

Systems

=MMrd

*AU36

Page 11: Effects of Young Clusters on Forming Solar Systems WITH: Eva M. Proszkow, Anthony Bloch (Univ. Michigan)…

Calculation of the Radiation FieldFundamental Assumptions

– Cluster size N = N primaries (ignore binary companions)

– No gas or dust attenuation of FUV radiation– Stellar FUV luminosity is only a function of mass– Meader’s models for stellar luminosity and

temperature Sample IMF → LFUV(N) SampleCluster Sizes

Expected FUVLuminosity in SF

Cluster→

Page 12: Effects of Young Clusters on Forming Solar Systems WITH: Eva M. Proszkow, Anthony Bloch (Univ. Michigan)…

FUV Flux depends on:– Cluster FUV luminosity– Location of disk within

clusterAssume:– FUV point source

located at center of cluster

– Stellar density ρ ~ 1/r

Photoevaporation of Circumstellar Disks

G0 = 1 corresponds to FUV flux 1.6 x 10-3 erg s-1 cm-2

Median 900Peak 1800Mean 16,500

G0 Distribution

Page 13: Effects of Young Clusters on Forming Solar Systems WITH: Eva M. Proszkow, Anthony Bloch (Univ. Michigan)…

Photoevaporation Model

(Adams et al. 2004)

Page 14: Effects of Young Clusters on Forming Solar Systems WITH: Eva M. Proszkow, Anthony Bloch (Univ. Michigan)…

Results from PDR Code

Lots of chemistry and many heating/cooling linesdetermine the temperatureas a function of G, n, A

Page 15: Effects of Young Clusters on Forming Solar Systems WITH: Eva M. Proszkow, Anthony Bloch (Univ. Michigan)…

Solution for Fluid Fields

outer disk edge

sonic surface

Page 16: Effects of Young Clusters on Forming Solar Systems WITH: Eva M. Proszkow, Anthony Bloch (Univ. Michigan)…

Evaporation Time vs FUV Field

-----------------------

(for disks around solar mass stars)

Page 17: Effects of Young Clusters on Forming Solar Systems WITH: Eva M. Proszkow, Anthony Bloch (Univ. Michigan)…

Photoevaporation in Simulated

ClustersRadial Probability Distributions

01)(

rr

NrN

p

a

a

T

=⎟⎟⎠⎞

⎜⎜⎝⎛

+= ξ

ξξ

Simulation reff (pc) G0 mean

rmed (pc)

G0 median

100 Subvirial 0.080 66,500 0.323 359100 Virial 0.112 34,300 0.387 250300 Subvirial 0.126 81,000 0.549 1,550300 Virial 0.181 39,000 0.687 9921000 Subvirial

0.197 109,600 0.955 3,600

1000 Virial 0.348 35,200 1.25 2,060FUV radiation does not evaporate enough disk gas to prevent giant planet formation

for Solar-type stars

Page 18: Effects of Young Clusters on Forming Solar Systems WITH: Eva M. Proszkow, Anthony Bloch (Univ. Michigan)…

Evaporation Time vs Stellar MassEvaporation is much more effective for disks around low-mass stars:Giant planet formation can be compromised

G=3000

Page 19: Effects of Young Clusters on Forming Solar Systems WITH: Eva M. Proszkow, Anthony Bloch (Univ. Michigan)…

Evaporation vs Accretion

Disk accretion aids and abetsthe disk destruction process by draining gas from the inside, while evaporation removes gas from the outside . . .

Page 20: Effects of Young Clusters on Forming Solar Systems WITH: Eva M. Proszkow, Anthony Bloch (Univ. Michigan)…

Solar System ScatteringMany Parameters +Chaotic Behavior

Many Simulations Monte Carlo

Page 21: Effects of Young Clusters on Forming Solar Systems WITH: Eva M. Proszkow, Anthony Bloch (Univ. Michigan)…

Monte Carlo Experiments

• Jupiter only, v = 1 km/s, N=40,000 realizations• 4 giant planets, v = 1 km/s, N=50,000 realizations• KB Objects, v = 1 km/s, N=30,000 realizations • Earth only, v = 40 km/s, N=100,000 realizations • 4 giant planets, v = 40 km/s, Solar mass, N=100,000 realizations• 4 giant planets, v = 1 km/s, varying stellar mass, N=100,000 realizations

Page 22: Effects of Young Clusters on Forming Solar Systems WITH: Eva M. Proszkow, Anthony Bloch (Univ. Michigan)…

Red Dwarf captures the Earth

Sun exits with one red dwarf as a binary companion

Earth exits with the other red dwarfSun and Earth encounter

binary pair of red dwarfs

9000 year interaction

Page 23: Effects of Young Clusters on Forming Solar Systems WITH: Eva M. Proszkow, Anthony Bloch (Univ. Michigan)…

Ecce

ntric

ity e

Semi-major axis aJupiter

Saturn UranusNeptune

Scattering Results for our Solar System

Page 24: Effects of Young Clusters on Forming Solar Systems WITH: Eva M. Proszkow, Anthony Bloch (Univ. Michigan)…

20 AU1601350±≈C

Cross Sections

2.0 M 1.0 M

0.5 M 0.25 M

2/1

*0

⋅⎟⎟⎠⎞

⎜⎜⎝⎛

⎟⎟⎠⎞

⎜⎜⎝⎛

≈MMa

C p

AUejσ

Page 25: Effects of Young Clusters on Forming Solar Systems WITH: Eva M. Proszkow, Anthony Bloch (Univ. Michigan)…

Solar System Scattering in Clusters

( )4

*2

00eject AU 1000

)AU/(γγ

π

⋅⎟⎟⎠⎞

⎜⎜⎝⎛

⎟⎟⎠⎞

⎜⎜⎝⎛

=MMaC pΓΓ

Ejection Rate per Star (for a given mass)

Integrate over IMF(normalized to cluster

size)∫∫ ⎟⎠

⎞⎜⎝⎛=⎟⎠

⎞⎜⎝⎛ −

dmdNdmNm

dmdNdm where4

γ

Subvirial N=300 ClusterG0 = 0.096, = 1.7 GJ = 0.15 per Myr

1-2 Jupiters are ejected in 10 Myr

Less than number of ejections from internal solar system scattering

(Moorhead & Adams 2005)

Page 26: Effects of Young Clusters on Forming Solar Systems WITH: Eva M. Proszkow, Anthony Bloch (Univ. Michigan)…

Conclusions• N-Body simulations of young embedded clusters

– Distributions of radial positions and closest approaches

– Subvirial clusters more concentrated & longer lived

• Clusters have modest effects on star and planet formation– FUV flux levels are low & leave disks

unperturbed– Disruption of planetary systems rare, bC ~

700-4000 AU – Planet ejection rates via scattering encounters

are low------------------------------------------------------------------

---• Photoevaporation model for external FUV

radiation• Distributions of FUV flux and luminosity • Cross sections for solar system disruption • [Orbit solutions, triaxial effects, spirographic

approx.]

Page 27: Effects of Young Clusters on Forming Solar Systems WITH: Eva M. Proszkow, Anthony Bloch (Univ. Michigan)…
Page 28: Effects of Young Clusters on Forming Solar Systems WITH: Eva M. Proszkow, Anthony Bloch (Univ. Michigan)…

Time Evolution of Parameters

Subvirial Cluster Virial Cluster100 300 1000

• In subvirial clusters, 50-60% of members remain bound at 10 Myr instead of 10-30% for virial clusters • R1/2 is about 70% smaller for subvirial clusters

• Stars in the subvirial clusters fall rapidly towards the center and then expand after t = 5 Myr

Page 29: Effects of Young Clusters on Forming Solar Systems WITH: Eva M. Proszkow, Anthony Bloch (Univ. Michigan)…

Orbits in Cluster Potentials

ρ = ρ0

ξ (1+ ξ )3 ⇒ Ψ = Ψ0

1+ ξ

ε ≡ E /Ψ0 and q ≡ j 2 /2Ψ0rs2

ε = ξ1 + ξ 2 + ξ1ξ 2

(ξ1 + ξ 2)(1+ ξ1 + ξ 2 + ξ1ξ 2)

q = (ξ1ξ 2)2

(ξ1 + ξ 2)(1+ ξ1 + ξ 2 + ξ1ξ 2)

Page 30: Effects of Young Clusters on Forming Solar Systems WITH: Eva M. Proszkow, Anthony Bloch (Univ. Michigan)…

Orbits (continued)

qmax = 18ε

(1+ 1+ 8ε − 4ε)3

(1+ 1+ 8ε )2

ξ∗ = 1− 4ε + 1+ 8ε4ε

Δθπ

= 12

+ (1+ 4ε)−1/ 4 − 12

⎡ ⎣ ⎢

⎤ ⎦ ⎥1+ log(q /qmax )

6log10 ⎡ ⎣ ⎢

⎤ ⎦ ⎥3.6

limq→qmax

Δθ = π (1+ 8ε)−1/ 4

(effective semi-major axis)

(angular momentum of the circular orbit)

(circular orbits do not close)

Page 31: Effects of Young Clusters on Forming Solar Systems WITH: Eva M. Proszkow, Anthony Bloch (Univ. Michigan)…

Spirographic Orbits!

(Adams & Bloch 2005)

x(tp ) = (α −β )cos tp + γ cos[(α −β )tp /β ]

y(tp ) = −(α −β )sin tp + γ sin[(α −β )tp /β ]€

(ε, q)

(ξ1,ξ 2)(α ,β,γ )

Orbital Elements

Page 32: Effects of Young Clusters on Forming Solar Systems WITH: Eva M. Proszkow, Anthony Bloch (Univ. Michigan)…

Allowed Parameter Space

Spirographic approximationis valid over most of the plane

Page 33: Effects of Young Clusters on Forming Solar Systems WITH: Eva M. Proszkow, Anthony Bloch (Univ. Michigan)…

Application to LMC Orbit

Spirographic approximationreproduces the orbital shape with 7 percent accuracy & conserves angular momentumwith 1 percent accuracy.Compare with observationaluncertainties of 10-20 percent.

Page 34: Effects of Young Clusters on Forming Solar Systems WITH: Eva M. Proszkow, Anthony Bloch (Univ. Michigan)…

Triaxial Potentials in Clusters

Box Orbit

Growth of perpendicular coordinate

Page 35: Effects of Young Clusters on Forming Solar Systems WITH: Eva M. Proszkow, Anthony Bloch (Univ. Michigan)…

Where did we come from?

Page 36: Effects of Young Clusters on Forming Solar Systems WITH: Eva M. Proszkow, Anthony Bloch (Univ. Michigan)…

Solar Birth Aggregate

Supernova enrichment requires large N

M∗ > 25Mo

Well ordered solar system requires small N

FSN = 0.000485

ε(Neptune) < 0.1

ΔΘ j < 3.5o

Page 37: Effects of Young Clusters on Forming Solar Systems WITH: Eva M. Proszkow, Anthony Bloch (Univ. Michigan)…

Stellar number N

Prob

abilit

y P(

N)

Expected Size of the Stellar Birth Aggregatesurvival supernova

Adams & Laughlin, 2001, Icarus, 150, 151

Page 38: Effects of Young Clusters on Forming Solar Systems WITH: Eva M. Proszkow, Anthony Bloch (Univ. Michigan)…

Constraints on the Solar Birth Aggregate

N ≈ 2000 ±1100

P ≈ 0.017 (1 out of 60)

(Adams & Laughlin 2001 - updated)

Page 39: Effects of Young Clusters on Forming Solar Systems WITH: Eva M. Proszkow, Anthony Bloch (Univ. Michigan)…

Probability as function of system size N

(Adams & Myers 2001)

Page 40: Effects of Young Clusters on Forming Solar Systems WITH: Eva M. Proszkow, Anthony Bloch (Univ. Michigan)…

(Walsh et al. 2006)

NGC 1333 - cold start

(Δv)Z ≈ 0.1 km /s

(Δv)T (Δt)SF ≈ 0.02pc

Page 41: Effects of Young Clusters on Forming Solar Systems WITH: Eva M. Proszkow, Anthony Bloch (Univ. Michigan)…

Probability of Supernovae

PSN (N) =1− fnotN

Page 42: Effects of Young Clusters on Forming Solar Systems WITH: Eva M. Proszkow, Anthony Bloch (Univ. Michigan)…

Probability of Supernovae

PSN (N) =1− fnotN =1− (1− FSN )N

Page 43: Effects of Young Clusters on Forming Solar Systems WITH: Eva M. Proszkow, Anthony Bloch (Univ. Michigan)…

Probability of Scattering

G=n σvScattering rate:

Survival probability:

Psurvive ∝ exp − Γdt∫[ ]

Known results provide n, v, t as function of N (e.g. BT87) need to calculate the interaction cross sections

σ

Page 44: Effects of Young Clusters on Forming Solar Systems WITH: Eva M. Proszkow, Anthony Bloch (Univ. Michigan)…

Cross Section for Solar System

Disruption

σ ≈(400AU)2