21
Sam Palermo Analog & Mixed-Signal Center Texas A&M University ECEN326: Electronic Circuits Fall 2017 Lecture 6: Operational Transconductance Amplifiers (OTAs)

ECEN326: Electronic Circuits Fall 2017 - Texas A&M University

  • Upload
    others

  • View
    1

  • Download
    0

Embed Size (px)

Citation preview

Page 1: ECEN326: Electronic Circuits Fall 2017 - Texas A&M University

Sam PalermoAnalog & Mixed-Signal Center

Texas A&M University

ECEN326: Electronic CircuitsFall 2017

Lecture 6: Operational Transconductance Amplifiers (OTAs)

Page 2: ECEN326: Electronic Circuits Fall 2017 - Texas A&M University

Announcements

• HW4 due today• HW5 due 11/1

2

Page 3: ECEN326: Electronic Circuits Fall 2017 - Texas A&M University

OpAmps and OTAs

• High voltage gain• High input impedance• Voltage source output

(low impedance)3

OpAmp OTA

• High “voltage” gain• High input impedance• Current source output

(high impedance)

Page 4: ECEN326: Electronic Circuits Fall 2017 - Texas A&M University

Simple OTA

• Important Parameters• Transconductance• Output Resistance• Differential Gain• Common-Mode Input Range

4

Page 5: ECEN326: Electronic Circuits Fall 2017 - Texas A&M University

Simple OTA Transconductance: Rigorous Analysis

5

213

21

33

33

4

21

221

1

and find toneed we, find To2 and

3Lecture From

ininm

mnininONmn

ONOm

Om

A

Amp

npsc

ONThevininONmnThev

vvggvvrg

rrg

rg

v

vgi

iiirRvvrgv

mninin

scm

ininmnnpsc

ininmn

mON

ininONmnn

ininmn

Amp

gvv

iG

vvgiii

vvg

gr

vvrgi

vvgvgi

21

21

21

3

21

214

212

2

Page 6: ECEN326: Electronic Circuits Fall 2017 - Texas A&M University

Simple OTA Transconductance: Informal Virtual Ground Approach

6

• As the differential circuit is not purely symmetric, we cannot formally assume a virtual ground at node P

• However, if the differential pair transistors M1 and M2 have high output resistance, a virtual ground can be approximated at node P to simplify the analysis

mninin

inminm

inin

scm

inminmnpsc

inmp

inmn

gvv

vgvgvv

iG

vgvgiii

vgi

vgi

21

2211

21

2211

11

22

loadmirror current idealan Assuming

Page 7: ECEN326: Electronic Circuits Fall 2017 - Texas A&M University

Simple OTA Output Resistance

7

onopout

out

OnOpout

ggR

G

rrR

1econductancoutput theuse also tousefuloften isIt

Page 8: ECEN326: Electronic Circuits Fall 2017 - Texas A&M University

Simple OTA Differential Gain

8

onop

mnOpOnmnv

OpOnmnoutmv

gggrrgA

rrgRGA

Page 9: ECEN326: Electronic Circuits Fall 2017 - Texas A&M University

Simple OTA Common-Mode Input Range

9

• Common-mode input range set by transistor saturation conditions• Low-end set by tail current source

saturation

1,

15

152

nTH

oxn

SS

oxn

SSGSDSATicm V

LWC

I

LWC

IVVV

• High-end set by differential pair saturation

1,3,

3

1,31, nTHpTH

oxp

SSDDnTHGSDDnTHocmicm VV

LWC

IVVVVVVV

1,5,

3

1,

15

2nTHpTH

oxp

SSDDicmnTH

oxn

SS

oxn

SS VV

LWC

IVVV

LWC

I

LWC

I

Page 10: ECEN326: Electronic Circuits Fall 2017 - Texas A&M University

Bipolar Simple OTA

10

• Following a similar procedure

opon

mnOpOnmnv

OpOnout

mnm

gggrrgA

rrRgG

• High-end Vicm set by keeping differential pair in active mode

VVVVVV onBEsatCEicm 17.03.0,,

• Low-end Vicm set by keeping tail current source in active mode

VVVVVVVVVVV

CCsatCECCicm

satCEonBEicmonBECCCE

3.0,

,,,1

Page 11: ECEN326: Electronic Circuits Fall 2017 - Texas A&M University

3 Current Mirror OTA

11

V-I V+

io

M1M1

ITAIL

vO

B : 1 1 : B

1 : 1

MN

MP

2BITAIL

111

11

1

1

mmmsc

m

mmnpsc

mn

mp

Bgvv

vBgvBgvv

iG

vBgvBgiii

vBgi

vBgi

11

1

11 1

OOpmv

oopout

OOpOOp

out

rrgA

ggBG

rrBB

rB

rR

• While Gm has increased by the current mirror factor B, the voltage gain remains the same due to the output resistance being reduced by B-1

• Common-mode input range expression remains the same as the previous simple OTA

Page 12: ECEN326: Electronic Circuits Fall 2017 - Texas A&M University

Bipolar 3 Current Mirror OTA w/ Degenerated Gm (Lab 7)

12

• In order to improve the distortion performance, emitter resistors have been added in the input differential pair

• In order to improve the output resistance, emitter resistance has been added to all the current mirror/source transistors

1111

1sistorsinput tran theof degnerated by theset is

mirrors,current theallfor ratio1:1aAssuming

EeEem

mm

RrRrG

GG

Page 13: ECEN326: Electronic Circuits Fall 2017 - Texas A&M University

Bipolar 3 Current Mirror OTA w/ Degenerated Gm (Lab 7)

13

8447844m6478

888

6324633m6246

666

84886366

,g

,g

rRRrrRRRrr

rgg

rRRrrRRRrr

rgg

rRrgrRrgR

EEeEEEe

mm

EEeEEEe

mm

oEomoEomout

Page 14: ECEN326: Electronic Circuits Fall 2017 - Texas A&M University

Bipolar 3 Current Mirror OTA w/ Degenerated Gm (Lab 7)

14

1112 Eeid RrR

onBEET

satCEBTEEicm VRIVRIVV ,1,3 2

• Low-end Vicm set by keeping tail current source in active mode

• High-end Vicm set by keeping differential pair in active mode

satCEET

CCicm

satCEonBEicmonBEET

CCCE

VRIVV

VVVVRIVV

,2

,,,21

2

2

• Maximum differential input amp. for good distortion

1max, ETid RIv

Page 15: ECEN326: Electronic Circuits Fall 2017 - Texas A&M University

Simulating the 3 Current Mirror OTA

15

• To simulate differential amplifiers, use voltage-controlled voltage sources (VCVS or “E” elements) to generate the differential input signal and monitor the current through the load resistor

Single-ended input source

2 VCVS to generate differential inputs

DC voltage source to set input DC level

Monitor I(RL)Note: This example is designed for 2X the Lab 7 Gm

Page 16: ECEN326: Electronic Circuits Fall 2017 - Texas A&M University

Simulating Transconductance

16

Single-ended input sourceDC=0AC=1

Gain=0.5DC voltage source to set input DC level

• Set Inputs E1 Gain=0.5 and E2 Gain=-0.5• With input source AC=1, simply plot the load resistor current I(RL)

to get the transconductance

Gain=-0.5

Monitor I(RL)

Page 17: ECEN326: Electronic Circuits Fall 2017 - Texas A&M University

Simulating Transconductance

17

• Gm = 2.01mA/V

Page 18: ECEN326: Electronic Circuits Fall 2017 - Texas A&M University

Simulating Differential Rind

18

• The differential input resistance is equivalent to the differential input (Vi) divided by the input current, where I use the base current of Q1 or IB(Q1)

• Rind = 159k

Page 19: ECEN326: Electronic Circuits Fall 2017 - Texas A&M University

Simulating THD

19

• Set input source to differential input amplitude spec • For Lab 7, that is 2V

• Check the THD at 3 different common-mode points• 0V, VCM,min, VCM,max

VCM=0V

VCM=-2V

VCM=2V

Page 20: ECEN326: Electronic Circuits Fall 2017 - Texas A&M University

Simulating Output Resistance

20

Ground input source

• Ground input source and apply an AC-coupled voltage stimulus at output• With output source AC=1, plot the ratio of V(Vout) over the current

through the coupling capacitorOutput stimulus

Page 21: ECEN326: Electronic Circuits Fall 2017 - Texas A&M University

Simulating Ro

21

• The output resistance is equivalent to the output stimulus V(Vout) divided by the output current, which is equal to the current through the output capacitor I(C5)

• Ro = 25.4k