Dynamics Project - Moein Razavi

  • Upload
    moein

  • View
    239

  • Download
    0

Embed Size (px)

Citation preview

  • 8/18/2019 Dynamics Project - Moein Razavi

    1/34

     

    PROJECT :

    DYNAMICS OF

    MACHINERY

  • 8/18/2019 Dynamics Project - Moein Razavi

    2/34

    DYNAMICS PROJECT: CRANK-SHAPER

    PROVIDED BY : MOEIN RAZAVI - SAJJAD DEHGHANI – KASRA ALION ST. IDS.: 9226081 – 92266077 –  9226033 1

    Project: Crank-Shaper Mechanism

    Professor: Dr. A. Taghvaei pour

    Teacher Assistant: Eng. M. Asadi Khanooki

    Provided by: Moein Razavi – Sajjad Dehghani – Kasra Alion

    St.IDs: 9226081 – 9226077 - 9226033

    Course: 2nd Semester 2014-2015 

  • 8/18/2019 Dynamics Project - Moein Razavi

    3/34

    DYNAMICS PROJECT: CRANK-SHAPER

    PROVIDED BY : MOEIN RAZAVI - SAJJAD DEHGHANI – KASRA ALION ST. IDS.: 9226081 – 92266077 –  9226033 2

    Abstract: ........................................................................................................................................................ 3

    Applications: ................................................................................................................................................. 3

    1.  INTRODUCTION  ............................................................................................................................... 3

    2.  CRANK AND SLOTTED LEVER QUICK RETURN MECHANISM ........................................................ 5

    A. Kinematics Analysis ............................................................................................................................... 6

    A-1. ASSUMPTIONS  ..................................................................................................................................... 6

    A-2. SOLVING THE PROBLEM  ........................................................................................................................ 7

    A-3. OBTAINING DESIRED VALUES AND PLOT DIAGRAMS FOR SECTION 1 ...................................................... 12

    A-3-1. “MATLAB” CODES  ...................................................................................................................... 12

    A-3-2. TABLE  ........................................................................................................................................ 13

    A-3-3. RESULTS (DIAGRAMS)  ................................................................................................................. 13

    A-4. OBTAINING DESIRED VALUES AND PLOT DIAGRAMS FOR SECTION 2 ...................................................... 15

    A-4-1. “MATLAB” CODES  ...................................................................................................................... 16

    A-4-2. TABLE FOR INPUT PARAMETERS  ................................................................................................... 18

    A-4-3.  RESULTS…………………………………………………………………………………………………………...…………19 

    A-4-3-1. (“MATLAB” DIAGRAMS)  .................................................................................................... 19

    A-4-3-2. (“ADAMS” DIAGRAMS)  ...................................................................................................... 22

    A-5. CHART ANALYSIS (ANALYZING Q UICK-RETURN) ................................................................................... 24

    A-5-1. VELOCITY DIAGRAMS  .................................................................................................................. 24

    A-5-2. Acceleration Diagrams ....................................................................................................24 

    B. Kinetics Analysis .................................................................................................................................... 25

    B-1. ASSUMPTIONS AND SOLVING THE PROBLEM  ........................................................................................ 25

    B-2. TABLES FOR INPUT VALUES  .................................................................................................................. 30

    B-3. CHART ANALYSIS (ANALYZING THE TORQUE ON LINK 2)  ....................................................................... 33

  • 8/18/2019 Dynamics Project - Moein Razavi

    4/34

    DYNAMICS PROJECT: CRANK-SHAPER

    PROVIDED BY : MOEIN RAZAVI - SAJJAD DEHGHANI – KASRA ALION ST. IDS.: 9226081 – 92266077 –  9226033 3

     Abstract: 

    We’re going to analyze a kind of quick-return mechanism, Crank-Shaper which

    employs and inversion of slider-crank linkage. This project has two phases. The

    first phase is the kinematics analysis of the mechanism and the second one is the

    kinetics analysis of it.

     Applications:

    INTRODUCTION 

    A quick return mechanism is a mechanism that converts rotary motion into

    reciprocating motion at different rate for its two strokes, i.e. working stroke and

    return stroke. When the time required for the working stroke is greater than that

    of the return stroke, it is a quick return mechanism. It yields a significant

    improvement in machining productivity. Currently, it is widely used in machine

    tools, for instance, shaping machines, power-driven saws, and other applicationsrequiring a working stroke with intensive loading, and a return stroke with non-

    intensive loading. Several quick return mechanisms can be found including the

    offset crank slider mechanism, the crank-shaper mechanisms, the double crank

    mechanisms, crank rocker

    mechanism and Whitworth

    mechanism. In mechanical

    design, the designer often

    has need of a linkage thatprovides a certain type of

    motion for the application in

    designing.

    Fig.: App.-1 - Shaping Machine 

  • 8/18/2019 Dynamics Project - Moein Razavi

    5/34

  • 8/18/2019 Dynamics Project - Moein Razavi

    6/34

    DYNAMICS PROJECT: CRANK-SHAPER

    PROVIDED BY : MOEIN RAZAVI - SAJJAD DEHGHANI – KASRA ALION ST. IDS.: 9226081 – 92266077 –  9226033 5

    1. CRANK AND SLOTTED LEVER QUICK RETURN MECHANISM 

    This mechanism is mostly used in shaping machines (Fig.: App.-1), slotting

    machines (Figs.: App.-2) and in rotary internal combustion engines (Fig.: App.-3). In this mechanism, the link AC (i.e. link 3) forming the turning pair is fixed, as

    shown in (Fig.: App.-4). The link 3 corresponds to the connecting rod of a

    reciprocating steam engine. The driving crank CB revolves with uniform angular

    speed about the fixed centre C. A sliding block is attached to the crank pin at B

    slides along the slotted bar AP and thus causes AP to oscillate about the pivoted

    point A. A short link PR transmits the motion from AP to the ram which carries the

    tool and reciprocates along the line of stroke R1R2. The line of stroke of the ram

    (i.e. R1R2) is perpendicular to AC produced. In the extreme positions, AP1 and

    AP2 are tangential to the circle and the cutting tool is at the end of the stroke.

    The forward or cutting stroke occurs when the crank rotates from the position

    CB1 to CB2 (or through an angle β) in the clockwise direction. The return stroke

    occurs when the crank rotates from the position CB2 to CB1 (or through angle α)

    in the clockwise direction.

    Fig.: App.-4 

  • 8/18/2019 Dynamics Project - Moein Razavi

    7/34

  • 8/18/2019 Dynamics Project - Moein Razavi

    8/34

  • 8/18/2019 Dynamics Project - Moein Razavi

    9/34

    DYNAMICS PROJECT: CRANK-SHAPER

    PROVIDED BY : MOEIN RAZAVI - SAJJAD DEHGHANI – KASRA ALION ST. IDS.: 9226081 – 92266077 –  9226033 8

    Fig. P-2: Inversion of Slider-Crank Mechanism (First Part)

    Fig. P-3: Slider-Crank Mechanism

     

  • 8/18/2019 Dynamics Project - Moein Razavi

    10/34

    DYNAMICS PROJECT: CRANK-SHAPER

    PROVIDED BY : MOEIN RAZAVI - SAJJAD DEHGHANI – KASRA ALION ST. IDS.: 9226081 – 92266077 –  9226033 9

    In this part, in order to make our calculations simpler, we solve the slider-crank

    mechanism. It means that we first obtain the angular velocity and acceleration of

    ground and link 2 to relative to link 4. (Like the solution of the problem shown in

    Fig. P-3.)

    We choose a secondary coordinate for this part as shown in Fig.P-2. The

    equations for this part of problem are as follows:

    θ1’=2π+π/2-θ4  (P-1)θ2’=θ2-θ4  (P-2) 

    L1eiθ1’+L2eiθ2’=R3  (P-3)

    By differentiating Equation (P-1), we get:

    L1iω1/4eiθ1’+ L2iω2/4eiθ2’=V3  (P-4)

    We know that in the secondary coordinate (X’-Y’), link 3 has velocity only in the X’

    direction. So the imaginary part of the equation (P-2) equals zero. By solving this

    equation we obtain the angular velocity of link 4:

    =

    ((’))/((’))  ( ) 

    Similarly by differentiating equation (P-4), knowing that the imaginary part of the

    acceleration of link 4 is zero, we’ll find the angular acceleration of link 4: 

    L1 eiθ1’ (iα1/4-ω1/42) – L2 eiθ2’ (iα2/4-ω2/42) =A3 (P-6)

    =−(^∗(’)+(−)^∗(’)))

    ∗(’)∗(+(−)/)  (P-7) 

  • 8/18/2019 Dynamics Project - Moein Razavi

    11/34

    DYNAMICS PROJECT: CRANK-SHAPER

    PROVIDED BY : MOEIN RAZAVI - SAJJAD DEHGHANI – KASRA ALION ST. IDS.: 9226081 – 92266077 –  9226033 10

    2. Second part Includes Links 4, 5 and 6 (Fig. P-4). This part is again a mechanism

    like the mechanism shown in Fig. P-3. Since we have obtained the angular velocity

    and acceleration of link 4 (Equations P-3 and P-4, respectively) with respect to the

    angular velocity and acceleration of the input link (link 2), we can now obtain the

    angular velocity and acceleration of link 5 using a solution similar to which

    described for the calculation of the angular velocity and acceleration of link 4. The

    solution for this part is as follows:

    Fig. P-4: Slider-Crank Mechanism (Second Part)

  • 8/18/2019 Dynamics Project - Moein Razavi

    12/34

    DYNAMICS PROJECT: CRANK-SHAPER

    PROVIDED BY : MOEIN RAZAVI - SAJJAD DEHGHANI – KASRA ALION ST. IDS.: 9226081 – 92266077 –  9226033 11

    L4eiθ4+L5eiθ5=R6  (P-8)

    By differentiating Equation (P-6) two times, knowing that imaginary parts of the

    linear velocity and acceleration of link 6 is zero, we obtain the angular velocity

    and acceleration of link 5:

    L4iω4eiθ4+ L5iω5eiθ5=V6 (P-9)

    L4eiθ4 (iα4-ω42) – L5ei5 (iα5-ω52) =A6 (P-10) 

    = ()

    () (P 11) 

    = (^()+^())

    ()  (P-12) 

  • 8/18/2019 Dynamics Project - Moein Razavi

    13/34

    DYNAMICS PROJECT: CRANK-SHAPER

    PROVIDED BY : MOEIN RAZAVI - SAJJAD DEHGHANI – KASRA ALION ST. IDS.: 9226081 – 92266077 –  9226033 12

    A-3. OBTAINING DESIRED VALUES AND PLOT DIAGRAMS FOR SECTION 1

    A-3-1. “MATLAB” CODES 

    The Codes in “Matlab” for the first section are as follows:

    theta2=input('Please Enter the Amount of Theta2(Deg):')*pi/180; w2=input('Please Enter the Amount of Omega2 (Rev/min) :')*pi/30; alpha2=input('Please Enter the Amount of alpha2 (Rev/min^2):')*2*pi/3600; l1=457; l2=152; l2p=0:0.1:l2; l3=762; l3p=0:0.1:l3; l4=508; l4p=0:0.1:l4; h=816.917; r=sqrt(l1^2+l2^2+2*l1*l2*sin(theta2)); 

    theta3=acos(l2*cos(theta2)/r); theta4=asin((h-l3*sin(theta3))/l4); thetap1=2*pi+pi/2-theta3; thetap2=theta2-theta3; 

    w3=w2/(1+(l1*cos(thetap1))/(l2*cos(thetap2))); alpha3=(alpha2-(l1*w3^2*sin(thetap1)+l2*(w2-

    w3)^2*sin(thetap2)))/(l2*cos(thetap2)*(1+(w2-w3)/w3)); w4=-l3*cos(theta3)*w3/(l4*cos(theta4)); 

    alpha4=(w4/w3)*alpha3+(l3*w3^2*sin(theta3)+l4*w4^2*sin(theta4))/(l4*cos(theta4)); rp3=r*exp(1i*theta3); r45=l3p*exp(1i*theta3); r6=l3*exp(1i*theta3)+l4p*exp(1i*theta4); vp3=l2*1i*w2*exp(1i*theta2); ap3=l2*exp(1i*theta2)*(1i*alpha2-w2^2); v45=l3p*1i*w3*exp(1i*theta3); v45p=abs(v45); a45=l3p*exp(1i*theta3)*(1i*alpha3-w3^2); a45p=abs(a45); v6=-(l3*w3*sin(theta3)+l4p*w4*sin(theta4)); v6p=abs(v6); a6=-l3*(alpha3*sin(theta3)+w3^2*cos(theta3))-l4p*(alpha4*sin(theta4)+w4^2*cos(theta4)); a6p=abs(a6); subplot(3,2,1); plot(r45); subplot(3,2,2); 

    plot(r6); subplot(3,2,3); plot(l3p,v45p); subplot(3,2,4); plot(l4p,real(v6)); subplot(3,2,5); plot(l3p,a45p); subplot(3,2,6); plot(l4p,a6p); Published with MATLAB® R2014a 

    http://www.mathworks.com/products/matlabhttp://www.mathworks.com/products/matlab

  • 8/18/2019 Dynamics Project - Moein Razavi

    14/34

    DYNAMICS PROJECT: CRANK-SHAPER

    PROVIDED BY : MOEIN RAZAVI - SAJJAD DEHGHANI – KASRA ALION ST. IDS.: 9226081 – 92266077 –  9226033 13

    A-3-2. TABLE 

    Section 1 1st  Exam. 2nd  Exam. 3rd  Exam.

    Initial Angular Position

    of Link 2 (θ2  – Degrees) 167 200 70Initial Angular Velocity

    of Link 2 (ω2 – Rev/min) 9.5 15 5Initial Angular

    Acceleration of Link 2

    (α2  – Rev/min2)

    0 5 -7.5

    A-3-3. RESULTS (DIAGRAMS) 

    Tab. P- 1: Input Parameters for Section 1

    Fig. P-5: Sec.1 - Exm.1

  • 8/18/2019 Dynamics Project - Moein Razavi

    15/34

    DYNAMICS PROJECT: CRANK-SHAPER

    PROVIDED BY : MOEIN RAZAVI - SAJJAD DEHGHANI – KASRA ALION ST. IDS.: 9226081 – 92266077 –  9226033 14

    Fig. P-6: Sec.1 - Exm.2

    Fig. P-7: Sec.1 - Exm.3

  • 8/18/2019 Dynamics Project - Moein Razavi

    16/34

    DYNAMICS PROJECT: CRANK-SHAPER

    PROVIDED BY : MOEIN RAZAVI - SAJJAD DEHGHANI – KASRA ALION ST. IDS.: 9226081 – 92266077 –  9226033 15

    A-4. OBTAINING DESIRED VALUES AND PLOT DIAGRAMS FOR SECTION 2

    In the second section, the user enters the initial values for angular position andvelocity of link 2, then enters the time function of its angular acceleration. We can

    obtain the time functions for angular velocity and position of link 2 by integrating

    the function of angular acceleration 2 times, knowing the initial values of angular

    velocity and position. Since we want to plot our diagrams only in a period of time

    (not more or less), we have to find the time period of a complete cycle. In order

    to do that, we set our obtained equation for angular position of link 2 equal to 2π. 

    There may be a couple of values for the time period, so we’ll choose the minimum

    of positive values. Then we plot our desired diagrams in the period of onecomplete cycle.

  • 8/18/2019 Dynamics Project - Moein Razavi

    17/34

    DYNAMICS PROJECT: CRANK-SHAPER

    PROVIDED BY : MOEIN RAZAVI - SAJJAD DEHGHANI – KASRA ALION ST. IDS.: 9226081 – 92266077 –  9226033 16

    A-4-1. “MATLAB” CODES 

    The Codes in “Matlab” for the second section are as follows: 

    syms t; theta2i=input('Please Enter the Amount of Theta2(Deg):')*pi/180; w2i=input('Please Enter the Amount of Omega2 (Rev/min):')*pi/30; alpha2=input('Please Enter the Time Function of alpha2:')*2*pi/3600; l1=457; l2=152; l2p=0:0.1:l2; l3=762; l3p=0:0.1:l3; l4=508; l4p=0:0.1:l4; h=816.917; 

    w2=int(alpha2,t)+w2i; theta2=int(w2,t)+theta2i; r=sqrt(l1^2+l2^2+2*l1*l2*sin(theta2)); theta3=acos(l2*cos(theta2)./r); theta4=asin((h-l3*sin(theta3))/l4); thetap1=2*pi+pi/2-theta3; thetap2=theta2-theta3; 

    w3=w2./(1+(l1*cos(thetap1))./(l2*cos(thetap2))); alpha3=(alpha2-(l1*w3.^2.*sin(thetap1)+l2*(w2-

    w3).^2.*sin(thetap2)))./(l2*cos(thetap2).*(1+(w2-w3)./w3)); w4=-l3*cos(theta3).*w3./(l4*cos(theta4)); 

    alpha4=(w4./w3).*alpha3+(l3*w3.^2.*sin(theta3)+l4*w4.^2.*sin(theta4))./(l4*cos(theta4)); rp3=r.*exp(1i*theta3); r45=l3*exp(1i*theta3); r6=l3*exp(1i*theta3)+l4*exp(1i*theta4); vp3=l2*1i*w2.*exp(1i*theta2); v3=abs(vp3); ap3=l2*exp(1i*theta2).*(1i*alpha2-w2.^2); a3=abs(ap3); vp45=l3*1i.*w3.*exp(1i*theta3); v45=abs(vp45); ap45=l3*exp(1i*theta3).*(1i*alpha3-w3.^2); a45=abs(ap45); vp6=-(l3*w3.*sin(theta3)+l4*w4.*sin(theta4)); v6=abs(vp6); ap6=-l3*(alpha3.*sin(theta3)+w3.^2.*cos(theta3))-

    l4*(alpha4.*sin(theta4)+w4.^2.*cos(theta4)); a6=abs(ap6); T=solve(int(w2,t)-2*pi==0); T=double(T); TP=min(T(T>0)); t=0:.01:TP; subplot(3,4,1); plot(eval(theta2),eval(v3)); title('V_3-\theta_2'); xlabel('\theta_2'); 

  • 8/18/2019 Dynamics Project - Moein Razavi

    18/34

    DYNAMICS PROJECT: CRANK-SHAPER

    PROVIDED BY : MOEIN RAZAVI - SAJJAD DEHGHANI – KASRA ALION ST. IDS.: 9226081 – 92266077 –  9226033 17

    ylabel('V_3'); subplot(3,4,2); plot(eval(theta2),eval(a3)); title('A_3-\theta_2'); xlabel('\theta_2'); ylabel('A_3'); 

    subplot(3,4,3); plot(eval(theta2),eval(v45)); title('V_4_5-\theta_2'); xlabel('\theta_2'); ylabel('V_4_5'); subplot(3,4,4); plot(eval(theta2),eval(a45)); title('A_4_5-\theta_2'); xlabel('\theta_2'); ylabel('A_4_5'); subplot(3,4,5); plot(eval(theta2),eval(v6)); title('V_6-\theta_2'); xlabel('\theta_2'); ylabel('V_6'); subplot(3,4,6); plot(eval(theta2),eval(a6)); title('A_6-\theta_2'); xlabel('\theta_2'); ylabel('A_6'); subplot(3,4,7); plot(eval(theta2),eval(w3)); title('\omega_4-\theta_2'); xlabel('\theta_2'); ylabel('\omega_4'); subplot(3,4,8); plot(eval(theta2),eval(alpha3)); 

    title('\alpha_4-\theta_2'); xlabel('\theta_2'); ylabel('\alpha_4'); subplot(3,4,9); plot(eval(theta2),eval(w4)); title('\omega_5-\theta_2'); xlabel('\theta_2'); ylabel('\omega_5'); subplot(3,4,10); plot(eval(theta2),eval(alpha4)); title('\alpha_5-\theta_2'); xlabel('\theta_2'); ylabel('\alpha_5'); figure; polar(eval(theta2),eval(abs(rp3))); title('R_3-\theta_2'); figure; polar(eval(theta2),eval(abs(r45))); title('R_4_5-\theta_2'); figure; polar(eval(theta2),eval(abs(r6))); title('R_6-\theta_2');

    Published with MATLAB® R2014a 

    http://www.mathworks.com/products/matlabhttp://www.mathworks.com/products/matlab

  • 8/18/2019 Dynamics Project - Moein Razavi

    19/34

    DYNAMICS PROJECT: CRANK-SHAPER

    PROVIDED BY : MOEIN RAZAVI - SAJJAD DEHGHANI – KASRA ALION ST. IDS.: 9226081 – 92266077 –  9226033 18

    A-4-2. TABLE FOR INPUT PARAMETERS 

    Section 2 1st  Exam. 2nd  Exam. 3rd  Exam.

    Initial Angular Position

    of Link 2 (θ2  – Degrees) 167 85 230Initial Angular Velocity

    of Link 2 (ω2 – Rev/min) 9.5 79 0Time Function for

    Angular Acceleration of

    Link 2 (α2  – Rev/min2)

    0 1.5t 5t 3+7t

    Tab. P- 2: Input Parameters for Section 2

  • 8/18/2019 Dynamics Project - Moein Razavi

    20/34

    DYNAMICS PROJECT: CRANK-SHAPER

    PROVIDED BY : MOEIN RAZAVI - SAJJAD DEHGHANI – KASRA ALION ST. IDS.: 9226081 – 92266077 –  9226033 19

    A-4-3.  RESULTS 

    A-4-3-1. (“MATLAB” DIAGRAMS)

    Fig. P-8: Sec.2 - Exm.1

  • 8/18/2019 Dynamics Project - Moein Razavi

    21/34

    DYNAMICS PROJECT: CRANK-SHAPER

    PROVIDED BY : MOEIN RAZAVI - SAJJAD DEHGHANI – KASRA ALION ST. IDS.: 9226081 – 92266077 –  9226033 20

    Fig. P-9: Sec.2 - Exm.2

  • 8/18/2019 Dynamics Project - Moein Razavi

    22/34

    DYNAMICS PROJECT: CRANK-SHAPER

    PROVIDED BY : MOEIN RAZAVI - SAJJAD DEHGHANI – KASRA ALION ST. IDS.: 9226081 – 92266077 –  9226033 21

    Fig. P-10: Sec.2 –  Exm3.

  • 8/18/2019 Dynamics Project - Moein Razavi

    23/34

    DYNAMICS PROJECT: CRANK-SHAPER

    PROVIDED BY : MOEIN RAZAVI - SAJJAD DEHGHANI – KASRA ALION ST. IDS.: 9226081 – 92266077 –  9226033 22

    A-4-3-2. (“ADAMS” DIAGRAMS)

    Figs. P-11: Sec.2 –  Exm1.

  • 8/18/2019 Dynamics Project - Moein Razavi

    24/34

    DYNAMICS PROJECT: CRANK-SHAPER

    PROVIDED BY : MOEIN RAZAVI - SAJJAD DEHGHANI – KASRA ALION ST. IDS.: 9226081 – 92266077 –  9226033 23

    Figs. P-12: Sec.2 –  Exm2.

  • 8/18/2019 Dynamics Project - Moein Razavi

    25/34

    DYNAMICS PROJECT: CRANK-SHAPER

    PROVIDED BY : MOEIN RAZAVI - SAJJAD DEHGHANI – KASRA ALION ST. IDS.: 9226081 – 92266077 –  9226033 24

    A-5. CHART ANALYSIS (ANALYZING Q UICK-RETURN)

    A-5-1. VELOCITY DIAGRAMS 

    We see in the charts that the each of the velocity diagrams for Link 6 in “X”

    Direction (Figs. P-11 and Figs. P-12) has local 2 peaks per a period, one of them is

    much higher than the other one. It shows that the “return” part (Positive Peak) of

    the motion would be done with much more velocity, hence it takes less time to be

    done. This is due to the fact that in “go” part (Negative Peak), the angular

    displacement of Link 2 is much bigger than it in the “return” (Positive Peak) part

    of the motion.

    A-5-2. ACCELERATION DIAGRAMS 

    As we see in the acceleration diagrams of Link 6 in “X” direction (Figs. P-11 andFigs. P-12), again there are two peaks in each period with one of them positive

    and the other one, negative. These peaks show the “start” and the “end” of the

    quick-return motion. The “positive” one is for the beginning and the “negative”

    on is for the end of the quick-return motion. We also see that the magnitudes of

    these negative and positive peaks are the same; it means that the time for

    “acceleration” equals the time for “deceleration”. 

  • 8/18/2019 Dynamics Project - Moein Razavi

    26/34

    DYNAMICS PROJECT: CRANK-SHAPER

    PROVIDED BY : MOEIN RAZAVI - SAJJAD DEHGHANI – KASRA ALION ST. IDS.: 9226081 – 92266077 –  9226033 25

    B. Kinetics Analysis 

    B-1. ASSUMPTIONS AND SOLVING THE PROBLEM 

    Let us consider the mechanism in (Fig. P-1) where Link 2 is a driver and rotates

    with a known constant angular velocity ω2. The motion is opposed by a known

    force P acting on slider 6 as shown. We wish to find the forces at all the pairs or

     joints and the torque which the shaft at O2 must exert on crank 2 to drive the

    mechanism. It’ll be assumed that the forces of the gravity on the links are

    negligible. The acceleration polygon appears in (Fig. P-13-A and Fig. P-13-B). In

    (Figs. P-14) each link is shown isolated and the magnitude, direction, and location

    of inertia are also shown.

    Fig. P-13-A: Acceleration Polygon

  • 8/18/2019 Dynamics Project - Moein Razavi

    27/34

    DYNAMICS PROJECT: CRANK-SHAPER

    PROVIDED BY : MOEIN RAZAVI - SAJJAD DEHGHANI – KASRA ALION ST. IDS.: 9226081 – 92266077 –  9226033 26

    In order to have much more accuracy, we drew our acceleration diagram using

    “SolidWorks 2015TM”. 

    Fig. P-13-B: Acceleration Polygon (by SolidWorks 2015)

  • 8/18/2019 Dynamics Project - Moein Razavi

    28/34

    DYNAMICS PROJECT: CRANK-SHAPER

    PROVIDED BY : MOEIN RAZAVI - SAJJAD DEHGHANI – KASRA ALION ST. IDS.: 9226081 – 92266077 –  9226033 27

    (A)

    (B)

    (C)(D)

    (E)

    (F)

    (G)

    Figs. P-14

  • 8/18/2019 Dynamics Project - Moein Razavi

    29/34

    DYNAMICS PROJECT: CRANK-SHAPER

    PROVIDED BY : MOEIN RAZAVI - SAJJAD DEHGHANI – KASRA ALION ST. IDS.: 9226081 – 92266077 –  9226033 28

    The force analysis is started with link 6, which is shown in (Fig. P-14-A). The

    unknowns are the magnitude of F16 and the magnitude and direction of F56. The

    horizontal component of F56 is F56H, and its magnitude can be found from thesummation of horizontal forces on link 6.

    In (Fig. P-14-B), force F65H is equal and opposite to F56H. The magnitude of F65V can

    be found by the summation of Moments about point ”45”. Then from a force

    polygon for link 5, the magnitude and direction of F45 are found. Next, in (Fig. P-

    14-C) F54 is known and is equal and opposite to F45. There are four unknowns in

    (Fig. P-14-C): the magnitude and direction of F14 and the magnitude and location

    of F34. Since there are only three equations of equilibrium, we cannot determinethese forces by considering this link alone. If consider link 3 shown in (Fig. P-14-D) 

    we note that here there are also four unknowns: the magnitude and direction of

    F23 and magnitude and location of F43. However, for the combination of links 3

    and 4 we have only six unknowns, and they can be analyzed in combination. From

    the free body of link 3 we see that F23 causes no torque about the center of mass

    point”3”, and thus F43 must be of such a magnitude as to balance the forces, and

    its line of action must be displayed from point “3” enough to balance the inertia

    torque. F43 can then be resolved into a force passing through point “3” and atorque about point 3 sufficient to balance the inertia torque. This is shown in (Fig.

    P-14-E). The equal and opposite force and torque on link 4 as shown in (Fig. P-14-

    F) makes link 4 a free body with three unknowns. The magnitude of F34 can be

    found by setting the sum of the moments about O4 equal to zero. F14 can then be

    found from a force polygon for link 4.

    We replaced F43 in (Fig. P-14-D) with force F13 and T43, which are shown in (Fig. P-

    14-E). Thus in (Fig. P-14-D): 

    F43a = T43 = I3α3 (P-13)

    And thus the moment arm “a” can be determined as follows: 

    a =I3α3

    F43  (P-14)

  • 8/18/2019 Dynamics Project - Moein Razavi

    30/34

    DYNAMICS PROJECT: CRANK-SHAPER

    PROVIDED BY : MOEIN RAZAVI - SAJJAD DEHGHANI – KASRA ALION ST. IDS.: 9226081 – 92266077 –  9226033 29

    This locates the actual line of action of F43. In the FBD of link 3, the F43 will be

    equal and opposite to F34, which as determined earlier. F23 can now be

    determined from a force polygon for link 3.

    The FBD of link 2 is shown in (Fig. P-14-G). F32 is equal and opposite to F23, and theF12 can be determined from a force polygon for link 2. Finally, by summing

    moments about O2, the torque T2, which the shaft at O2 exerts on crank 2, can be

    determined.

    In tables below the results of calculations are shown (We obtained the values for

    angular acceleration and velocity (Tab. P-3) by entering input parameters of  (Tab.

    P-4) in “Matlab”.)

  • 8/18/2019 Dynamics Project - Moein Razavi

    31/34

    DYNAMICS PROJECT: CRANK-SHAPER

    PROVIDED BY : MOEIN RAZAVI - SAJJAD DEHGHANI – KASRA ALION ST. IDS.: 9226081 – 92266077 –  9226033 30

    B-2. TABLES FOR INPUT VALUES 

    Link/Joint I(kg-

    mm2)

    α(Rad/s2) AG(mm/s2) M(kg) F(kg.mm/s2)

    2/12 3.498 0 75.21 0.147 1658

    3/23 26000 -0.1796 150.42 15.6 1654

    4/14 11070 -0.1796 68.91 18.56 503.3

    5/45 740.83 -0.047 137.25 3.67 1078

    6/56 0 0 137.72 17.83 1081

    The Torque that must be exerted on Link 2 is obtained:

    T2 = 514.3 N-mm

    Kinetics 1st  Exam. 2nd  Exam.

    Initial Angular Position of Link 2

    (θ2  – Degrees) 167 200Initial Angular Velocity of Link 2

    (ω2 – Rev/min) 9.5 15Initial Angular Acceleration ofLink 2 (α2  – Rev/min2) 0 5

    Input Force P (N) 1500 1500

    Tab. P- 3: Input Parameters for Kinetics Part

    Tab. P- 4: Input Parameters for Kinetics Part

  • 8/18/2019 Dynamics Project - Moein Razavi

    32/34

    DYNAMICS PROJECT: CRANK-SHAPER

    PROVIDED BY : MOEIN RAZAVI - SAJJAD DEHGHANI – KASRA ALION ST. IDS.: 9226081 – 92266077 –  9226033 31

    Figs. P-15: Adams Diagrams (Examination 1)

  • 8/18/2019 Dynamics Project - Moein Razavi

    33/34

    DYNAMICS PROJECT: CRANK-SHAPER

    PROVIDED BY : MOEIN RAZAVI - SAJJAD DEHGHANI – KASRA ALION ST. IDS.: 9226081 – 92266077 –  9226033 32

    Figs. P-16: Adams Diagrams (Examination 2)

  • 8/18/2019 Dynamics Project - Moein Razavi

    34/34

    DYNAMICS PROJECT: CRANK-SHAPER

    B-3. CHART ANALYSIS (ANALYZING THE TORQUE ON LINK 2) 

    As we see in the diagrams (Fig. P-15) there is one peak and one valley in each

    period of the motion for the force values in joints, that show the beginning and

    the end of the quick-return motion. Also it can be concluded from the diagrams

    that how the forces vary in the motion.

    We know that the magnitude of the torque acting on link 2 is proportional to the

    force acting on it. When links 2 and 4 are placed along each other, the resultant

    force that link 2 exerts on link 4, has got only component along X direction (that

    should act against the force applied on slider (link 6)). In other situations (except

    where links 2 and 4 are along each other) the X component of the force that link 2

    exerts on link 4 should act against the forced applied on the slider, hence theresultant of the force that link 2 exerts on link 4 is larger. The valleys in the

    diagram show these conditions. By the same reason (stating the force that link 2

    exerts on link 4 by X and Y components) the peaks of the diagram occur when

    links 2 and 4 are normal to each other.