Fundamentals_of_Microelectronics (Manual) by Razavi

Embed Size (px)

Citation preview

  • 8/18/2019 Fundamentals_of_Microelectronics (Manual) by Razavi

    1/853

    2.1 (a)

    k = 8 .617 × 10− 5 eV/ K

    n i (T = 300 K) = 1 .66 × 1015 (300 K) 3 / 2 exp −

    0.66 eV2 (8.617 × 10− 5 eV/ K) (300 K)

    cm− 3

    = 2 .465×

    1013

    cm− 3

    n i (T = 600 K) = 1 .66 × 1015 (600 K) 3 / 2 exp −

    0.66 eV2 (8.617 × 10− 5 eV/ K) (600 K)

    cm− 3

    = 4 .124 × 1016 cm− 3

    Compared to the values obtained in Example 2.1, we can see that the intrinsic carrier concentrationin Ge at T = 300 K is 2 .465 × 10

    13

    1 .08 × 10 10 = 2282 times higher than the intrinsic carrier concentration inSi at T = 300 K. Similarly, at T = 600 K, the intrinsic carrier concentration in Ge is 4 .124 × 10

    16

    1 .54 × 10 15 =26.8 times higher than that in Si.

    (b) Since phosphorus is a Group V element, it is a donor, meaning N D = 5 × 1016 cm− 3 . For ann-type material, we have:

    n = N D = 5 × 1016 cm− 3

    p(T = 300 K) = [n i (T = 300 K)]

    2

    n = 1 .215 × 1010 cm− 3

    p(T = 600 K) = [n i (T = 600 K)]

    2

    n = 3 .401 × 1016 cm− 3

  • 8/18/2019 Fundamentals_of_Microelectronics (Manual) by Razavi

    2/853

  • 8/18/2019 Fundamentals_of_Microelectronics (Manual) by Razavi

    3/853

    2.3 (a) Since the doping is uniform, we have no diffusion current. Thus, the total current is due only tothe drift component.

    I tot = I drift= q (nµ n + pµ p )AE

    n = 10 17 cm− 3

    p = n 2i /n = (1 .08 × 1010 )2 / 1017 = 1 .17 × 103 cm− 3

    µn = 1350 cm2 / V · s

    µ p = 480 cm2 / V · s

    E = V /d = 1 V0.1 µ m

    = 10 5 V/ cmA = 0 .05 µ m × 0.05 µ m

    = 2 .5 × 10− 11 cm2

    Since nµ n ≫ pµ p , we can write

    I tot ≈ qnµ n AE

    = 54 .1 µ A

    (b) All of the parameters are the same except n i , which means we must re-calculate p.

    n i (T = 400 K) = 3 .657 × 1012 cm− 3

    p = n 2i /n = 1 .337 × 108 cm− 3

    Since nµn ≫ pµ p still holds (note that n is 9 orders of magnitude larger than p), the holeconcentration once again drops out of the equation and we have

    I tot ≈ qnµ n AE

    = 54 .1 µ A

  • 8/18/2019 Fundamentals_of_Microelectronics (Manual) by Razavi

    4/853

    2.4 (a) From Problem 1, we can calculate n i for Ge.

    n i (T = 300 K) = 2 .465 × 1013 cm− 3

    I tot = q (nµ n + pµ p)AE

    n = 10 17 cm− 3

    p = n2

    i /n = 6 .076×

    109

    cm− 3

    µn = 3900 cm2 / V · s

    µ p = 1900 cm2 / V · s

    E = V /d = 1 V0.1 µ m

    = 10 5 V/ cmA = 0 .05 µ m × 0.05 µ m

    = 2 .5 × 10− 11 cm2

    Since nµ n ≫ pµ p , we can write

    I tot ≈ qnµ n AE

    = 156 µ A

    (b) All of the parameters are the same except n i , which means we must re-calculate p.

    n i (T = 400 K) = 9 .230 × 1014 cm− 3

    p = n 2i /n = 8 .520 × 1012 cm− 3

    Since nµn ≫ pµ p still holds (note that n is 5 orders of magnitude larger than p), the holeconcentration once again drops out of the equation and we have

    I tot ≈ qnµ n AE

    = 156 µ

    A

  • 8/18/2019 Fundamentals_of_Microelectronics (Manual) by Razavi

    5/853

    2.5 Since there’s no electric eld, the current is due entirely to diffusion. If we dene the current as positivewhen owing in the positive x direction, we can write

    I tot = I diff = AJ diff = Aq D ndndx

    − D pdpdx

    A = 1 µ m × 1 µ m = 10 − 8 cm2

    D n = 34 cm 2 / sD p = 12 cm

    2 / sdndx

    = −5 × 1016 cm− 3

    2 × 10− 4 cm = − 2.5 × 1020 cm− 4

    dpdx

    = 2 × 1016 cm− 3

    2 × 10− 4 cm = 10 20 cm− 4

    I tot = 10− 8 cm2 1.602 × 10− 19 C 34 cm2 / s − 2.5 × 1020 cm− 4 − 12 cm2 / s 1020 cm− 4

    = − 15.54 µ A

  • 8/18/2019 Fundamentals_of_Microelectronics (Manual) by Razavi

    6/853

  • 8/18/2019 Fundamentals_of_Microelectronics (Manual) by Razavi

    7/853

  • 8/18/2019 Fundamentals_of_Microelectronics (Manual) by Razavi

    8/853

    2.8 Assume the diffusion lengths L n and L p are associated with the electrons and holes, respectively, in thismaterial and that Ln , L p ≪ 2 µ m. We can express the electron and hole concentrations as functionsof x as follows:

    n (x ) = N e − x/L n

    p(x ) = P e (x − 2) /L p

    # of electrons = 20

    an (x )dx

    = 2

    0aNe

    − x/L n dx

    = − aNL n e− x/L n

    2

    0

    = − aNL n e− 2/L n − 1

    # of holes = 2

    0ap (x )dx

    =

    2

    0aP e (x

    − 2) /L p dx

    = aP L p e (x− 2) /L p

    2

    0

    = aP L p 1 − e− 2/L p

    Due to our assumption that L n , L p ≪ 2 µ m, we can write

    e− 2/L n ≈ 0

    e− 2/L p ≈ 0

    # of electrons ≈ aNL n

    # of holes ≈ aP L p

  • 8/18/2019 Fundamentals_of_Microelectronics (Manual) by Razavi

    9/853

  • 8/18/2019 Fundamentals_of_Microelectronics (Manual) by Razavi

    10/853

    2.10 (a)

    nn = N D = 5 × 1017 cm− 3

    pn = n2

    i /n n = 233 cm− 3

    p p = N A = 4 × 1016 cm− 3

    n p = n2

    i /p p = 2916 cm− 3

    (b) We can express the formula for V 0 in its full form, showing its temperature dependence:

    V 0 (T ) = kT

    q ln

    N A N D(5.2 × 1015 )

    2T 3 e− E g /kT

    V 0 (T = 250 K) = 906 mV

    V 0 (T = 300 K) = 849 mV

    V 0 (T = 350 K) = 789 mV

    Looking at the expression for V 0 (T ), we can expand it as follows:

    V 0 (T ) = kT

    q ln(N A ) + ln( N D ) − 2 ln 5.2 × 10

    15− 3ln(T ) + E g /kT

    Let’s take the derivative of this expression to get a better idea of how V 0 varies with temperature.

    dV 0 (T )dT

    = kq

    ln(N A ) + ln( N D ) − 2 ln 5.2 × 1015

    − 3ln(T ) − 3

    From this expression, we can see that if ln( N A ) + ln( N D ) < 2 ln 5.2 × 1015 + 3ln( T ) + 3, orequivalently, if ln( N A N D ) < ln 5.2 × 1015

    2T 3 − 3, then V 0 will decrease with temperature,

    which we observe in this case. In order for this not to be true (i.e., in order for V 0 to increase with

    temperature), we must have either very high doping concentrations or very low temperatures.

  • 8/18/2019 Fundamentals_of_Microelectronics (Manual) by Razavi

    11/853

    2.11 Since the p-type side of the junction is undoped, its electron and hole concentrations are equal to theintrinsic carrier concentration.

    nn = N D = 3 × 1016 cm− 3

    p p = n i = 1 .08 × 1010 cm− 3

    V 0 = V T lnN D n i

    n 2i

    = (26 mV) lnN Dn i

    = 386 mV

  • 8/18/2019 Fundamentals_of_Microelectronics (Manual) by Razavi

    12/853

    2.12 (a)

    C j 0 = qǫSi2 N A N DN A + N D 1V 0C j =

    C j 0

    1 − V R /V 0

    N A = 2 × 1015 cm− 3

    N D = 3 × 1016 cm− 3

    V R = − 1.6 V

    V 0 = V T lnN A N D

    n 2i= 701 mV

    C j 0 = 14 .9 nF / cm2

    C j = 8 .22 nF/ cm2

    = 0 .082 fF/ cm2

    (b) Let’s write an equation for C ′j in terms of C j assuming that C ′

    j has an acceptor doping of N ′

    A .

    C ′j = 2 C j

    qǫSi2 N ′A N DN ′A + N D 1V T ln(N ′A N D /n 2i ) − V R = 2 C jqǫSi

    2N ′A N D

    N ′A + N D1

    V T ln(N ′A N D /n2i ) − V R

    = 4 C 2j

    qǫSi N ′A N D = 8 C 2j (N

    A + N D )(V T ln(N ′

    A N D /n2i ) − V R )

    N ′A qǫSi N D − 8C 2j (V T ln( N

    A N D /n2i ) − V R ) = 8 C

    2j N D (V T ln(N

    A N D /n2i ) − V R )

    N ′A =8C 2j N D (V T ln(N

    A N D /n2i ) − V R )

    qǫSi N D − 8C 2j (V T ln(N ′

    A N D /n2i ) − V R )

    We can solve this by iteration (you could use a numerical solver if you have one available). Startingwith an initial guess of N ′A = 2 × 10

    15 cm− 3 , we plug this into the right hand side and solve tond a new value of N ′A = 9 .9976 × 10

    15 cm− 3 . Iterating twice more, the solution converges toN ′A = 1 .025 × 10

    16 cm− 3 . Thus, we must increase the N A by a factor of N ′A /N A = 5 .125 ≈ 5 .

  • 8/18/2019 Fundamentals_of_Microelectronics (Manual) by Razavi

    13/853

  • 8/18/2019 Fundamentals_of_Microelectronics (Manual) by Razavi

    14/853

  • 8/18/2019 Fundamentals_of_Microelectronics (Manual) by Razavi

    15/853

  • 8/18/2019 Fundamentals_of_Microelectronics (Manual) by Razavi

    16/853

  • 8/18/2019 Fundamentals_of_Microelectronics (Manual) by Razavi

    17/853

    2.16 (a) The following gure shows the series diodes.

    I D

    D 1

    D2−

    V D

    +

    Let V D 1 be the voltage drop across D 1 and V D 2 be the voltage drop across D 2 . Let I S 1 = I S 2 = I S ,since the diodes are identical.

    V D = V D 1 + V D 2

    = V T lnI DI S

    + V T lnI DI S

    = 2 V T lnI DI S

    I D = I S eV D / 2 V T

    Thus, the diodes in series act like a single device with an exponential characteristic described byI D = I S e V D / 2 V T .

    (b) Let V D be the amount of voltage required to get a current I D and V ′

    D the amount of voltagerequired to get a current 10 I D .

    V D = 2 V T lnI DI S

    V ′D = 2 V T ln10I D

    I S

    V ′D − V D = 2 V T ln10I D

    I S

    − lnI D

    I S = 2 V T ln (10)

    = 120 mV

  • 8/18/2019 Fundamentals_of_Microelectronics (Manual) by Razavi

    18/853

  • 8/18/2019 Fundamentals_of_Microelectronics (Manual) by Razavi

    19/853

  • 8/18/2019 Fundamentals_of_Microelectronics (Manual) by Razavi

    20/853

    2.19

    V X = I X R 1 + V D 1

    = I X R 1 + V T lnI XI S

    I X = V XR 1 −

    V T R 1 ln

    I XI S

    For each value of V X , we can solve this equation for I X by iteration. Doing so, we nd

    I X (V X = 0 .5 V) = 0 .435 µ AI X (V X = 0 .8 V) = 82 .3 µ A

    I X (V X = 1 V) = 173 µ AI X (V X = 1 .2 V) = 267 µ A

    Once we have I X , we can compute V D via the equation V D = V T ln( I X /I S ). Doing so, we nd

    V D (V X = 0 .5 V) = 499 mV

    V D (V X = 0 .8 V) = 635 mVV D (V X = 1 V) = 655 mV

    V D (V X = 1 .2 V) = 666 mV

    As expected, V D varies very little despite rather large changes in I D (in particular, as I D experiencesan increase by a factor of over 3, V D changes by about 5 %). This is due to the exponential behaviorof the diode. As a result, a diode can allow very large currents to ow once it turns on, up until itbegins to overheat.

  • 8/18/2019 Fundamentals_of_Microelectronics (Manual) by Razavi

    21/853

  • 8/18/2019 Fundamentals_of_Microelectronics (Manual) by Razavi

    22/853

  • 8/18/2019 Fundamentals_of_Microelectronics (Manual) by Razavi

    23/853

  • 8/18/2019 Fundamentals_of_Microelectronics (Manual) by Razavi

    24/853

    2.22

    V X / 2 = I X R 1 = V D 1 = V T ln( I X /I S )

    I X = V T R 1

    ln( I X /I S )

    I X = 367 µ A (using iteration)V X = 2 I X R 1

    = 1 .47 V

  • 8/18/2019 Fundamentals_of_Microelectronics (Manual) by Razavi

    25/853

  • 8/18/2019 Fundamentals_of_Microelectronics (Manual) by Razavi

    26/853

  • 8/18/2019 Fundamentals_of_Microelectronics (Manual) by Razavi

    27/853

  • 8/18/2019 Fundamentals_of_Microelectronics (Manual) by Razavi

    28/853

  • 8/18/2019 Fundamentals_of_Microelectronics (Manual) by Razavi

    29/853

  • 8/18/2019 Fundamentals_of_Microelectronics (Manual) by Razavi

    30/853

  • 8/18/2019 Fundamentals_of_Microelectronics (Manual) by Razavi

    31/853

  • 8/18/2019 Fundamentals_of_Microelectronics (Manual) by Razavi

    32/853

  • 8/18/2019 Fundamentals_of_Microelectronics (Manual) by Razavi

    33/853

  • 8/18/2019 Fundamentals_of_Microelectronics (Manual) by Razavi

    34/853

  • 8/18/2019 Fundamentals_of_Microelectronics (Manual) by Razavi

    35/853

  • 8/18/2019 Fundamentals_of_Microelectronics (Manual) by Razavi

    36/853

  • 8/18/2019 Fundamentals_of_Microelectronics (Manual) by Razavi

    37/853

  • 8/18/2019 Fundamentals_of_Microelectronics (Manual) by Razavi

    38/853

    3.1 (a)

    I X =V XR 1 V X < 00 V X > 0

    V X (V)

    I X

    Slope = 1/R 1

  • 8/18/2019 Fundamentals_of_Microelectronics (Manual) by Razavi

    39/853

    3.2

    I X =V XR 1 V X < 00 V X > 0

    Plotting I X (t), we have

    0

    − V 0 /R 1 I X ( t ) f o r V

    B =

    1 V ( S o l i d )

    − π/ω 0 π/ωt

    − V 0

    0

    V 0

    V X

    ( t ) ( D o t t e d

    )

  • 8/18/2019 Fundamentals_of_Microelectronics (Manual) by Razavi

    40/853

    3.3

    I X =0 V X < V BV X − V B

    R 1 V X > V B

    Plotting I X vs. V X for V B = − 1 V and V B = 1 V, we get:

    − 1 1V X (V)

    I X

    V B = − 1 VV B = 1 V

    Slope = 1/R 1 Slope = 1/R 1

  • 8/18/2019 Fundamentals_of_Microelectronics (Manual) by Razavi

    41/853

    3.4

    I X =0 V X < V BV X − V B

    R 1 V X > V B

    Let’s assume V 0 > 1 V. Plotting I X (t) for V B = − 1 V, we get

    0

    (V 0 − V B )/R 1

    I X ( t ) f o r V B = −

    1 V ( S o l i d )

    − π/ω 0 π/ωt

    − V 0

    0

    V B

    V 0

    V X

    ( t ) ( D o t t e d

    )

    Plotting I X (t) for V B = 1 V, we get

  • 8/18/2019 Fundamentals_of_Microelectronics (Manual) by Razavi

    42/853

    0

    (V 0 − V B )/R 1

    I X ( t ) f o r

    V B =

    1 V ( S o l i d )

    − π/ω 0 π/ωt

    − V 0

    0

    V B

    V 0

    V X

    ( t ) ( D o t t e d

    )

  • 8/18/2019 Fundamentals_of_Microelectronics (Manual) by Razavi

    43/853

    3.5

    I X =V X − V B

    R 1 V X < 0∞ V X > 0

    Plotting I X vs. V X for V B = − 1 V and V B = 1 V, we get:

    − 1V X (V)

    − 1/R 1

    1/R 1

    I X

    Slope = 1/R 1

    Slope = 1/R 1

    I X for V B = − 1 VI X for V B = 1 V

  • 8/18/2019 Fundamentals_of_Microelectronics (Manual) by Razavi

    44/853

    3.6 First, note that I D 1 = 0 always, since D 1 is reverse biased by V B (due to the assumption that V B > 0).We can write I X as

    I X = ( V X − V B )/R 1

    Plotting this, we get:

    V BV X (V)

    I X

    Slope = 1/R 1

  • 8/18/2019 Fundamentals_of_Microelectronics (Manual) by Razavi

    45/853

    3.7

    I X =V X − V B

    R 1 V X < V BV X − V BR 1 R 2 V X > V B

    I R 1 = V X − V B

    R 1

    Plotting I X and I R 1 for V B = − 1 V, we get:

    − 1 V X (V)

    I X for V B = − 1 VI R 1 for V B = − 1 V

    Slope = 1/R 1

    Slope = 1/R 1 + 1 /R 2

    Plotting I X and I R 1 for V B = 1 V, we get:

  • 8/18/2019 Fundamentals_of_Microelectronics (Manual) by Razavi

    46/853

    1V X (V)

    I X for V B = 1 VI R 1 for V B = 1 V

    Slope = 1/R 1

    Slope = 1/R 1 + 1 /R 2

  • 8/18/2019 Fundamentals_of_Microelectronics (Manual) by Razavi

    47/853

    3.8

    I X =0 V X < V BR 1 + R 2 R 1V XR 1 +

    V X − V BR 2 V X >

    V BR 1 + R 2 R 1

    I R 1 = V B

    R 1 + R 2 V X < V B

    R 1 + R 2 R 1V X

    R 1 V X > V B

    R 1 + R 2 R 1

    Plotting I X and I R 1 for V B = − 1 V, we get:

    V BR 1 + R 2 R1

    V X (V)V BR 1 + R 2

    − V B /R 2

    I X for V B = − 1 VI R 1 for V B = − 1 V

    Slope = 1/R 1

    Slope = 1/R 1 + 1 /R 2

    Plotting I X and I R 1 for V B = 1 V, we get:

  • 8/18/2019 Fundamentals_of_Microelectronics (Manual) by Razavi

    48/853

    V BR 1 + R 2 R1

    V X (V)

    V BR 1 + R 2

    I X for V B = 1 VI R 1 for V B = 1 V

    Slope = 1/R 1

    Slope = 1/R 1 + 1 /R 2

  • 8/18/2019 Fundamentals_of_Microelectronics (Manual) by Razavi

    49/853

    3.9 (a)

    V out =V B V in < V BV in V in > V B

    − 5 − 4 − 3 − 2 − 1 0 1 2 3 4 5V in (V)

    0

    1

    2

    3

    4

    5 V

    o u

    t ( V )

    Slope = 1

    (b)

    V out = V in − V B V in < V B

    0 V in > V B

  • 8/18/2019 Fundamentals_of_Microelectronics (Manual) by Razavi

    50/853

    − 5 − 4 − 3 − 2 − 1 0 1 2 3 4 5V in (V)

    − 7

    − 6

    − 5

    − 4

    − 3

    − 2

    − 1

    0

    1

    2 V

    o u

    t

    ( V )

    Slope = 1

    (c)

    V out = V in − V B

    − 5 − 4 − 3 − 2 − 1 0 1 2 3 4 5V in (V)

    − 7

    − 6

    − 5

    − 4

    − 3

    − 2

    − 1

    0

    1

    2

    3 V

    o u

    t

    ( V )

    Slope = 1

  • 8/18/2019 Fundamentals_of_Microelectronics (Manual) by Razavi

    51/853

    (d)

    V out =V in V in < V BV B V in > V B

    − 5 − 4 − 3 − 2 − 1 0 1 2 3 4 5V in (V)

    − 5

    − 4

    − 3

    − 2

    − 1

    0

    1

    2 V

    o u

    t ( V )

    Slope = 1

    (e)

    V out = 0 V in < V B

    V in − V B V in > V B

  • 8/18/2019 Fundamentals_of_Microelectronics (Manual) by Razavi

    52/853

    − 5 − 4 − 3 − 2 − 1 0 1 2 3 4 5V in (V)

    0

    1

    2

    3 V

    o u

    t

    ( V )

    Slope = 1

  • 8/18/2019 Fundamentals_of_Microelectronics (Manual) by Razavi

    53/853

  • 8/18/2019 Fundamentals_of_Microelectronics (Manual) by Razavi

    54/853

  • 8/18/2019 Fundamentals_of_Microelectronics (Manual) by Razavi

    55/853

    3.11 For each part, the dotted line indicates V in (t), while the solid line indicates V out (t). Assume V 0 > V B .

    (a)

    V out =V B V in < V BV in V in > V B

    − π/ω π/ωt

    − V 0

    V B

    V 0

    V o u

    t ( t ) ( V )

    (b)

    V out =V in − V B V in < V B0 V in > V B

  • 8/18/2019 Fundamentals_of_Microelectronics (Manual) by Razavi

    56/853

    − π/ω π/ωt

    − V 0 − V B

    − V 0

    V B

    V 0

    V o u

    t ( t ) ( V )

    (c)

    V out = V in − V B

    − π/ω π/ωt

    − V 0 − V B

    − V 0

    V 0 − V B

    V B

    V 0

    V o u t

    ( t ) ( V )

  • 8/18/2019 Fundamentals_of_Microelectronics (Manual) by Razavi

    57/853

    (d)

    V out =V in V in < V BV B V in > V B

    π/ω π/ω t

    − V 0

    V B

    V 0

    V o u

    t ( t ) ( V )

    (e)

    V out = 0 V in < V B

    V in − V B V in > V B

  • 8/18/2019 Fundamentals_of_Microelectronics (Manual) by Razavi

    58/853

    − π/ω π/ωt

    − V 0

    V 0 − V B

    V B

    V 0

    V o u

    t ( t ) ( V )

  • 8/18/2019 Fundamentals_of_Microelectronics (Manual) by Razavi

    59/853

    3.12 For each part, the dotted line indicates V in (t), while the solid line indicates V out (t). Assume V 0 > V B .

    (a)

    V out =V in − V B V in < V B0 V in > V B

    − π/ω π/ω

    t

    − V 0 − V B

    − V 0

    V B

    V 0

    V o u

    t ( t ) ( V )

    (b)

    V out =V in V in < V BV B V in > V B

  • 8/18/2019 Fundamentals_of_Microelectronics (Manual) by Razavi

    60/853

    − π/ω π/ωt

    − V 0

    V B

    V 0

    V o u

    t ( t ) ( V )

    (c)

    V out =0 V in < V BV in − V B V in > V B

    − π/ω π/ω

    t

    − V 0

    V 0 − V B

    V B

    V 0

    V o u

    t ( t ) ( V )

  • 8/18/2019 Fundamentals_of_Microelectronics (Manual) by Razavi

    61/853

    (d)

    V out = V in − V B

    − π/ω π/ωt

    − V 0 − V B

    − V 0

    V 0 − V B

    V B

    V 0

    V o u

    t ( t )

    ( V )

    (e)

    V out =V B V in < V BV in V in > V B

  • 8/18/2019 Fundamentals_of_Microelectronics (Manual) by Razavi

    62/853

    − π/ω π/ωt

    − V 0

    V B

    V 0

    V o u

    t ( t ) ( V )

  • 8/18/2019 Fundamentals_of_Microelectronics (Manual) by Razavi

    63/853

  • 8/18/2019 Fundamentals_of_Microelectronics (Manual) by Razavi

    64/853

  • 8/18/2019 Fundamentals_of_Microelectronics (Manual) by Razavi

    65/853

  • 8/18/2019 Fundamentals_of_Microelectronics (Manual) by Razavi

    66/853

  • 8/18/2019 Fundamentals_of_Microelectronics (Manual) by Razavi

    67/853

  • 8/18/2019 Fundamentals_of_Microelectronics (Manual) by Razavi

    68/853

  • 8/18/2019 Fundamentals_of_Microelectronics (Manual) by Razavi

    69/853

    Slope = 1(V D,on + V B ) /R 1

    I in

    (V D,on + V B ) /R 1

    I R 1

    (c)

    I R 1 =I in I in <

    V D,on − V BR 1

    V D,on − V BR 1 I in >

    V D,on − V BR 1

    Slope = 1

    (V D,on − V B ) /R 1

    (V D,on − V B ) /R 1I in

    I R 1

  • 8/18/2019 Fundamentals_of_Microelectronics (Manual) by Razavi

    70/853

    (d)

    I R 1 =I in I in <

    V D,onR 1

    V D,onR 1 I in >

    V D,onR 1

    Slope = 1

    V D,on /R 1I in

    V D,on /R 1I R 1

  • 8/18/2019 Fundamentals_of_Microelectronics (Manual) by Razavi

    71/853

    3.17 (a)

    V out =I in R 1 I in <

    V D,onR 1

    V D,on I in > V D,on

    R 1

    − I 0 R1

    0V D,on

    V o u

    t ( t ) ( S o l i d )

    − π/ω 0 π/ωt

    − I 0

    0

    V D,on /R 1

    I 0

    I i n

    ( t ) ( D o t t e d

    )

    (b)

    V out =I in R 1 I in < V D,on + V BR 1V D,on + V B I in >

    V D,on + V BR 1

  • 8/18/2019 Fundamentals_of_Microelectronics (Manual) by Razavi

    72/853

  • 8/18/2019 Fundamentals_of_Microelectronics (Manual) by Razavi

    73/853

    (d)

    V out =I in R 1 + V B I in <

    V D,onR 1

    V D,on + V B I in > V D,on

    R 1

    − I 0 R1 + V B

    0

    V D,on + V B

    V o u

    t ( t ) ( S o l i d )

    − π/ω 0 π/ωt

    − I 0

    0

    V D,on /R 1

    I 0

    I i n

    ( t ) ( D o t t e d

    )

  • 8/18/2019 Fundamentals_of_Microelectronics (Manual) by Razavi

    74/853

  • 8/18/2019 Fundamentals_of_Microelectronics (Manual) by Razavi

    75/853

  • 8/18/2019 Fundamentals_of_Microelectronics (Manual) by Razavi

    76/853

    3.20 (a)

    V out =I in R 1 I in >

    V B − V D,onR 1

    V B − V D,on I in < V B − V D,on

    R 1

    V B − V D,on

    0

    I 0 R1

    V o u

    t ( t ) ( S o l i d )

    − π/ω 0 π/ωt

    − I 0

    0

    (V B − V D,on ) /R 1

    I 0

    I i n

    ( t ) ( D o t t e d

    )

    (b)

    V out =I in R 1 + V B I in > − V D,on + V BR 1− V D,on I in < −

    V D,on + V BR 1

  • 8/18/2019 Fundamentals_of_Microelectronics (Manual) by Razavi

    77/853

    − V D,on0

    I 0 R1 + V B

    V o u

    t ( t ) ( S o l i d )

    − π/ω 0 π/ωt

    − I 0

    0

    − (V D,on + V B )/R 1

    I 0

    I i n

    ( t ) ( D o t t e d

    )

    (c)

    V out =I in R 1 + V B I in > − V D,onR 1V B − V D,on I in < − V D,onR 1

    V B − V D,on

    0

    I 0 R1 + V B

    V o u

    t ( t ) ( S o l i d )

    − π/ω 0 π/ωt

    − I 0

    − V D,on /R 1

    0

    I 0

    I i n

    ( t ) ( D o t t e d

    )

  • 8/18/2019 Fundamentals_of_Microelectronics (Manual) by Razavi

    78/853

  • 8/18/2019 Fundamentals_of_Microelectronics (Manual) by Razavi

    79/853

  • 8/18/2019 Fundamentals_of_Microelectronics (Manual) by Razavi

    80/853

  • 8/18/2019 Fundamentals_of_Microelectronics (Manual) by Razavi

    81/853

  • 8/18/2019 Fundamentals_of_Microelectronics (Manual) by Razavi

    82/853

    3.23 (a)

    V out = R 2

    R 1 + R 2V in V in <

    R 1 + R 2R 2

    V D,on

    V D,on V in > R 1 + R 2

    R 2V D,on

    R 1 + R 2R 2 V D,on

    V in (V)

    V D,on V

    o u

    t ( V )

    Slope = R2 / (R1 + R2 )

    (b)

    V out = R 2

    R 1 + R 2 V in V in < R1 + R 2R 1 V D,on

    V in − V D,on V in > R 1 + R 2R 1 V D,on

  • 8/18/2019 Fundamentals_of_Microelectronics (Manual) by Razavi

    83/853

    R 1 + R 2R 1 V D,on

    V in (V)

    R 2R 1 V D,on

    V o u

    t

    ( V )

    Slope = R2 / (R1 + R2 )

    Slope = 1

  • 8/18/2019 Fundamentals_of_Microelectronics (Manual) by Razavi

    84/853

    3.24 (a)

    I R 1 = V in

    R 1 + R 2V in <

    R 1 + R 2R 2

    V D,onV in − V D,on

    R 1V in >

    R 1 + R 2R 2

    V D,on

    I D 1 =0 V in < R 1 + R 2R 2 V D,onV in − V D,on

    R 1 − V D,on

    R 2 V in > R 1 + R 2

    R 2 V D,on

    R 1 + R 2R 2 V D,on

    V in (V)

    V D,on /R 2

    Slope = 1/ (R1 + R2 )

    Slope = 1/R 1

    Slope = 1/R 1

    I R 1I D 1

    (b)

    I R 1 = V in

    R 1 + R 2V in <

    R 1 + R 2R 1

    V D,onV D,on

    R 1V in >

    R 1 + R 2R 1

    V D,on

    I D 1 =0 V in < R 1 + R 2R 1 V D,onV in − V D,on

    R 2− V D,on

    R 1V in >

    R 1 + R 2R 1

    V D,on

  • 8/18/2019 Fundamentals_of_Microelectronics (Manual) by Razavi

    85/853

    R 1 + R 2R 1 V D,on

    V in (V)

    V D,on /R 1

    Slope = 1/ (R1 + R2 )

    Slope = 1/R 2

    I R 1I D 1

  • 8/18/2019 Fundamentals_of_Microelectronics (Manual) by Razavi

    86/853

    3.25 (a)

    V out =V B + R 2R 1 + R 2 (V in − V B ) V in < V B +

    R 1 + R 2R 1

    V D,on

    V in − V D,on V in > V B + R 1 + R 2R 1 V D,on

    V B + R 1 + R 2R 1 V D,onV in (V)

    V B + R 2R 1 V D,on

    V o u

    t ( V )

    Slope = R2 / (R1 + R2 )

    Slope = 1

    (b)

    V out = R 2

    R 1 + R 2 V in V in < R1 + R 2R 1 (V D,on + V B )

    V in − V D,on − V B V in > R 1 + R 2R 1 (V D,on + V B )

  • 8/18/2019 Fundamentals_of_Microelectronics (Manual) by Razavi

    87/853

    V B + R 1 + R 2R 1 (V D,on + V B )V in (V)

    R2

    R 1 (V D,on + V B )

    V o u

    t

    ( V )

    Slope = R2 / (R1 + R2 )

    Slope = 1

    (c)

    V out = R 2

    R 1 + R 2 (V in − V B ) V in > V B + R 1 + R 2

    R 1V D,on

    V in + V D,on − V B V in < V B + R 1 + R 2R 1 V D,on

    V B + R 1 + R 2R 1 V D,onV in (V)

    R 2R 1 V D,on

    V o u

    t

    ( V )

    Slope = 1

    Slope = R2 / (R1 + R2 )

  • 8/18/2019 Fundamentals_of_Microelectronics (Manual) by Razavi

    88/853

    (d)

    V out = R 2

    R 1 + R 2 (V in − V B ) V in < V B + R 1 + R 2

    R 1 (V D,on − V B )V in − V D,on V in > V B + R 1 + R 2R 1 (V D,on − V B )

    V B + R 1 + R 2R 1 (V D,on − V B )V in (V)

    R 2R 1 V D,on

    V o u

    t ( V )

    Slope = R2 / (R1 + R2 )

    Slope = 1

  • 8/18/2019 Fundamentals_of_Microelectronics (Manual) by Razavi

    89/853

    3.26 (a)

    I R 1 =V in − V BR 1 + R 2

    V in < V B + R 1 + R 2R 1 V D,onV D,on

    R 1V in > V B + R 1 + R 2R 1 V D,on

    I D 1 =0 V in < V B + R 1 + R 2R 1 V D,onV in − V D,on − V B

    R 2 − V D,on

    R 1 V in > V B + R 1 + R 2

    R 1 V D,on

    V B + R 1 + R 2R 1 V D,on

    V in (V)

    V D,on /R 1

    Slope = 1/ (R1 + R2 )

    Slope = 1/R 2

    I R 1I D 1

    (b)

    I R 1 = V in

    R 1 + R 2V in <

    R 1 + R 2R 1 (V D,on + V B )

    V D,on + V BR 1

    V in > R 1 + R 2

    R 1 (V D,on + V B )

    I D 1 =0 V in < R 1 + R 2R 1 (V D,on + V B )V in − V D,on − V B

    R 2− V D,on + V B

    R 1V in >

    R 1 + R 2R 1 (V D,on + V B )

  • 8/18/2019 Fundamentals_of_Microelectronics (Manual) by Razavi

    90/853

    R 1 + R 2R 1 (V D,on + V B )

    V in (V)

    (V D,on + V B ) /R 1

    Slope = 1/ (R1 + R2 )

    Slope = 1/R 2

    I R 1I D 1

    (c)

    I R 1 =V in − V BR 1 + R 2

    V in > V B − R 1 + R 2R 1 V D,on− V D,on

    R 1V in < V B − R 1 + R 2R 1 V D,on

    I D 1 =0 V in > V B − R 1 + R 2R 1 V D,on− V in + V D,on + V B

    R 2− V D,on

    R 1V in < V B − R 1 + R 2R 1 V D,on

  • 8/18/2019 Fundamentals_of_Microelectronics (Manual) by Razavi

    91/853

  • 8/18/2019 Fundamentals_of_Microelectronics (Manual) by Razavi

    92/853

    V B + R 1 + R 2R 1 (V D,on − V B )V in (V)

    (V D,on − V B ) /R 1

    I R 1I D 1

    Slope = 1/ (R1 + R2 )

    Slope = 1/R 2

  • 8/18/2019 Fundamentals_of_Microelectronics (Manual) by Razavi

    93/853

    3.27 (a)

    V out =0 V in < V D,on

    R 2R 1 + R 2 (V in − V D,on ) V in > V D,on

    V D,onV in (V)

    V o u

    t ( V )

    Slope = R 2 / (R1 + R2 )

    (b)

    V out =− V D,on V in < − R 1 + R 2R 2 V D,on

    R 2R 1 + R 2

    V in − R 1 + R 2R 2 V D,on < V in < R 1 + R 2

    R 1V D,on

    V in − V D,on V in > R 1 + R 2R 1 V D,on

  • 8/18/2019 Fundamentals_of_Microelectronics (Manual) by Razavi

    94/853

    − R 1 + R 2R 2 V D,on R1 + R 2R 1 V D,on

    V in (V)− V D,on

    R 2R 1 V D,on

    V o u

    t

    ( V )

    Slope = R 2 / (R1 + R2 )

    Slope = 1

    (c)

    V out = R 2

    R 1 + R 2 (V in + V D,on ) − V D,on V in < − V D,onV in V in > − V D,on

    − V D,onV in (V)− V D,on

    V o u

    t

    ( V )

    Slope = R2 / (R1 + R2 )

    Slope = 1

  • 8/18/2019 Fundamentals_of_Microelectronics (Manual) by Razavi

    95/853

    (d)

    V out =0 V in < V D,on

    R 2R 1 + R 2 (V in − V D,on ) V in > V D,on

    V D,onV in (V)

    V D,on

    V o u

    t ( V )

    Slope = R 2 / (R1 + R2 )

    (e)

    V out = R 2

    R 1 + R 2 (V in + V D,on ) V in < − V D,on0 V in > − V D,on

  • 8/18/2019 Fundamentals_of_Microelectronics (Manual) by Razavi

    96/853

    −V D,on V in (V)

    V o u

    t

    ( V )

    Slope = R2 / (R1 + R2 )

  • 8/18/2019 Fundamentals_of_Microelectronics (Manual) by Razavi

    97/853

  • 8/18/2019 Fundamentals_of_Microelectronics (Manual) by Razavi

    98/853

    − R 1 + R 2R 2 V D,on R 1 + R 2R 1 V D,onV in (V)− V D,on /R 2

    V D,on /R 1

    Slope = 1/R 1

    Slope = 1/ (R1 + R2 )Slope = 1

    I R 1I D 1

    (c)

    I R 1 =V in + V D,on

    R 1 + R 2V in < − V D,on

    0 V in > − V D,on

    I D 1 =0 V in < − V D,on0 V in > − V D,on

  • 8/18/2019 Fundamentals_of_Microelectronics (Manual) by Razavi

    99/853

    −V D,on V in (V)

    Slope = 1/ (R1 + R2 )

    I R 1I D 1

    (d)

    I R 1 =0 V in < V D,onV in − V D,on

    R 1 + R 2V in > V D,on

    I D

    1 =0 V in < V D,onV in

    −V D,onR 1 + R 2 V in > V D,on

  • 8/18/2019 Fundamentals_of_Microelectronics (Manual) by Razavi

    100/853

    V D,onV in (V)

    Slope = 1/ (R1 + R2 )

    I R 1I D 1

    (e)

    I R 1 =V in + V D,on

    R 1 + R 2V in < − V D,on

    0 V in > − V D,on

    I D 1 =0 V in < − V D,on0 V in > − V D,on

  • 8/18/2019 Fundamentals_of_Microelectronics (Manual) by Razavi

    101/853

    −V D,on V in (V)

    Slope = 1/ (R1 + R2 )

    I R 1I D 1

  • 8/18/2019 Fundamentals_of_Microelectronics (Manual) by Razavi

    102/853

    3.29 (a)

    V out =V in V in < V D,onV D,on + R 2R 1 + R 2 (V in − V D,on ) V D,on < V in < V D,on +

    R 1 + R 2R 1 (V D,on + V B )

    V in − V D,on − V B V in > V D,on + R 1 + R 2R 1 (V D,on + V B )

    V D,on V D,on + R1 + R 2R 1 (V D,on + V B )V in (V)

    V D,on

    V D,on + R2R 1 (V D,on + V B )

    V o u

    t

    ( V )

    Slope = 1

    Slope = R 2 / (R1 + R2 )

    Slope = 1

    (b)

    V out =V in + V D,on − V B V in < V D,on + R 1 + R 2R 1 (V B − 2V D,on )

    R 2R 1 + R 2 (V in − V D,on ) V in > V D,on +

    R 1 + R 2R 1 (V B − 2V D,on )

  • 8/18/2019 Fundamentals_of_Microelectronics (Manual) by Razavi

    103/853

  • 8/18/2019 Fundamentals_of_Microelectronics (Manual) by Razavi

    104/853

    (d)

    V out =0 V in < V D,on

    R 2R 1 + R 2 (V in − V D,on ) V D,on < V in < V D,on +

    R 1 + R 2R 2 (V B + V D,on )

    V D,on + V B V in > V D,on + R 1 + R 2R 2 (V B + V D,on )

    V D,on V D,on + R 1 + R 2R 2 (V B + V D,on )V in (V)

    V D,on + V B V

    o u

    t

    ( V )

    Slope = R2 / (R1 + R2 )

  • 8/18/2019 Fundamentals_of_Microelectronics (Manual) by Razavi

    105/853

    3.30 (a)

    I R 1 =0 V in < V D,onV in − V D,on

    R 1 + R 2 V D,on < V in < V D,on + R 1 + R 2

    R 1 (V D,on + V B )V D,on + V B

    R 1 V in > V D,on + R 1 + R 2

    R 1 (V D,on + V B )

    I D 1 = 0 V in < V D,on + R 1 + R 2

    R 1 (V D,on + V B )V in − 2 V D,on − V BR 2 −

    V D,on + V BR 1 V in > V D,on +

    R 1 + R 2R 1 (V D,on + V B )

    V D,on V D,on + R 1 + R 2R 1 (V D,on + V B )V in (V)

    V D,on + V B

    Slope = 1/ (R1 + R2 )

    Slope = 1/R 2

    I R 1I D 1

    (b) If V B < 2V D,on :

    I R 1 = I D 1 =0 V in < V D,onV in − V D,on

    R 1 + R 2 V in > V D,on

  • 8/18/2019 Fundamentals_of_Microelectronics (Manual) by Razavi

    106/853

    V D,onV in (V)

    Slope = 1/ (R1 + R2 )

    I R 1I D 1

    If V B > 2V D,on :

    I R 1 = I D 1 =V B − 2 V D,on

    R 1 V in < V D,on + R 1 + R 2

    R 1 (V B − 2V D,on )V in − V D,on

    R 1 + R 2 V in > V D,on + R 1 + R 2

    R 1 (V B − 2V D,on )

    V D,on + R 1 + R 2R 1 (V B − 2V D,on )V in (V)

    V B − 2 V D,onR 1

    Slope = 1/ (R1 + R2 )

    I R 1I D 1

  • 8/18/2019 Fundamentals_of_Microelectronics (Manual) by Razavi

    107/853

  • 8/18/2019 Fundamentals_of_Microelectronics (Manual) by Razavi

    108/853

    V D,on V D,on + R 1 + R 2R 2 (V B + V D,on )V in (V)

    V B + V D,onR 2 Slope = 1/ (R1 + R2 )

    Slope = 1/R 2

    I R 1I D 1

  • 8/18/2019 Fundamentals_of_Microelectronics (Manual) by Razavi

    109/853

    3.31 (a)

    I D 1 = V in − V D,on

    R 1= 1 .6 mA

    r d 1 = V T I D 1

    = 16 .25 Ω

    ∆ V out = R 1r d + R 1∆ V in = 98 .40 mV

    (b)

    I D 1 = I D 2 = V in − 2V D,on

    R 1= 0 .8 mA

    r d 1 = r d 2 = V T I D 1

    = 32 .5 Ω

    ∆ V out = R 1 + r d 2

    R 1 + r d 1 + r d 2∆ V in = 96 .95 mV

    (c)

    I D 1 = I D 2 = V in − 2V D,on

    R 1= 0 .8 mA

    r d 1 = r d 2 = V T I D 1

    = 32 .5 Ω

    ∆ V out = rd 2

    r d 1 + R 1 + r d 2∆ V in = 3 .05 mV

    (d)

    I D 2 = V in − V D,on

    R 1−

    V D,onR 2

    = 1 .2 mA

    r d 2 = V T

    I D 2= 21 .67 Ω

    ∆ V out = R 2 r d 2

    R 1 + R 2 r d 2∆ V in = 2.10 mV

  • 8/18/2019 Fundamentals_of_Microelectronics (Manual) by Razavi

    110/853

    3.32 (a)

    ∆ V out = ∆ I in R 1 = 100 mV

    (b)

    I D 1 = I D 2 = I in = 3 mAr d 1 = r d 2 =

    V T I D 1

    = 8 .67 Ω

    ∆ V out = ∆ I in (R 1 + r d 2 ) = 100 .867 mV

    (c)

    I D 1 = I D 2 = I in = 3 mA

    r d 1 = r d 2 = V T I D 1

    = 8 .67 Ω

    ∆ V out = ∆ I in r d 2 = 0 .867 mV

    (d)

    I D 2 = I in − V D,on

    R 2= 2 .6 mA

    r d 2 = V T I D 2

    = 10 Ω

    ∆ V out = ∆ I in (R 2 r d 2 ) = 0 .995 mV

  • 8/18/2019 Fundamentals_of_Microelectronics (Manual) by Razavi

    111/853

  • 8/18/2019 Fundamentals_of_Microelectronics (Manual) by Razavi

    112/853

    3.34

    π/ω 2π/ωt

    − V p

    0.5 V

    V D,on + 0 .5 V

    V p − V D,on

    V p

    V in (t)V out (t)

  • 8/18/2019 Fundamentals_of_Microelectronics (Manual) by Razavi

    113/853

    3.35

    π/ω 2π/ωt

    − V p

    0.5 V

    − V D,on + 0 .5 V

    − V p + V D,on

    V p

    V in (t)V out (t)

  • 8/18/2019 Fundamentals_of_Microelectronics (Manual) by Razavi

    114/853

    3.36

    V R ≈ V p − V D,on

    R L C 1 f inV p = 3 .5 V

    R L = 100 Ω

    C 1 = 1000 µ Ff in = 60 Hz

    V R = 0 .45 V

  • 8/18/2019 Fundamentals_of_Microelectronics (Manual) by Razavi

    115/853

    3.37

    V R = I LC 1 f in

    ≤ 300 mV

    f in = 60 HzI L = 0 .5 A

    C 1 ≥ I L(300 mV) f in

    = 27 .78 mF

  • 8/18/2019 Fundamentals_of_Microelectronics (Manual) by Razavi

    116/853

    3.38 Shorting the input and output grounds of a full-wave rectier shorts out the diode D 4 from Fig. 3.38(b).Redrawing the modied circuit, we have:

    +

    V in−

    D 2

    D 3

    R L

    +

    V out−

    D 1

    On the positive half-cycle, D 3 turns on and forms a half-wave rectier along with R L (and C L , if included). On the negative half-cycle, D 2 shorts the input (which could cause a dangerously largecurrent to ow) and the output remains at zero. Thus, the circuit behaves like a half-wave recier.The plots of V out (t) are shown below.

    π/ω 2π/ωt

    − V 0

    V D,on

    V 0 − V D,on

    V 0

    V in (t) = V 0 sin(ωt)

    V out (t) (without a load capacitor)V out (t) (with a load capacitor)

  • 8/18/2019 Fundamentals_of_Microelectronics (Manual) by Razavi

    117/853

    3.39 Note that the waveforms for V D 1 and V D 2 are identical, as are the waveforms for V D 3 and V D 4 .

    π/ω 2π/ωt

    − V 0

    − V 0 + V D,on

    − V 0 + 2V D,on

    − 2V D,on

    − V D,on

    V D,on

    2V D,on

    V 0 − 2V D,on

    V 0

    V in (t) = V 0 sin(ωt)V out (t)

    V D 1 (t), V D 2 (t)V D 3 (t), V D 4 (t)

  • 8/18/2019 Fundamentals_of_Microelectronics (Manual) by Razavi

    118/853

    3.40 During the positive half-cycle, D 2 and D 3 will remain reverse-biased, causing V out to be zero asno current will ow through RL . During the negative half-cycle, D 1 and D 3 will short the input(potentially causing damage to the devices), and once again, no current will ow through R L (eventhough D 2 will turn on, there will be no voltage drop across R L ). Thus, V out always remains at zero,and the circuit fails to act as a rectier.

  • 8/18/2019 Fundamentals_of_Microelectronics (Manual) by Razavi

    119/853

  • 8/18/2019 Fundamentals_of_Microelectronics (Manual) by Razavi

    120/853

    3.42 Shorting the negative terminals of V in and V out of a full-wave rectier shorts out the diode D 4 fromFig. 3.38(b). Redrawing the modied circuit, we have:

    +

    V in−

    D 2

    D 3

    R L

    +

    V out−

    D 1

    On the positive half-cycle, D 3 turns on and forms a half-wave rectier along with R L (and C L , if included). On the negative half-cycle, D 2 shorts the input (which could cause a dangerously largecurrent to ow) and the output remains at zero. Thus, the circuit behaves like a half-wave recier.The plots of V out (t) are shown below.

    π/ω 2π/ωt

    − V 0

    V 0

    V in (t) = V 0 sin(ωt)

    V out (t) (without a load capacitor)V out (t) (with a load capacitor)

  • 8/18/2019 Fundamentals_of_Microelectronics (Manual) by Razavi

    121/853

  • 8/18/2019 Fundamentals_of_Microelectronics (Manual) by Razavi

    122/853

    3.44 (a) We know that when a capacitor is discharged by a constant current at a certain frequency, theripple voltage is given by I Cf in , where I is the constant current. In this case, we can calculate thecurrent as approximately V p

    − 5 V D,onR 1 (since V p − 5V D,on is the voltage drop across R 1 , assuming

    R 1 carries a constant current). This gives us the following:

    V R ≈ 1

    2

    V p − 5V D,on

    R L C 1 f inV p = 5 V

    R L = 1 kΩC 1 = 100 µ Ff in = 60 Hz

    V R = 166 .67 mV

    (b) The bias current through the diodes is the same as the bias current through R 1 , which isV p − 5 V D,on

    R 1 = 1 mA. Thus, we have:

    r d = V T

    I D= 26 Ω

    V R,load = 3r d

    R 1 + 3 r dV R = 12 .06 mV

  • 8/18/2019 Fundamentals_of_Microelectronics (Manual) by Razavi

    123/853

  • 8/18/2019 Fundamentals_of_Microelectronics (Manual) by Razavi

    124/853

  • 8/18/2019 Fundamentals_of_Microelectronics (Manual) by Razavi

    125/853

  • 8/18/2019 Fundamentals_of_Microelectronics (Manual) by Razavi

    126/853

  • 8/18/2019 Fundamentals_of_Microelectronics (Manual) by Razavi

    127/853

  • 8/18/2019 Fundamentals_of_Microelectronics (Manual) by Razavi

    128/853

  • 8/18/2019 Fundamentals_of_Microelectronics (Manual) by Razavi

    129/853

  • 8/18/2019 Fundamentals_of_Microelectronics (Manual) by Razavi

    130/853

  • 8/18/2019 Fundamentals_of_Microelectronics (Manual) by Razavi

    131/853

    4.4 According to Equation (4.8), we have

    I C = AE qD n n

    2i

    N B W BeV BE /V T − 1

    1W B

    We can see that if W B increases by a factor of two, then I C decreases by a factor of two .

  • 8/18/2019 Fundamentals_of_Microelectronics (Manual) by Razavi

    132/853

  • 8/18/2019 Fundamentals_of_Microelectronics (Manual) by Razavi

    133/853

  • 8/18/2019 Fundamentals_of_Microelectronics (Manual) by Razavi

    134/853

  • 8/18/2019 Fundamentals_of_Microelectronics (Manual) by Razavi

    135/853

  • 8/18/2019 Fundamentals_of_Microelectronics (Manual) by Razavi

    136/853

  • 8/18/2019 Fundamentals_of_Microelectronics (Manual) by Razavi

    137/853

  • 8/18/2019 Fundamentals_of_Microelectronics (Manual) by Razavi

    138/853

    4.11

    V BE = 1 .5 V − I E (1 kΩ)≈ 1.5 V − I C (1 kΩ) (assuming β ≫ 1)

    = V T lnI C I S

    I C = 775 µ AV X ≈ I C (1 kΩ)

    = 775 mV

  • 8/18/2019 Fundamentals_of_Microelectronics (Manual) by Razavi

    139/853

    4.12 Since we have only integer multiples of a unit transistor, we need to nd the largest number thatdivides both I 1 and I 2 evenly (i.e., we need to nd the largest x such that I 1 /x and I 2 /x are integers).This will ensure that we use the fewest transistors possible. In this case, it’s easy to see that we shouldpick x = 0 .5 mA, meaning each transistor should have 0 .5 mA owing through it. Therefore, I 1 shouldbe made up of 1 mA / 0.5 mA = 2 parallel transistors, and I 2 should be made up of 1 .5 mA/ 0.5 mA = 3parallel transistors. This is shown in the following circuit diagram.

    V B−

    +

    I 1 I 2

    Now we have to pick V B so that I C = 0 .5 mA for each transistor.

    V B = V T lnI C I S

    = (26 mV) ln 5 × 10− 4 A3 × 10− 16 A

    = 732 mV

  • 8/18/2019 Fundamentals_of_Microelectronics (Manual) by Razavi

    140/853

  • 8/18/2019 Fundamentals_of_Microelectronics (Manual) by Razavi

    141/853

  • 8/18/2019 Fundamentals_of_Microelectronics (Manual) by Razavi

    142/853

    4.15

    V B − V BE R 1

    = I B

    = I C

    β

    I C = β R 1 [V B − V T ln(I C /I S )]

    I C = 786 µ A

  • 8/18/2019 Fundamentals_of_Microelectronics (Manual) by Razavi

    143/853

  • 8/18/2019 Fundamentals_of_Microelectronics (Manual) by Razavi

    144/853

    4.17 First, note that V BE 1 = V BE 2 = V BE .

    V B = ( I B 1 + I B 2 )R 1 + V BE

    = R1

    β (I X + I Y ) + V T ln( I X /I S 1 )

    I S 2

    =

    5

    3I S 1

    ⇒ I Y = 53

    I X

    V B = 8R 1

    3β I X + V T ln( I X /I S 1 )

    I X = 509 µ A

    I Y = 848 µ A

  • 8/18/2019 Fundamentals_of_Microelectronics (Manual) by Razavi

    145/853

  • 8/18/2019 Fundamentals_of_Microelectronics (Manual) by Razavi

    146/853

  • 8/18/2019 Fundamentals_of_Microelectronics (Manual) by Razavi

    147/853

  • 8/18/2019 Fundamentals_of_Microelectronics (Manual) by Razavi

    148/853

    4.21 (a)

    V BE = 0 .8 V

    I C = I S eV BE /V T

    = 18 .5 mA

    V CE = V CC − I C RC = 1 .58 V

    Q1 is operating in forward active. Its small-signal parameters are

    gm = I C /V T = 710 mS

    r π = β/g m = 141 Ωr o = ∞

    The small-signal model is shown below.

    B

    r π

    +vπ

    E

    gm vπ

    C

    (b)

    I B = 10 µ A

    I C = βI B = 1 mA

    V BE = V T ln( I C /I S ) = 724 mVV CE = V CC − I C RC

    = 1 .5 V

    Q1 is operating in forward active. Its small-signal parameters are

    gm = I C /V T = 38 .5 mS

    rπ = β/g m = 2 .6 kΩro = ∞

    The small-signal model is shown below.

    B

    r π+vπ

    E

    gm vπ

    C

  • 8/18/2019 Fundamentals_of_Microelectronics (Manual) by Razavi

    149/853

    (c)

    I E = V CC − V BE

    RC =

    1 + β β

    I C

    I C = β 1 + β

    V CC − V T ln(I C /I S )RC

    I C = 1 .74 mA

    V BE = V T ln( I C /I S ) = 739 mV

    V CE = V BE = 739 mV

    Q1 is operating in forward active. Its small-signal parameters are

    gm = I C /V T = 38 .5 mS

    r π = β/g m = 2 .6 kΩr o = ∞

    The small-signal model is shown below.

    B

    r π+vπ

    E

    gm vπ

    C

  • 8/18/2019 Fundamentals_of_Microelectronics (Manual) by Razavi

    150/853

    4.22 (a)

    I B = 10 µ A

    I C = βI B = 1 mA

    V BE = V T ln( I C /I S ) = 739 mV

    V CE = V CC − I E (1 kΩ)= V CC −

    1 + β β

    (1 kΩ)

    = 0 .99 V

    Q1 is operating in forward active. Its small-signal parameters are

    gm = I C /V T = 38 .5 mS

    r π = β/g m = 2 .6 kΩr o = ∞

    The small-signal model is shown below.

    B

    r π+vπ

    E

    gm vπ

    C

    (b)

    I E = V CC − V BE

    1 kΩ =

    1 + β β

    I C

    I C = β 1 + β

    V CC − V T ln(I C /I S )1 kΩ

    I C = 1 .26 mA

    V BE = V T ln( I C /I S ) = 730 mV

    V CE = V BE = 730 mV

    Q1 is operating in forward active. Its small-signal parameters are

    gm = I C /V T = 48 .3 mS

    r π = β/g m = 2 .07 kΩr o = ∞

    The small-signal model is shown below.

  • 8/18/2019 Fundamentals_of_Microelectronics (Manual) by Razavi

    151/853

    B

    r π+vπ

    E

    gm vπ

    C

    (c)

    I E = 1 mA

    I C = β 1 + β

    I E = 0 .99 mA

    V BE = V T ln( I C /I S ) = 724 mV

    V CE = V BE = 724 mV

    Q1 is operating in forward active. Its small-signal parameters are

    gm = I C /V T = 38 .1 mS

    r π = β/g m = 2 .63 kΩr o = ∞

    The small-signal model is shown below.

    B

    r π+vπ

    E

    gm vπ

    C

    (d)

    I E = 1 mA

    I C = β 1 + β

    I E = 0 .99 mA

    V BE = V T ln( I C /I S ) = 724 mV

    V CE = V BE = 724 mV

    Q1 is operating in forward active. Its small-signal parameters are

    gm = I C /V T = 38 .1 mS

    r π = β/g m = 2 .63 kΩr o = ∞

    The small-signal model is shown below.

  • 8/18/2019 Fundamentals_of_Microelectronics (Manual) by Razavi

    152/853

    B

    r π

    +

    v π

    E

    g m v π

    C

  • 8/18/2019 Fundamentals_of_Microelectronics (Manual) by Razavi

    153/853

  • 8/18/2019 Fundamentals_of_Microelectronics (Manual) by Razavi

    154/853

  • 8/18/2019 Fundamentals_of_Microelectronics (Manual) by Razavi

    155/853

  • 8/18/2019 Fundamentals_of_Microelectronics (Manual) by Razavi

    156/853

  • 8/18/2019 Fundamentals_of_Microelectronics (Manual) by Razavi

    157/853

  • 8/18/2019 Fundamentals_of_Microelectronics (Manual) by Razavi

    158/853

  • 8/18/2019 Fundamentals_of_Microelectronics (Manual) by Razavi

    159/853

  • 8/18/2019 Fundamentals_of_Microelectronics (Manual) by Razavi

    160/853

  • 8/18/2019 Fundamentals_of_Microelectronics (Manual) by Razavi

    161/853

    4.31

    I C = I S eV BE /V T 1 + V CE

    V AI C,Total = nI C

    = nI S eV BE /V T 1 + V CE

    V A

    gm,Total = ∂I C ∂V BE

    = n I S V T

    eV BE /V T

    ≈ nI C V T

    = ng m

    = n × 0.4435 S

    I B,Total = 1β

    I C,Total

    r π,Total = ∂I B,Total∂V BE

    − 1

    ≈I C,Total

    βV T

    − 1

    =nI C βV T

    − 1

    = rπ

    n

    = 225.5 Ω

    n (assuming β = 100)

    r o,Total =∂I C,Total

    ∂V CE

    − 1

    ≈I C,Total

    V A

    − 1

    = V AnI C

    = ron

    = 693.8 Ω

    n

    The small-signal model is shown below.

    B

    r π,Total

    +vπ

    E

    gm,Total vπ

    C

    r o,Total

  • 8/18/2019 Fundamentals_of_Microelectronics (Manual) by Razavi

    162/853

    4.32 (a)

    V BE = V CE (for Q 1 to operate at the edge of saturation)V T ln( I C /I S ) = V CC − I C RC

    I C = 885 .7 µ A

    V B = V BE = 728 .5 mV(b) Let I ′C , V

    B , V ′

    BE , and V ′

    CE correspond to the values where the collector-base junction is forwardbiased by 200 mV.

    V ′BE = V ′

    CE + 200 mVV T ln( I ′C /I S ) = V CC − I

    C RC + 200 mVI ′C = 984 .4 µ AV ′B = 731 .3 mV

    Thus, V B can increase by V ′B − V B = 2 .8 mV if we allow soft saturation.

  • 8/18/2019 Fundamentals_of_Microelectronics (Manual) by Razavi

    163/853

  • 8/18/2019 Fundamentals_of_Microelectronics (Manual) by Razavi

    164/853

    4.34

    V BE = V CC − I B RBV T ln( I C /I S ) = V CC − I C RB /β

    I C = 1 .67 mAV BC = V CC − I B RB − (V CC − I C RC )

    < 200 mVI C RC − I B RB < 200 mV

    RC < 200 mV + I B RB

    I C

    = 200 mV + I C RB /β

    I C RC < 1.12 kΩ

  • 8/18/2019 Fundamentals_of_Microelectronics (Manual) by Razavi

    165/853

  • 8/18/2019 Fundamentals_of_Microelectronics (Manual) by Razavi

    166/853

  • 8/18/2019 Fundamentals_of_Microelectronics (Manual) by Razavi

    167/853

  • 8/18/2019 Fundamentals_of_Microelectronics (Manual) by Razavi

    168/853

  • 8/18/2019 Fundamentals_of_Microelectronics (Manual) by Razavi

    169/853

  • 8/18/2019 Fundamentals_of_Microelectronics (Manual) by Razavi

    170/853

  • 8/18/2019 Fundamentals_of_Microelectronics (Manual) by Razavi

    171/853

    4.41

    V EB = V EC (for Q 1 to operate at the edge of saturation)V CC − I B RB = V CC − I C RC

    I C RB /β = I C RC RB /β = RC

    β = RB /R C

    = 100

  • 8/18/2019 Fundamentals_of_Microelectronics (Manual) by Razavi

    172/853

  • 8/18/2019 Fundamentals_of_Microelectronics (Manual) by Razavi

    173/853

  • 8/18/2019 Fundamentals_of_Microelectronics (Manual) by Razavi

    174/853

  • 8/18/2019 Fundamentals_of_Microelectronics (Manual) by Razavi

    175/853

    4.44 (a)

    I B = 2 µ AI C = βI B

    = 200 µ A

    V EB = V T ln( I C /I S )= 768 mV

    V EC = V CC − I E (2 kΩ)

    = V CC −1 + β

    β I C (2 kΩ)

    = 2 .1 V

    Q1 is operating in forward active. Its small-signal parameters are

    gm = I C /V T = 7 .69 mS

    r π = β/g m = 13 kΩ

    r o = ∞

    The small-signal model is shown below.

    B

    r π+vπ

    E

    gm vπ

    C

    (b)

    I E = V CC − V EB

    5 kΩ1 + β

    β I C =

    V CC − V T ln( I C /I S )5 kΩ

    I C = 340 µ A

    V EB = 782 mV

    V EC = V EB = 782 mV

    Q1 is operating in forward active. Its small-signal parameters are

    gm = I C /V T = 13 .1 mS

    r π = β/g m = 7 .64 kΩr o = ∞

    The small-signal model is shown below.

  • 8/18/2019 Fundamentals_of_Microelectronics (Manual) by Razavi

    176/853

    B

    r π+vπ

    E

    gm vπ

    C

    (c)

    I E = 1 + β

    β I C = 0 .5 mA

    I C = 495 µ A

    V EB = 971 mV

    V EC = V EB = 971 mV

    Q1 is operating in forward active. Its small-signal parameters are

    gm = I C /V T = 19 .0 mS

    r π = β/g m = 5 .25 kΩr o = ∞

    The small-signal model is shown below.

    B

    r π+vπ

    E

    gm vπ

    C

  • 8/18/2019 Fundamentals_of_Microelectronics (Manual) by Razavi

    177/853

  • 8/18/2019 Fundamentals_of_Microelectronics (Manual) by Razavi

    178/853

  • 8/18/2019 Fundamentals_of_Microelectronics (Manual) by Razavi

    179/853

  • 8/18/2019 Fundamentals_of_Microelectronics (Manual) by Razavi

    180/853

  • 8/18/2019 Fundamentals_of_Microelectronics (Manual) by Razavi

    181/853

    4.49 The direction of current ow in the large-signal model (Fig. 4.40) indicates the direction of positivecurrent ow when the transistor is properly biased.The direction of current ow in the small-signal model (Fig. 4.43) indicates the direction of positivechange in current ow when the base-emitter voltage v be increases. For example, when v be increases,the current owing into the collector increases, which is why i c is shown owing into the collector inFig. 4.43. Similar reasoning can be applied to the direction of ow of i b and i e in Fig. 4.43.

  • 8/18/2019 Fundamentals_of_Microelectronics (Manual) by Razavi

    182/853

  • 8/18/2019 Fundamentals_of_Microelectronics (Manual) by Razavi

    183/853

  • 8/18/2019 Fundamentals_of_Microelectronics (Manual) by Razavi

    184/853

  • 8/18/2019 Fundamentals_of_Microelectronics (Manual) by Razavi

    185/853

  • 8/18/2019 Fundamentals_of_Microelectronics (Manual) by Razavi

    186/853

    4.53 (a)

    V CB 2 < 200 mVI C 2 RC < 200 mV

    I C 2 < 400 µ AV EB 2 = V E 2

    = V T ln( I C 2 /I S 2 )< 741 mV

    β 21 + β 2

    I E 2 RC < 200 mV

    β 21 + β 2

    1 + β 1β 1

    I C 1 RC < 200 mV

    I C 1 < 396 µ AV BE 1 = V T ln( I C 1 /I S 1 )

    < 712 mVV in = V BE 1 + V EB 2

    < 1.453 V(b)

    I C 1 = 396 µ AI C 2 = 400 µ A

    gm 1 = 15 .2 mS

    r π 1 = 6 .56 kΩr o 1 = ∞

    gm 2 = 15 .4 mS

    r π 2 = 3 .25 kΩ

    r o 2 = ∞

    The small-signal model is shown below.

    vin+

    B1

    r π 1+vπ 1

    C1

    gm 1 vπ 1

    E1 /E 2

    r π 2

    vπ 2+B2

    gm 2 vπ 2

    C2 vout

    RC

  • 8/18/2019 Fundamentals_of_Microelectronics (Manual) by Razavi

    187/853

  • 8/18/2019 Fundamentals_of_Microelectronics (Manual) by Razavi

    188/853

    4.55 (a)

    V BC 2 < 200 mVV BE 2 − (V CC − I C 2 RC ) < 200 mV

    V T ln( I C 2 /I S 2 ) + I C 2 RC − V CC < 200 mVI C 2 < 3.80 mA

    V BE 2 < 799.7 mV

    I E 1 = 1 + β 1

    β 1I C 1 = I B 2 = I C 2 /β 2

    I C 1 < 75.3 µ AV BE 1 < 669.2 mV

    V in = V BE 1 + V BE 2

    < 1.469 V

    (b)

    I C 1 = 75 .3 µ AI C 2 = 3 .80 mA

    gm 1 = 2 .90 mS

    r π 1 = 34 .5 kΩr o 1 = ∞

    gm 2 = 146 .2 mS

    r π 2 = 342 Ωr o 2 = ∞

    The small-signal model is shown below.

    vin+ B

    1

    r π 1+vπ 1

    C1

    gm 1 vπ 1

    E 1 /B 2

    r π 2+vπ 2

    C2

    gm 2 vπ 2

    E 2

    vout

    RC

  • 8/18/2019 Fundamentals_of_Microelectronics (Manual) by Razavi

    189/853

  • 8/18/2019 Fundamentals_of_Microelectronics (Manual) by Razavi

    190/853

  • 8/18/2019 Fundamentals_of_Microelectronics (Manual) by Razavi

    191/853

  • 8/18/2019 Fundamentals_of_Microelectronics (Manual) by Razavi

    192/853

  • 8/18/2019 Fundamentals_of_Microelectronics (Manual) by Razavi

    193/853

    R in

    Q 1

    V CC

    r π 2

    R in = r π 1 + (1 + β 1 )r π 2

  • 8/18/2019 Fundamentals_of_Microelectronics (Manual) by Razavi

    194/853

    5.4 (a) Looking into the collector of Q1 we see an equivalent resistance of ro1 , so we can draw the followingequivalent circuit for nding Rout :

    Rout

    R1r o1

    Rout = ro1 R1

    (b) Let’s draw the small-signal model and apply a test source at the output.

    RB

    r π 1+vπ 1

    −gm 1vπ 1 ro1

    −vt

    +i t

    i t = gm 1vπ 1 + vtro1

    vπ 1 = 0

    i t = vtr o1

    Rout = vti t = ro1

    (c) Looking down from the emitter of Q1 we see an equivalent resistance of 1gm 2 rπ 2 ro2 , so wecan draw the following equivalent circuit for nding Rout :

    Q1

    Rout

    1gm 2 r π 2 r o2

    Rout = ro1 + (1 + gm 1ro1) r π 1 1gm 2

    r π 2 ro2

  • 8/18/2019 Fundamentals_of_Microelectronics (Manual) by Razavi

    195/853

    (d) Looking into the base of Q2 we see an equivalent resistance of r π 2 , so we can draw the followingequivalent circuit for nding Rout :

    Q1

    Rout

    r π 2

    Rout = ro1 + (1 + gm 1r o1 ) ( r π 1 r π 2 )

  • 8/18/2019 Fundamentals_of_Microelectronics (Manual) by Razavi

    196/853

    5.5 (a) Looking into the base of Q1 we see an equivalent resistance of r π 1 , so we can draw the followingequivalent circuit for nding R in :

    R in

    R1

    R2 rπ 1

    R in = R1 + R2 r π 1

    (b) Let’s draw the small-signal model and apply a test source at the input.

    r π 1

    +

    vπ 1−

    −vt

    +i t

    gm 1vπ 1 R1

    i t = −vπ 1

    r π 1− gm 1vπ 1

    vπ 1 = − vt

    i t = vtr π 1

    + gm 1vt

    i t = vt gm 1 + 1r π 1

    R in = vti t

    = 1gm 1

    r π 1

    (c) From our analysis in part (b), we know that looking into the emitter we see a resistance of 1

    gm 2 r π 2 . Thus, we can draw the following equivalent circuit for nding R in :

  • 8/18/2019 Fundamentals_of_Microelectronics (Manual) by Razavi

    197/853

    R in

    Q1

    V CC

    1gm 2 rπ 2

    R in = rπ 1 + (1 + β 1) 1gm 2

    r π 2

    (d) Looking up from the emitter of Q1 we see an equivalent resistance of 1gm 2 r π 2 , so we can drawthe following equivalent circuit for nding R in :

    R in

    Q1

    1gm 2 rπ 2

    V CC

    R in = rπ 1 + (1 + β 1) 1gm 2

    r π 2

    (e) We know that looking into the base of Q2 we see Rin = rπ 2 if the emitter is grounded. Thus,transistor Q1 does not affect the input impedance of this circuit.

  • 8/18/2019 Fundamentals_of_Microelectronics (Manual) by Razavi

    198/853

    5.6 (a) Looking into the collector of Q1 we see an equivalent resistance of ro1 , so we can draw the followingequivalent circuit for nding Rout :

    Rout

    RC r o1

    Rout = RC r o1

    (b) Looking into the emitter of Q2 we see an equivalent resistance of 1gm 2 r π 2 r o2 , so we can drawthe following equivalent circuit for nding Rout :

    Q1

    Rout

    RE = 1gm 2 r π 2 r o2

    Rout = ro1 + (1 + gm 1ro1) r π 1 1gm 2

    r π 2 ro2

  • 8/18/2019 Fundamentals_of_Microelectronics (Manual) by Razavi

    199/853

    5.7 (a)

    V CC − I B (100 kΩ) = V BE = V T ln(I C /I S )

    V CC − 1β

    I C (100 kΩ) = V T ln( I C /I S )

    I C = 1 .754 mA

    V BE = V T ln( I C /I S ) = 746 mV

    V CE = V CC − I C (500 Ω) = 1 .62 V

    Q1 is operating in forward active.(b)

    I E 1 = I E 2 ⇒ V BE 1 = V BE 2V CC − I B 1 (100 kΩ) = 2 V BE 1

    V CC − 1β

    I C 1(100 kΩ) = 2 V T ln( I C 1 /I S )

    I C 1 = I C 2 = 1 .035 mA

    V BE 1 = V BE 2 = 733 mV

    V CE 2 = V BE 2 = 733 mVV CE 1 = V CC − I C (1 kΩ) − V CE 2

    = 733 mV

    Both Q1 and Q2 are at the edge of saturation.(c)

    V CC − I B (100 kΩ) = V BE + 0 .5 V

    V CC − 1

    β I C (100 kΩ) = V T ln( I C /I S ) + 0 .5 V

    I C = 1 .262 mA

    V BE = 738 mVV CE = V CC − I C (1 kΩ) − 0.5 V

    = 738 mV

    Q1 is operating at the edge of saturation.

  • 8/18/2019 Fundamentals_of_Microelectronics (Manual) by Razavi

    200/853

    5.8 See Problem 7 for the derivation of I C for each part of this problem.

    (a)

    I C 1 = 1 .754 mA

    gm 1 = I C 1 /V T = 67 .5 mS

    rπ 1 = β/g m 1 = 1 .482 kΩ

    100 kΩ

    r π 1+vπ 1

    −gm 1vπ 1 500 Ω

    (b)

    I C 1 = I C 2 = 1 .034 mAgm 1 = gm 2 = I C 1 /V T = 39 .8 mS

    r π 1 = rπ 2 = β/g m 1 = 2 .515 kΩ

    100 kΩ

    r π 1+vπ 1

    −gm 1vπ 1 1 kΩ

    r π 2+vπ 2

    −gm 2vπ 2

    (c)

    I C 1 = 1 .26 mA

    gm 1 = I C 1 /V T = 48 .5 mS

    rπ 1 = β/g m 1 = 2 .063 kΩ

    100 kΩ

    r π 1

    +vπ 1

    −gm 1vπ 1 1 kΩ

  • 8/18/2019 Fundamentals_of_Microelectronics (Manual) by Razavi

    201/853

    5.9 (a)

    V CC − V BE 34 kΩ

    − V BE 16 kΩ

    = I B = I C

    β

    I C = β V CC − V T ln( I C /I S )

    34 kΩ − β

    V T ln( I C /I S )16 kΩ

    I C = 677 µ AV BE = 726 mV

    V CE = V CC − I C (3 kΩ) = 468 mV

    Q1 is in soft saturation.(b)

    I E 1 = I E 2⇒ I C 1 = I C 2⇒ V BE 1 = V BE 2 = V BE

    V CC − 2V BE 9 kΩ −

    2V BE 16 kΩ = I B 1 =

    I C 1β

    I C 1 = β V CC − 2V T ln( I C 1 /I S )

    9 kΩ − β

    2V T ln(I C 1 /I S )16 kΩ

    I C 1 = I C 2 = 1 .72 mA

    V BE 1 = V BE 2 = V CE 2 = 751 mV

    V CE 1 = V CC − I C 1(500 Ω) − V CE 2 = 890 mV

    Q1 is in forward active and Q2 is on the edge of saturation.(c)

    V CC − V BE − 0.5 V12 kΩ

    − V BE + 0 .5 V13 kΩ

    = I B = I C β

    I C = β V CC − V T ln(I C /I S ) − 0.5 V

    12 kΩ − β

    V T ln( I C /I S ) + 0 .5 V13 kΩ

    I C = 1 .01 mA

    V BE = 737 mV

    V CE = V CC − I C (1 kΩ) − 0.5 V = 987 mV

    Q1 is in forward active.

  • 8/18/2019 Fundamentals_of_Microelectronics (Manual) by Razavi

    202/853

    5.10 See Problem 9 for the derivation of I C for each part of this problem.

    (a)

    I C = 677 µ A

    gm = I C /V T = 26 .0 mS

    rπ = β/g m = 3 .84 kΩ

    (34 kΩ) (16 kΩ) rπ

    +vπ

    −gm vπ 3 kΩ

    (b)

    I C 1 = I C 2 = 1 .72 mAgm 1 = gm 2 = I C 1 /V T = 66 .2 mS

    r π 1 = rπ 2 = β/g m 1 = 1 .51 kΩ

    (9 kΩ) (16 kΩ) rπ 1

    +vπ 1

    −gm 1vπ 1 500 Ω

    gm 2vπ 2r π 2−vπ 2

    +

    (c)

    I C = 1 .01 mA

    gm = I C /V T = 38 .8 mS

    rπ = β/g m = 2 .57 kΩ

    (12 kΩ) (13 kΩ) rπ+vπ

    −gm vπ 1 kΩ

  • 8/18/2019 Fundamentals_of_Microelectronics (Manual) by Razavi

    203/853

  • 8/18/2019 Fundamentals_of_Microelectronics (Manual) by Razavi

    204/853

  • 8/18/2019 Fundamentals_of_Microelectronics (Manual) by Razavi

    205/853

    5.13 We know the input resistance is Rin = R 1 R 2 r π . Since we want the minimum values of R1 andR2 such that R in > 10 kΩ, we should pick the maximum value allowable for r π , which means pickingthe minimum value allowable for gm (since r π ∝ 1/g m ), which is gm = 1 / 260 S.

    gm = 1260

    S

    I C = gm V T = 100 µ AV BE = V T ln( I C /I S ) = 760 mV

    I B = I C

    β = 1 µ A

    V CC − V BE R1

    − V BE

    R2= I B

    R1 = V CC − V BE

    I B + V BER 2

    rπ = β gm

    = 26 kΩ

    R in = R1 R2 rπ

    = V CC − V BE I B + V BER 2

    R2 r π

    > 10 kΩ

    R2 > 23.57 kΩ

    R1 > 52.32 kΩ

  • 8/18/2019 Fundamentals_of_Microelectronics (Manual) by Razavi

    206/853

    5.14

    gm = I C V T

    ≥ 126

    S

    rπ = β gm

    = 2 .6 kΩ

    R in = R1 R2 r π≤ r π

    According to the above analysis, R in cannot be greater than 2 .6 kΩ. This means that the requirementthat Rin ≥ 10 kΩ cannot be met. Qualitatively, the requirement for gm to be large forces rπ to besmall, and since R in is bounded by r π , it puts an upper bound on R in that, in this case, is below therequired 10 kΩ.

  • 8/18/2019 Fundamentals_of_Microelectronics (Manual) by Razavi

    207/853

    5.15

    Rout = RC = R0

    Av = − gm RC = − gm R0 = −I C V T

    R0 = − A0

    I C =

    A0R0 V T

    r π = β V T I C

    = β R0A0

    V BE = V T ln( I C /I S ) = V T lnA0 V T R0I S

    V CC − V BE R1

    − V BE

    R2= I B =

    I C β

    R1 = V CC − V BE

    I Cβ +

    V BER 2

    R in = R1 R2 rπ

    =V CC − V T ln A 0 V T

    R 0 I SI Cβ +

    V T R 2 ln

    A 0 V T R 0 I S

    R2 β R0A0

    In order to maximize R in , we can let R2 → ∞ . This gives us

    R in,max = β V CC − V T ln A 0 V T R 0 I S

    I C β

    R0A0

  • 8/18/2019 Fundamentals_of_Microelectronics (Manual) by Razavi

    208/853

    5.16 (a)

    I C = 0 .25 mAV BE = 696 mV

    V CC − V BE − I E RE R1

    − V BE + I E RE

    R2= I B =

    I C β

    R1 =V CC − V BE − 1+ ββ I C RE

    I Cβ +

    V BE + 1+ ββ I C R ER 2

    = 22 .74 kΩ

    (b) First, consider a 5 % increase in RE .

    RE = 210 ΩV CC − V BE − I E RE

    R1−

    V BE + I E RE R2

    = I B = I C

    β V CC − V T ln( I C /I S ) − 1+ ββ I C RE

    R1−

    V T ln( I C /I S ) + 1+ ββ I C RE

    R2= I B =

    I C

    β I C = 243 µ A

    I C − I C,nomI C,nom

    × 100 = − 2.6 %

    Now, consider a 5 % decrease in R E .

    RE = 190 ΩI C = 257 µ A

    I C − I C,nomI C,nom

    × 100 = +2 .8 %

  • 8/18/2019 Fundamentals_of_Microelectronics (Manual) by Razavi

    209/853

    5.17

    V CE ≥ V BE (in order to guarantee operation in the active mode)V CC − I C RC ≥ V T ln( I C /I S )

    I C ≤ 833 µ AV CC − V BE − I E RE

    30 kΩ − V BE + I E RE

    R2 = I B = I C

    β

    R2 = V BE + I E RE

    V CC − V BE − I E R E30 kΩ −

    I Cβ

    =V T ln( I C /I S ) + 1+ ββ I C RE

    V CC − V T ln( I C /I S )− 1+ ββ I C R E30 kΩ −

    I Cβ

    R2 ≤ 20.66 kΩ

  • 8/18/2019 Fundamentals_of_Microelectronics (Manual) by Razavi

    210/853

    5.18 (a) First, note that V BE 1 = V BE 2 = V BE , but since I S 1 = 2 I S 2 , I C 1 = 2 I C 2 . Also note thatβ 1 = β 2 = β = 100.

    I B 1 = I C 1

    β =

    V CC − V BE − (I E 1 + I E 2 )RE R1

    − V BE + ( I E 1 + I E 2 )RE

    R2

    I C 1 = β

    V CC − V T ln( I C 1/I S 1 ) − 321+ β

    β I C 1RE

    R1 −

    V T ln( I C 1 /I S 1) + 321+ β

    β I C 1RE

    R2I C 1 = 707 µ A

    I C 2 = I C 1

    2 = 354 µ A

    (b) The small-signal model is shown below.

    R1 R2 rπ 1+vπ 1

    −r π 2

    +vπ 2

    −gm 1vπ 1

    RC

    gm 2vπ 2

    RE

    We can simplify the small-signal model as follows:

    R1 R2 rπ 1 r π 2

    +vπ

    −gm 1vπ

    RC

    gm 2vπ 2

    RE

  • 8/18/2019 Fundamentals_of_Microelectronics (Manual) by Razavi

    211/853

    gm 1 = I C 1/V T = 27 .2 mS

    r π 1 = β 1 /g m 1 = 3 .677 kΩ

    gm 2 = I C 2/V T = 13 .6 mS

    r π 2 = β 2 /g m 2 = 7 .355 kΩ

  • 8/18/2019 Fundamentals_of_Microelectronics (Manual) by Razavi

    212/853

    5.19 (a)

    I E 1 = I E 2 ⇒ V BE 1 = V BE 2V CC − 2V BE 1

    9 kΩ −

    2V BE 116 kΩ

    = I B 1 = I C 1

    β 1

    I C 1 = β 1V CC − 2V T ln( I C 1 /I S 1)

    9 kΩ − β 12V T ln(I C 1 /I S 1)

    16 kΩI C 1 = I C 2 = 1 .588 mA

    V BE 1 = V BE 2 = V T ln( I C 1 /I S 1) = 754 mV

    V CE 2 = V BE 2 = 754 mV

    V CE 1 = V CC − I C 1 (100 Ω) − V CE 2 = 1 .587 V

    (b) The small-signal model is shown below.

    (9 kΩ) (16 kΩ) rπ 1+vπ 1

    gm 1vπ 1

    r π 2+vπ 2

    −gm 2vπ 2

    100 Ω

    gm 1 = gm 2 = I C 1V T

    = 61 .1 mS

    r π 1 = rπ 2 = β 1gm 1

    = 1 .637 kΩ

  • 8/18/2019 Fundamentals_of_Microelectronics (Manual) by Razavi

    213/853

  • 8/18/2019 Fundamentals_of_Microelectronics (Manual) by Razavi

    214/853

  • 8/18/2019 Fundamentals_of_Microelectronics (Manual) by Razavi

    215/853

    5.22

    V CC − I E (500 Ω) − I B (20 kΩ) − I E (400 Ω) = V BE

    V CC −1 + β

    β I C (500 Ω + 400 Ω) −

    I C (20 kΩ) = V T ln( I C /I S )

    I C = 1 .584 mA

    V BE = V T ln( I C /I S ) = 754 mVV CE = V CC − I E (500 Ω) − I E (400 Ω)

    = V CC −1 + β

    β I C (500 Ω + 400 Ω) = 1 .060 V

    Q1 is operating in forward active.

  • 8/18/2019 Fundamentals_of_Microelectronics (Manual) by Razavi

    216/853

    5.23

    V BC ≤ 200 mVV CC − I E (1 kΩ) − I B RB − (V CC − I E (1 kΩ) − I C (500 Ω)) ≤ 200 mV

    I C (500 Ω) − I B RB ≤ 200 mVI B RB ≥ I C (500 Ω) − 200 mV

    V CC − I E (1 kΩ) − I B RB = V BE = V T ln( I C /I S )

    V CC −1 + β

    β I C (1 kΩ) − I C (500 Ω) + 200 mV ≤ V T ln(I C /I S )

    I C ≥ 1.29 mA

    RB ≥I C (500 Ω) − 200 mV

    I Cβ

    ≥ 34.46 kΩ

  • 8/18/2019 Fundamentals_of_Microelectronics (Manual) by Razavi

    217/853

  • 8/18/2019 Fundamentals_of_Microelectronics (Manual) by Razavi

    218/853

  • 8/18/2019 Fundamentals_of_Microelectronics (Manual) by Razavi

    219/853

    5.25 (a)

    I C 1 = 1 mAV CC − (I E 1 + I E 2 )(500 Ω) = V T ln( I C 2 /I S 2 )

    V CC −1 + β

    β I C 1 +

    1 + β β

    I C 2 (500 Ω) = V T ln( I C 2 /I S 2 )

    I C 2 = 2 .42 mAV B − (I E 1 + I E 2 )(500 Ω) = V T ln( I C 1 /I S 1 )

    V B −1 + β

    β I C 1 +

    1 + β β

    I C 2 (500 Ω) = V T ln( I C 1 /I S 1 )

    V B = 2 .68 V

    (b) The small-signal model is shown below.

    r π 1+vπ 1

    −r π 2

    +vπ 2

    200 Ω

    gm 1 vπ 1 gm 2 vπ 2

    500 Ω

    gm 1 = I C 1 /V T = 38 .5 mS

    r π 1 = β 1 /g m 1 = 2 .6 kΩ

    gm 2 = I C 2 /V T = 93 .1 mS

    r π 2 = β 2 /g m 2 = 1 .074 kΩ

  • 8/18/2019 Fundamentals_of_Microelectronics (Manual) by Razavi

    220/853

    5.26 (a)

    V CC − I B (60 kΩ) = V EB

    V CC − 1β pnp

    I C (60 kΩ) = V T ln( I C /I S )

    I C = 1 .474 mA

    V EB = V T ln( I C /I S ) = 731 mV

    V EC = V CC − I C (200 Ω) = 2 .205 V

    Q1 is operating in forward active.(b)

    V CC − V BE 1 − I B 2 (80 kΩ) = V EB 2V CC − V T ln(I C 1 /I S ) − I B 2 (80 kΩ) = V T ln(I C 2 /I S )

    I C 1 = β npn1 + β npn

    I E 1

    = β npn1 + β npn I E 2

    = β npn1 + β npn

    · 1 + β pnpβ pnp

    I C 2

    V CC − V T ln β npn

    1 + β npn· 1 + β pnp

    β pnp· I C 2

    I S − 1

    β pnpI C 2 (80 kΩ) = V T ln(I C 2 /I S )

    I C 2 = 674 µ A

    V BE 2 = V T ln(I C 2 /I S ) = 711 mV

    I C 1 = 680 µ A

    V BE 1 = V T ln(I C 1 /I S ) = 711 mV

    V CE 1 = V BE 1 = 711 mVV CE 2 = V CC − V CE 1 − I C 2 (300 Ω)

    = 1 .585 V

    Q1 is operating on the edge of saturation. Q2 is operating in forward active.

  • 8/18/2019 Fundamentals_of_Microelectronics (Manual) by Razavi

    221/853

    5.27 See Problem 26 for the derivation of I C for each part of this problem.

    (a) The small-signal model is shown below.

    60 kΩ

    r π+

    vπ−

    gm vπ 200 Ω

    I C = 1 .474 mA

    gm = I C V T

    = 56 .7 mS

    r π = β g

    m

    = 1 .764 kΩ

    (b) The small-signal model is shown below.

    r π 1+vπ 1

    −gm 1 vπ 1

    r π 2

    vπ 2

    +

    80 kΩ

    gm 2 vπ 2

    300 Ω

    I C 1 = 680 µ A

    gm 1 = I C 1V T = 26 .2 mS

    r π 1 = β npngm 1

    = 3 .824 kΩ

    I C 2 = 674 µ A

    gm 2 = I C 2V T

    = 25 .9 mS

    r π 2 = β pnpgm 2

    = 1 .929 kΩ

  • 8/18/2019 Fundamentals_of_Microelectronics (Manual) by Razavi

    222/853

  • 8/18/2019 Fundamentals_of_Microelectronics (Manual) by Razavi

    223/853

  • 8/18/2019 Fundamentals_of_Microelectronics (Manual) by Razavi

    224/853

  • 8/18/2019 Fundamentals_of_Microelectronics (Manual) by Razavi

    225/853

  • 8/18/2019 Fundamentals_of_Microelectronics (Manual) by Razavi

    226/853

    5.30

    V CC − I C (1 kΩ) = V EC = V EB (in order for Q1 to operate at the edge of saturation)= V T ln(I C /I S )

    I C = 1 .761 mAV EB = 739 mV

    V CC − V EBRB

    −V EB5 kΩ

    = I B = I C

    β RB = 9 .623 kΩ

    First, let’s consider when RB is 5 % larger than its nominal value.

    RB = 10 .104 kΩV CC − V T ln( I C /I S )

    RB−

    V T ln( I C /I S )5 kΩ

    = I C

    β I C = 1 .411 mA

    V EB = 733 mV

    V EC = V CC − I C (1 kΩ) = 1 .089 VV CB = − 355 mV (the collector-base junction is reverse biased)

    Now, let’s consider when RB is 5 % smaller than its nominal value.

    RB = 9 .142 kΩV CC − V T ln( I C /I S )

    RB−

    V T ln( I C /I S )5 kΩ

    = I C

    β I C = 2 .160 mA

    V EB = 744 mVV EC = V CC − I C (1 kΩ) = 340 mV

    V CB = 405 mV (the collector-base junction is forward biased)

  • 8/18/2019 Fundamentals_of_Microelectronics (Manual) by Razavi

    227/853

    5.31

    V BC + I C (5 kΩ)10 kΩ

    −V CC − V BC − I C (5 kΩ)

    10 kΩ = I B =

    I C β

    V BC = 300 mVI C = 194 µ A

    V EB = V T ln(I C /I S ) = 682 mVV CC − I E RE − I C (5 kΩ) = V EC = V EB + 300 mV

    V CC −1 + β

    β I C RE − I C (5 kΩ) = V EB + 300 mV

    RE = 2 .776 kΩ

    Let’s look at what happens when RE is halved.

    RE = 1 .388 kΩV CC − I E RE − V EB

    10 kΩ −

    V CC − (V CC − I E RE − V EB )10 kΩ

    = I B = I C

    β

    β V CC − 1+ ββ I C RE − V T ln( I C /I S )

    10 kΩ − β V

    CC − V CC − 1+ β

    β I C RE − V T ln( I C /I S )10 kΩ

    = I C

    I C = 364 µ AV EB = 698 µ VV EC = 164 µ V

    Thus, when R E is halved, Q1 operates in deep saturation.

  • 8/18/2019 Fundamentals_of_Microelectronics (Manual) by Razavi

    228/853

    5.32

    V CC − I B (20 kΩ) − I E (1.6 kΩ) = V BE = V T ln( I C /I S )

    V CC −I C β

    (20 kΩ) −1 + β

    β I C (1.6 kΩ) = V BE = V T ln( I C /I S )

    I S = I C

    ehV CC −I C

    β (20 kΩ) − 1+ ββ I C (1 .6 kΩ) i/V T I C = 1 mA

    I S = 3 × 10− 14 A

  • 8/18/2019 Fundamentals_of_Microelectronics (Manual) by Razavi

    229/853

  • 8/18/2019 Fundamentals_of_Microelectronics (Manual) by Razavi

    230/853

  • 8/18/2019 Fundamentals_of_Microelectronics (Manual) by Razavi

    231/853

  • 8/18/2019 Fundamentals_of_Microelectronics (Manual) by Razavi

    232/853

  • 8/18/2019 Fundamentals_of_Microelectronics (Manual) by Razavi

    233/853

  • 8/18/2019 Fundamentals_of_Microelectronics (Manual) by Razavi

    234/853

    5.38 (a)

    Av = − gm 1 1gm 2

    r π 2

    R in = rπ 1

    R out = 1gm 2 r π 2

    (b)

    Av = − gm 1 R 1 + 1gm 2

    r π 2

    R in = rπ 1

    R out = R 1 + 1gm 2

    r π 2

    (c)

    Av = − gm 1 R C + 1gm 2 r π 2

    R in = rπ 1

    R out = RC + 1gm 2

    r π 2

    (d) Let’s determine the equivalent resistance seen looking up from the output by drawing a small-signal model and applying a test source.

    −vt

    +

    i t rπ 2

    +

    vπ 2−

    R C

    gm 2 vπ 2

    i t = vπ 2r π 2

    + gm 2 vπ 2

    vπ 2 = vt

    i t = vt 1r π 2

    + gm 2

    vti t

    = 1gm 2

    r π 2

    Av = − gm 1 1gm 2

    r π 2

    R in = rπ 1

    R out = 1gm 2

    r π 2

  • 8/18/2019 Fundamentals_of_Microelectronics (Manual) by Razavi

    235/853

    (e) From (d), we know the gain from the input to the collector of Q 1 is − gm 1 1gm 2 r π 2 . If we ndthe gain from the collector of Q1 to vout , we can multiply these expressions to nd the overallgain. Let’s draw the small-signal model to nd the gain from the collector of Q 1 to vout . I’ll referto the collector of Q 1 as node X in the following derivation.

    −vX

    +r π 2

    +vπ 2

    R C

    vout

    gm 2 vπ 2

    vX − voutR C

    = gm 2 vπ 2

    vπ 2 = vXvX − vout

    R C = gm 2 vX

    vX 1R C

    − gm 2 = voutR C

    voutvX

    = 1 − gm 2 R C

    Thus, we have

    Av = − gm 1 1gm 2

    r π 2 (1 − gm 2 R C )

    R in = rπ 1

    To nd the output resistance, let’s draw the small-signal model and apply a test source at theoutput. Note that looking into the collector of Q 1 we see innite resistance, so we can exclude itfrom the small-signal model.

    r π 2

    +vπ 2

    R C

    −vt

    +i tgm 2 vπ 2

  • 8/18/2019 Fundamentals_of_Microelectronics (Manual) by Razavi

    236/853

    i t = gm 2 vπ 2 + vπ 2r π 2

    vπ 2 = rπ 2

    r π 2 + RC vt

    i t = gm 2 + 1r π 2

    rπ 2r π 2 + R C vt

    R out = vti t

    = 1gm 2

    r π 2 r π 2 + R C

    r π 2

  • 8/18/2019 Fundamentals_of_Microelectronics (Manual) by Razavi

    237/853

    5.39 (a)

    Av = − gm 1 r o1 1gm 2

    r π 2 r o 2

    R in = rπ 1

    R out = ro1 1gm 2 r π 2 r o 2

    (b)

    Av = − gm 1 r o 1 R 1 + 1gm 2

    r π 2 r o2

    R in = rπ 1

    R out = ro1 R 1 + 1gm 2

    r π 2 r o2

    (c)

    Av = − gm 1 r o 1 R C + 1gm 2

    r π 2 r o2

    R in = rπ 1

    R out = ro 1 R C + 1gm 2

    r π 2 r o2

    (d) Let’s determine the equivalent resistance seen looking up from the output by drawing a small-signal model and applying a test source.

    −vt

    +i t rπ 2

    +vπ 2

    R C X

    r o2gm 2 vπ 2

  • 8/18/2019 Fundamentals_of_Microelectronics (Manual) by Razavi

    238/853

    i t = vπ 2r π 2

    + vt − vX

    R C vX − vt

    R C + gm 2 vπ 2 +

    vXr o2

    = 0

    vπ 2 = vtvX

    1R C

    + 1r o2

    = vt 1R C

    − gm 2

    vX = vt 1R C

    − gm 2 (r o2 R C )

    i t = vtr π 2

    + vtR C

    − 1R C

    vt 1R C

    − gm 2 (r o 2 R C )

    = vt 1r π 2

    + 1R C

    − 1R C

    1R C

    − gm 2 (r o2 R C )

    = vt 1r π 2

    + 1R C

    + gm 2 − 1R C

    ro2r o2 + R C

    vti t

    = r π 2 R C r o2 + R C

    r o 21

    gm 2 − 1R C

    Av = − gm 1 r o1 r π 2 R C r o2 + R C

    r o21

    gm 2 − 1R C

    R in = rπ 1

    R out = ro1 r π 2 R C r o 2 + RC

    r o21

    gm 2 − 1R C

    (e) From (d), we know the gain from the input to the collector of Q1 is − gm 1 r o1 r π 2 R C r o 2 + R Cr o 21

    gm 2 − 1R CIf we nd the gain from the collector of Q 1 to vout , we can multiply these expressions to nd theoverall gain. Let’s draw the small-signal model to nd the gain from the collector of Q 1 to vout .I’ll refer to the collector of Q 1 as node X in the following derivation.

    −vX

    +r π 2

    +vπ 2

    R C vout

    r o 2gm 2 vπ 2

  • 8/18/2019 Fundamentals_of_Microelectronics (Manual) by Razavi

    239/853

    vout − vXR C

    + gm 2 vπ 2 + voutr o2

    = 0

    vπ 2 = vXvout − vX

    R C + gm 2 vX +

    vout

    r o2= 0

    vout 1R C

    + 1r o2

    = vX 1R C

    − gm 2

    voutvX

    = 1R C

    − gm 2 (R C r o2 )

    Thus, we have

    Av = − gm 1 r o1 r π 2 R C r o2 + R C

    r o21

    gm 2 − 1R C

    1R C

    − gm 2 (R C r o2 )

    R in = rπ 1

    To nd the output resistance, let’s draw the small-signal model and apply a test source at theoutput. Note that looking into the collector of Q 1 we see r o1 , so we replace Q 1 in the small-signalmodel with this equivalent resistance. Also note that r o2 appears from the output to ground, sowe can remove it from this analysis and add it in parallel at the end to nd R out .

    r o1 rπ 2

    +vπ 2

    R C

    −vt

    +i tgm 2 vπ 2

    i t = gm 2 vπ 2 + vπ 2

    r π 2 r o 1

    vπ 2 = rπ 2 r o1

    r π 2 r o 1 + RC vt

    i t = gm 2 + 1

    r π 2 r o1 rπ 2 r o1

    r π 2 r o1 + R C vt

    R out = r o2 vti t

    = ro2 1gm 2 r π 2 r o1