44
Divergence-free discontinuous Galerkin method for compressible MHD equations Praveen Chandrashekar [email protected] http://cpraveen.github.io Center for Applicable Mathematics Tata Institute of Fundamental Research Bangalore-560065, India http://math.tifrbng.res.in GT Plasma, Univ. Cˆ ote D’Azur, Valrose, Nice 9 May 2019 1 / 35

Divergence-free discontinuous Galerkin method for compressible …math.tifrbng.res.in/~praveen/slides/valrose_9May2019.pdf · 2019. 6. 3. · Divergence-free discontinuous Galerkin

  • Upload
    others

  • View
    3

  • Download
    0

Embed Size (px)

Citation preview

Page 1: Divergence-free discontinuous Galerkin method for compressible …math.tifrbng.res.in/~praveen/slides/valrose_9May2019.pdf · 2019. 6. 3. · Divergence-free discontinuous Galerkin

Divergence-free discontinuous Galerkin method forcompressible MHD equations

Praveen [email protected]

http://cpraveen.github.io

Center for Applicable MathematicsTata Institute of Fundamental Research

Bangalore-560065, Indiahttp://math.tifrbng.res.in

GT Plasma, Univ. Cote D’Azur, Valrose, Nice9 May 2019

1 / 35

Page 2: Divergence-free discontinuous Galerkin method for compressible …math.tifrbng.res.in/~praveen/slides/valrose_9May2019.pdf · 2019. 6. 3. · Divergence-free discontinuous Galerkin

Maxwell EquationsLinear hyperbolic system

∂B

∂t+∇×E = 0,

∂D

∂t−∇×H = −J

B = magnetic flux density D = electric flux densityE = electric field H = magnetic field

J = electric current density

B = µH, D = εE, J = σE µ, ε ∈ R3×3 symmetric

ε = permittivity tensor

µ = magnetic permeability tensor

σ = conductivity

∇ ·B = 0, ∇ ·D = ρ (electric charge density),∂ρ

∂t+∇ · J = 0

2 / 35

Page 3: Divergence-free discontinuous Galerkin method for compressible …math.tifrbng.res.in/~praveen/slides/valrose_9May2019.pdf · 2019. 6. 3. · Divergence-free discontinuous Galerkin

Ideal compressible MHD equationsNonlinear hyperbolic system

Compressible Euler equations with Lorentz force

∂ρ

∂t+∇ · (ρv) = 0

∂ρv

∂t+∇ · (pI + ρv ⊗ v −B ⊗B) = 0

∂E

∂t+∇ · ((E + p)v + (v ·B)B) = 0

∂B

∂t−∇× (v ×B) = 0

Magnetic monopoles do not exist: =⇒ ∇ ·B = 0

3 / 35

Page 4: Divergence-free discontinuous Galerkin method for compressible …math.tifrbng.res.in/~praveen/slides/valrose_9May2019.pdf · 2019. 6. 3. · Divergence-free discontinuous Galerkin

Divergence constraint

∂B

∂t+∇×E = 0

∇ · ∂B∂t

+∇ · ∇×︸ ︷︷ ︸=0

E = 0

∂t∇ ·B = 0

If∇ ·B = 0 at t = 0

then

∇ ·B = 0 for t > 0

Rotated shock tubeDiscontinuous Galerkin Magnetohydrodynamics 31

0.1

0.0

0.1 Powell

0.1

0.0

0.1

Rel

ativ

eer

ror

onB

cleaning

0.4 0.2 0.0 0.2 0.4

x

0.1

0.0

0.1 Athena

Figure 29. Rotated shock tube test. The relative error on the parallel magneticfield Bk in the rotated shock tube test of Tóth (2000) is shown for the DG-3method with the Powell and hyperbolic cleaning schemes in the top andcentre panel. The bottom panel shows the solution obtained with Athena,with the 3rd order CTU (constrained transport) method. For the Powellmethod, between the left and right fast shocks (x = 0.4), the value of Bkdeviates with respect to the exact solution due to the nonconservative sourceterms. Apart from oscillations at the discontinuities, the Powell schemeresults in systematic osets of Bk of order . 5%. The hyperbolic cleaningscheme features no such systematic osets, but produces damped oscillationswhich overtake the fast shocks as the divergence gets advected away.

6 DISCUSSION

6.1 High-order schemes for astrophysics

Our tests have shown some promising results for higher-orderschemes in astrophysical simulations, and for MHD in particular.We now discuss how the combination of DG with adaptive mesh re-finement could allow very ecient computations in smooth regionsof the flow with high order convergence, while finely capturing theshocks and discontinuities with spatial refinement.

We can interpret order/resolution convergence plots such asFig. 4 from two complementary points of view: looking at a givenspatial resolution on the x axis, we can increase the order to reducethe solution error. But at a fixed error on the y axis, we may alsoincrease the order and correspondingly reduce the spatial resolution.We argue that this second vision is more relevant to many types ofsimulations in astrophysics, as the spatial truncation errors needonly be smaller or comparable to other types of errors, stemmingfrom uncertainties in the physical models, missing physics, subgridrecipes, etc. We can therefore see order convergence as a way ofgetting away with fewer cells in smooth problems, to the extent thatwe can eciently “patch” smooth regions of the flow with coarsercells.

Cell-based adaptive mesh refinement provides a suitableframework to do this, as it allows cell-by-cell resolution adaptiv-ity to match the local feature size. In a number of our test problems,we found higher-order to better resolve features close to the gridresolution. The vortex problem of Fig. 4 illustrates the advantage

of higher orders for capturing features which are barely resolved bythe grid (shaded area): at 322 resolution, the 2nd order scheme isnot yet resolving the vortex, whereas the DG-4 method has alreadyachieved its theoretical 4th order convergence. The same conclu-sion holds in the presence of shocks, as illustrated by the Shu-OsherMHD shock tube in Fig. 9 where we see a significant improvementfrom DG-2 to DG-3. The loop advection problem further showsthat sharp features (such as singular field derivatives appearing inthe MHD current) can also be captured within one cell by mod-erately increasing the spatial order: going from 2nd to 3rd or 4th

order dramatically improves the loop sharpness, while reducing thedissipation of magnetic energy.

Compared to Lagrangian methods, a major issue with AMREulerian grid codes is that they require sucient grid resolutionto avoid dissipation due to bulk flow velocities; i.e. they are onlyGalilean invariant for solutions suciently resolved to make ad-vection errors negligible. Because spatial resolution translates intotighter CFL constraints on the timestep, a compromise has to bereached between advection errors and compute time in practice.The advected Orszag–Tang test of Section 5.3.4 demonstrates thatnot only do higher order schemes help reduce advection errors andrestore Galilean invariance, but for smooth regions of the flow, itcan actually be beneficial to increase the order while reducing spa-tial resolution. Note that these test problems present MHD shocks,and it is encouraging to see that these positive features remain, eventhough we find that they can be sensitive to the details of the limitersettings.

The combination of higher order methods with adaptive meshrefinement therefore seems particularly powerful. We note that formost astrophysical situations, spatial refinement will likely be re-quired, because of the presence of shocks which are inherently first-order features, but also whenever the fluid is self-gravitating. Onemay therefore ask what scheme order will turn out to be the optimalchoice for a given problem. While we discussed positive eects ofhigher orders, in practice we expect diminishing returns. From theabove discussion, it is clear the optimal global scheme order willdepend on the volume filling fraction and geometry of shocks andother discontinuities, as well as the acceptable truncation error, bothof which are very problem-dependent. Higher orders will only behelpful to the extent that we can eciently patch smooth regionsof the flow with coarser and coarser cells. In addition, the compu-tational cost of DG becomes prohibitive for large orders, in partbecause of the expensive quadrature operations, but also because ofthe more restrictive CFL condition (27). We note that this CFL con-straint can be relaxed within the DG framework, for example usingso-called PNPM schemes (Dumbser et al. 2008), where N momentsare evolved dynamically as in DG, whereas high-order spatial re-construction is used up to order M N to recover the remainingmoments; however this comes at the cost of a more extended patternof ghost cells, as with purely reconstruction-based schemes.

Time integration for RKDG schemes is also both computa-tionally and memory-expensive at high temporal orders, as Runge-Kutta methods require multiple steps with intermediate storage.These memory and computational requirements may be reducedusing other time integration schemes such as ADER (see 6.4.2).Note that even though we match the RK time integration order tothe spatial order of the scheme (up to RK4) in most of our runs,this is only done to ensure that the time integration errors do notcontaminate the convergence tests of Section 5.2. In practice, high-order RK time integration may be unnecessary, for example whenthe CFL criterion enforces very small time steps due to high plasma

MNRAS 000, 1–38 (2018)

Guillet et al., MNRAS 2019

Discrete div-free =⇒ positivity(Kailiang)

4 / 35

Page 5: Divergence-free discontinuous Galerkin method for compressible …math.tifrbng.res.in/~praveen/slides/valrose_9May2019.pdf · 2019. 6. 3. · Divergence-free discontinuous Galerkin

Objectives

• Based on conservation form of the equations

• Upwind-type schemes using Riemann solvers• Divergence-free schemes for Maxwell’s and compressible MHD

I Cartesian grids at presentI Divergence preserving schemes (RT)I Divergence-free reconstruction (BDM)

• High order accurateI discontinuous-Galerkin

• Non-oscillatory schemes for MHDI using limiters

• Explicit time stepping• Based on previous work for induction equation

I J. Sci. Comp., Vol. 79, pp, 79-102, 2019

5 / 35

Page 6: Divergence-free discontinuous Galerkin method for compressible …math.tifrbng.res.in/~praveen/slides/valrose_9May2019.pdf · 2019. 6. 3. · Divergence-free discontinuous Galerkin

Some existing methods

Exactly divergence-free methods

• Yee scheme (Yee (1966))

• Projection methods (Brackbill & Barnes (1980))

• Constrained transport (Evans & Hawley (1989))

• Divergence-free reconstruction (Balsara (2001))

• Globally divergence-free scheme (Li et al. (2011), Fu et al, (2018))

Approximate methods

• Locally divergence-free schemes (Cockburn, Li & Shu (2005))

• Godunov’s symmetrized version of MHD (Powell, Gassner et al., C/K)

• Divergence cleaning methods (Dedner et al.)

6 / 35

Page 7: Divergence-free discontinuous Galerkin method for compressible …math.tifrbng.res.in/~praveen/slides/valrose_9May2019.pdf · 2019. 6. 3. · Divergence-free discontinuous Galerkin

MHD equations in 2-D

∂U∂t

+∂Fx

∂x+∂Fy

∂y= 0

U =

ρρvxρvyρvzEBx

By

Bz

, Fx =

ρvxP + ρv2x −B2

x

ρvxvy −BxBy

ρvxvz −BxBz

(E + P )vx −Bx(v ·B)0−Ez

vxBz − vzBx

, Fy =

ρvyρvxvy −BxBy

P + ρv2y −B2y

ρvyvz −ByBz

(E + P )vy −By(v ·B)Ez

0vyBz − vzBy

where

B = (Bx, By, Bz), P = p+1

2|B|2, E =

p

γ − 1+

1

2ρ|v|2 +

1

2|B|2

Ez is the electric field in the z direction

Ez = −(v ×B)z = vyBx − vxBy

7 / 35

Page 8: Divergence-free discontinuous Galerkin method for compressible …math.tifrbng.res.in/~praveen/slides/valrose_9May2019.pdf · 2019. 6. 3. · Divergence-free discontinuous Galerkin

MHD equations in 2-D

Split into two parts

U = [ρ, ρv, E , Bz]>, B = (Bx, By)

∂U

∂t+∇ · F (U ,B) = 0,

∂Bx

∂t+∂Ez

∂y= 0,

∂By

∂t− ∂Ez

∂x= 0

The fluxes F = (Fx,Fy) are of the form

Fx =

ρvxP + ρv2x −B2

x

ρvxvy −BxBy

ρvxvz −BxBz

(E + P )vx −Bx(v ·B)vxBz − vzBx

, Fy =

ρvyρvxvy −BxBy

P + ρv2y −B2y

ρvyvz −ByBz

(E + P )vy −By(v ·B)vyBz − vzBy

8 / 35

Page 9: Divergence-free discontinuous Galerkin method for compressible …math.tifrbng.res.in/~praveen/slides/valrose_9May2019.pdf · 2019. 6. 3. · Divergence-free discontinuous Galerkin

Approximation of magnetic field

If we want ∇ ·B = 0, it is natural to look for approximations in

H(div,Ω) = B ∈ L2(Ω) : div(B) ∈ L2(Ω)

To approximate functions in H(div,Ω) on a mesh Th with piecewisepolynomials, we need

B · n

continuous across element faces.

9 / 35

Page 10: Divergence-free discontinuous Galerkin method for compressible …math.tifrbng.res.in/~praveen/slides/valrose_9May2019.pdf · 2019. 6. 3. · Divergence-free discontinuous Galerkin

Approximation spaces: Degree k ≥ 0

Map cell K to reference cell K = [−12 ,+

12 ]× [−1

2 ,+12 ]

Pr(ξ) = span1, ξ, ξ2, . . . , ξr, Qr,s(ξ, η) = Pr(ξ)⊗ Ps(η)

Hydrodynamic variables in each cell

U(ξ, η) =k∑

i=0

k∑

j=0

Uijφi(ξ)φj(η) ∈ Qk,k

Normal component of B on faces

on vertical faces : bx(η) =k∑

j=0

ajφj(η) ∈ Pk(η)

on horizontal faces : by(ξ) =

k∑

j=0

bjφj(ξ) ∈ Pk(ξ)

φi(ξ) are orthogonal polynomials on [−12 ,+

12 ], with degree φi = i.

10 / 35

Page 11: Divergence-free discontinuous Galerkin method for compressible …math.tifrbng.res.in/~praveen/slides/valrose_9May2019.pdf · 2019. 6. 3. · Divergence-free discontinuous Galerkin

Approximation spaces: Degree k ≥ 0

For k ≥ 1,define certain cell moments

αij = αij(Bx) :=1

mij

∫ + 12

− 12

∫ + 12

− 12

Bx(ξ, η)φi(ξ)φj(η)dξdη, 0 ≤ i ≤ k−1, 0 ≤ j ≤ k

βij = βij(By) :=1

mij

∫ + 12

− 12

∫ + 12

− 12

By(ξ, η)φi(ξ)φj(η)dξdη, 0 ≤ i ≤ k, 0 ≤ j ≤ k−1

mij =

∫ + 12

− 12

∫ + 12

− 12

[φi(ξ)φj(η)]2dξdη = mimj , mi =

∫ + 12

− 12

[φi(ξ)]2dξ

α00, β00 are cell averages of Bx, By

Solution variables

U(ξ, η), bx(η), by(ξ), α, β

The set bx, by, α, β are the dofs for the Raviart-Thomas space.

11 / 35

Page 12: Divergence-free discontinuous Galerkin method for compressible …math.tifrbng.res.in/~praveen/slides/valrose_9May2019.pdf · 2019. 6. 3. · Divergence-free discontinuous Galerkin

RT reconstruction: b±x (η), b±y (ξ), α, β → B(ξ, η)

Given b±x (η) ∈ Pk and b±y (ξ) ∈ Pk,and set of cell moments

αij , 0 ≤ i ≤ k − 1, 0 ≤ j ≤ k

βij , 0 ≤ i ≤ k, 0 ≤ j ≤ k − 1

b+ x(η

)

b− x(η

)

b−y (ξ)

b+y (ξ)

α

β

0 1

32

Find Bx ∈ Qk+1,k and By ∈ Qk,k+1 such that

Bx(± 12, η) = b±x (η), η ∈ [− 1

2, 12], By(ξ,± 1

2) = b±y (ξ), ξ ∈ [− 1

2, 12]

1

mij

∫ + 12

− 12

∫ + 12

− 12

Bx(ξ, η)φi(ξ)φj(η)dξdη = αij , 0 ≤ i ≤ k − 1, 0 ≤ j ≤ k

1

mij

∫ + 12

− 12

∫ + 12

− 12

By(ξ, η)φi(ξ)φj(η)dξdη = βij , 0 ≤ i ≤ k, 0 ≤ j ≤ k − 1

(1) ∃ unique solution. (2) Data div-free =⇒ reconstructed B is div-free.

12 / 35

Page 13: Divergence-free discontinuous Galerkin method for compressible …math.tifrbng.res.in/~praveen/slides/valrose_9May2019.pdf · 2019. 6. 3. · Divergence-free discontinuous Galerkin

DG scheme for B on faces

On every vertical face of the mesh

∫ + 12

− 12

∂bx∂t

φidη −1

∆y

∫ + 12

− 12

Ezdφidη

dη +1

∆y[Ezφi] = 0, 0 ≤ i ≤ k

On every horizontal face of the mesh

∫ + 12

− 12

∂by∂t

φidξ +1

∆x

∫ + 12

− 12

Ezdφidξ

dξ − 1

∆x[Ezφi] = 0, 0 ≤ i ≤ k

Ez : on face, 1-D Riemann solver

Ez : at vertex, 2-D Riemann solver

13 / 35

Page 14: Divergence-free discontinuous Galerkin method for compressible …math.tifrbng.res.in/~praveen/slides/valrose_9May2019.pdf · 2019. 6. 3. · Divergence-free discontinuous Galerkin

DG scheme for B on cells

mijdαij

dt=

∫ + 12

− 12

∫ + 12

− 12

∂Bx

∂tφi(ξ)φj(η)dξdη

= − 1

∆y

∫ + 12

− 12

∫ + 12

− 12

∂Ez

∂ηφi(ξ)φj(η)dξdη

= − 1

∆y

∫ + 12

− 12

[Ez(ξ, 12)φi(ξ)φj(

12)− Ez(ξ,− 1

2)φi(ξ)φj(− 1

2)]dξ

+1

∆y

∫ + 12

− 12

∫ + 12

− 12

Ez(ξ, η)φi(ξ)φ′j(η)dξdη, 0 ≤ i ≤ k − 1, 0 ≤ j ≤ k

Not a Galerkin method, test functions (Qk−1,k) different from trialfunctions (Qk+1,k)

14 / 35

Page 15: Divergence-free discontinuous Galerkin method for compressible …math.tifrbng.res.in/~praveen/slides/valrose_9May2019.pdf · 2019. 6. 3. · Divergence-free discontinuous Galerkin

DG scheme for U on cells

For each test function Φ(ξ, η) = φi(ξ)φj(η) ∈ Qk,k

∫ + 12

− 12

∫ + 12

− 12

∂U c

∂tΦ(ξ, η)dξdη−

∫ + 12

− 12

∫ + 12

− 12

[1

∆xFx

∂Φ

∂ξ+

1

∆yFy∂Φ

∂η

]dξdη

+1

∆x

∫ + 12

− 12

F+x Φ( 1

2, η)dη − 1

∆x

∫ + 12

− 12

F−x Φ(− 12, η)dη

+1

∆y

∫ + 12

− 12

F+y Φ(ξ, 1

2)dξ − 1

∆y

∫ + 12

− 12

F−y Φ(ξ,− 12)dξ = 0

15 / 35

Page 16: Divergence-free discontinuous Galerkin method for compressible …math.tifrbng.res.in/~praveen/slides/valrose_9May2019.pdf · 2019. 6. 3. · Divergence-free discontinuous Galerkin

DG scheme for U on cells

b+ xb− x

b−y

b+y

U c

Bcx

Bcy

Ue

Bex

Bey

Un

Bnx

Bny

Uw

Bwx

Bwy

Us

Bsx

Bsy

Fx = Fx(U c, Bcx, B

cy), Fy = Fy(U c, Bc

x, Bcy)

F+x = Fx((U c, b+x , B

cy), (Ue, b+x , B

ey)), F−x = Fx((Uw, b−x , B

wy ), (U c, b−x , B

cy))

F+y = Fy((U c, Bc

x, b+y ), (Un, Bn

x , b+y )), F−y = Fy((Us, Bs

x, b−y ), (U c, Bc

x, b−y ))

16 / 35

Page 17: Divergence-free discontinuous Galerkin method for compressible …math.tifrbng.res.in/~praveen/slides/valrose_9May2019.pdf · 2019. 6. 3. · Divergence-free discontinuous Galerkin

Constraints on B

Definition (Strongly divergence-free)

We will say that a vector field B defined on a mesh is stronglydivergence-free if

1 ∇ ·B = 0 in each cell K ∈ Th2 B · n is continuous at each face F ∈ Th

Theorem

(1) The DG scheme satisfies

d

dt

K(∇ ·B)φdxdy = 0, ∀φ ∈ Qk,k

and since ∇ ·B ∈ Qk,k =⇒ ∇ ·B = constant wrt time.(2) If ∇ ·B = 0 everywhere at the initial time, then this is true at anyfuture time also.

17 / 35

Page 18: Divergence-free discontinuous Galerkin method for compressible …math.tifrbng.res.in/~praveen/slides/valrose_9May2019.pdf · 2019. 6. 3. · Divergence-free discontinuous Galerkin

Constraints on B

But: Applying a limiter in a post-processing step destroys div-freeproperty !!!

Definition (Weakly divergence-free)

We will say that a vector field B defined on a mesh is weaklydivergence-free if

1∫∂K B · nds = 0 for each cell K ∈ Th.

2 B · n is continuous at each face F ∈ Th

Theorem

The DG scheme satisfies

d

dt

∂KB · nds = 0

Strongly div-free =⇒ weakly div-free.

18 / 35

Page 19: Divergence-free discontinuous Galerkin method for compressible …math.tifrbng.res.in/~praveen/slides/valrose_9May2019.pdf · 2019. 6. 3. · Divergence-free discontinuous Galerkin

Constraints on B

∂KB · nds = (a+0 − a−0 )∆y + (b+0 − b−0 )∆x

where a±0 are face averages of Bx on right/left faces and b±0 are faceaverages of By on top/bottom faces respectively.

Corollary

If the limiting procedure preserves the mean value of B · n stored on thefaces, then the DG scheme with limiter yields weakly divergence-freesolutions.

19 / 35

Page 20: Divergence-free discontinuous Galerkin method for compressible …math.tifrbng.res.in/~praveen/slides/valrose_9May2019.pdf · 2019. 6. 3. · Divergence-free discontinuous Galerkin

Numerical fluxes

k + 1 point Gauss-Legendre quadrature on faces

Ez, Fx

Ez, Fy

Ez

(UL, bx, BLy ) (UR, bx, B

Ry )

(UD, BDx , by)

(UU , BUx , by)

(a) (b)(a) Face quadrature points and numerical fluxes. (b) 1-D Riemann

problems at a vertical and horizontal face of a cell

20 / 35

Page 21: Divergence-free discontinuous Galerkin method for compressible …math.tifrbng.res.in/~praveen/slides/valrose_9May2019.pdf · 2019. 6. 3. · Divergence-free discontinuous Galerkin

Numerical fluxes

To estimate Fx, Ez, solve 1-D Riemann problem at each face quadraturepoint

∂U∂t

+∂Fx

∂x= 0, U(x, 0) =

UL = U(UL, bx, B

Ly ) x < 0

UR = U(UR, bx, BRy ) x > 0

Fx =

(Fx)1(Fx)2(Fx)3(Fx)4(Fx)5(Fx)8

, Ez = −(Fx)7

21 / 35

Page 22: Divergence-free discontinuous Galerkin method for compressible …math.tifrbng.res.in/~praveen/slides/valrose_9May2019.pdf · 2019. 6. 3. · Divergence-free discontinuous Galerkin

HLL Riemann solver in 1-D

• Include only slowest and fastest waves: SL < SR

• Intermediate state from conservation law

U∗ =SRUR − SLUL − (FR

x −FLx )

SR − SL

• Flux obtained by satisfying conservation law over half Riemann fan

F∗x =SRFL

x − SLFRx + SLSR(UR − UL)

SR − SL

• Numerical flux is given by

Fx =

FLx SL > 0

FRx SR < 0

F∗x otherwise

• Electric field from the seventh component of the numerical flux

Ez(UL,UR) = −(Fx)7 =

ELz SL > 0

ERz SR < 0

SRELz −SLER

z −SLSR(BRy −BL

y )

SR−SLotherwise

22 / 35

Page 23: Divergence-free discontinuous Galerkin method for compressible …math.tifrbng.res.in/~praveen/slides/valrose_9May2019.pdf · 2019. 6. 3. · Divergence-free discontinuous Galerkin

2-D Riemann problem

Une = (Une, bnx, be

y)

Use = (Use, bsx, b

ey)

Unw = (Unw, bnx , bw

y )

Usw = (Usw, bsx, b

wy )

bnx

bsx

beybw

y x

y

Une

Use

Unw

Usw

U∗eU∗w

Us∗

Un∗

U∗∗ x

y

A B

CD Sn∆t

Ss∆t

Sn∆t

Ss∆t

Se∆t

Se∆t

Sw∆t

Sw∆t

23 / 35

Page 24: Divergence-free discontinuous Galerkin method for compressible …math.tifrbng.res.in/~praveen/slides/valrose_9May2019.pdf · 2019. 6. 3. · Divergence-free discontinuous Galerkin

2-D Riemann problem

Strongly interacting state

B∗∗x =

1

2(Se − Sw)(Sn − Ss)

[2SeSnB

nex − 2SnSwB

nwx + 2SsSwB

swx − 2SsSeB

sex

− Se(Enez − E

sez ) + Sw(E

nwz − E

swz )− (Se − Sw)(E

n∗z − E

s∗z )

]

B∗∗y =

1

2(Se − Sw)(Sn − Ss)

[2SeSnB

ney − 2SnSwB

nwy + 2SsSwB

swy − 2SsSeB

sey

+ Sn(Enez − E

nwz )− Ss(E

sez − E

swz ) + (Sn − Ss)(E

∗ez − E

∗wz )

]

Jump conditions b/w ∗∗ and n∗, s∗, ∗e, ∗w

E∗∗z = En∗z − Sn(Bn∗

x −B∗∗x )

E∗∗z = Es∗z − Ss(Bs∗

x −B∗∗x )

E∗∗z = E∗ez + Se(B∗ey −B∗∗y )

E∗∗z = E∗wz + Sw(B∗wy −B∗∗y )

24 / 35

Page 25: Divergence-free discontinuous Galerkin method for compressible …math.tifrbng.res.in/~praveen/slides/valrose_9May2019.pdf · 2019. 6. 3. · Divergence-free discontinuous Galerkin

2-D Riemann problem

Over-determined, least-squares solution (Vides et al.)

E∗∗z =1

4(En∗

z + Es∗z + E∗ez + E∗wz )−1

4Sn(Bn∗

x −B∗∗x )− 1

4Ss(B

s∗x −B∗∗x )

+1

4Se(B

∗ey −B∗∗y ) +

1

4Sw(B∗wy −B∗∗y )

Consistency with 1-D solver

Unw = Usw = UL

Une = Use = UR

then

E∗∗z = Ez(UL,UR) = 1-D HLL

Une = (Une, bnx, be

y)

Use = (Use, bsx, b

ey)

Unw = (Unw, bnx , bw

y )

Usw = (Usw, bsx, b

wy )

bnx

bsx

beybw

y x

y

25 / 35

Page 26: Divergence-free discontinuous Galerkin method for compressible …math.tifrbng.res.in/~praveen/slides/valrose_9May2019.pdf · 2019. 6. 3. · Divergence-free discontinuous Galerkin

HLLC Riemann solver

1-D solver

• Slowest and fastest waves SL, SR, and contact wave SM = u∗• Two intermediate states: U∗L, U∗R• No unique way to satisfy all jump conditions: Gurski (2004), Li (2005)

• Common value of magnetic field B∗L = B∗R

• Common electric field E∗Lz = E∗Rz , same as in HLL

2-D solver

• Electric field estimate E∗∗z same as HLL

• Consistent with 1-D solver

26 / 35

Page 27: Divergence-free discontinuous Galerkin method for compressible …math.tifrbng.res.in/~praveen/slides/valrose_9May2019.pdf · 2019. 6. 3. · Divergence-free discontinuous Galerkin

Limiting procedure

Given Un+1, bn+1x , bn+1

y , αn+1, βn+1

1 Perform RT reconstruction =⇒ B(ξ, η). Apply TVD limiter incharacteristic variables to U(ξ, η),B(ξ, η).

2 On each face, use limited left/right B(ξ, η) to limit bx, by

bx(η)← minmod(bx(η), BL

x (12 , η), BRx (−1

2 , η))

Do not change mean value on faces.

3 Restore divergence-free property using divergence-free-reconstruction

1 Strongly divergence-free: need to reset cell averages α00, β002 Weakly divergence-free: α00, β00 are not changed

∇ ·B = d1φ1(ξ) + d2φ1(η)

27 / 35

Page 28: Divergence-free discontinuous Galerkin method for compressible …math.tifrbng.res.in/~praveen/slides/valrose_9May2019.pdf · 2019. 6. 3. · Divergence-free discontinuous Galerkin

Divergence-free reconstruction

For each cell, find B(ξ, η) such that

Bx(±12 , η) = b±x (η), ∀η ∈ [−1

2 ,+12 ]

By(ξ,±12) = b±y (ξ), ∀ξ ∈ [−1

2 ,+12 ]

∇ ·B(ξ, η) = 0, ∀(ξ, η) ∈ [−12 ,

12 ]× [−1

2 ,12 ]

We look for B in (Brezzi & Fortin, Section III.3.2)

BDM(k) = P2k + r∇× (xk+1y) + s∇× (xyk+1)

• For k = 0, 1, 2, we can solve the above problem• For k ≥ 3, we need additional information

I k = 3: b10 − a01 = ω1 = ∇×B(0, 0)I k = 4: ω1 and b20− a11 = ω2 ≈ ∂

∂x∇×B, b11− a02 = ω3 ≈ ∂∂y∇×B

I ω1, etc. are known from α, β

• For more details, see https://arxiv.org/abs/1809.03816

28 / 35

Page 29: Divergence-free discontinuous Galerkin method for compressible …math.tifrbng.res.in/~praveen/slides/valrose_9May2019.pdf · 2019. 6. 3. · Divergence-free discontinuous Galerkin

Algorithm 1: Constraint preserving scheme for ideal compressible MHD

Allocate memory for all variables;Set initial condition for U , bx, by, α, β;Loop over cells and reconstruct Bx, By;Set time counter t = 0;while t < T do

Copy current solution into old solution;Compute time step ∆t;for each RK stage do

Loop over vertices and compute vertex flux;Loop over faces and compute all face integrals;Loop over cells and compute all cell integrals;Update solution to next stage;Loop over cells and do RT reconstruction (bx, by, α, β)→ B;Loop over cells and apply limiter on U ,B;Loop over faces and limit solution bx, by;Loop over faces and perform div-free reconstruction;

endt = t+ ∆t;

end

29 / 35

Page 30: Divergence-free discontinuous Galerkin method for compressible …math.tifrbng.res.in/~praveen/slides/valrose_9May2019.pdf · 2019. 6. 3. · Divergence-free discontinuous Galerkin

Numerical Results

30 / 35

Page 31: Divergence-free discontinuous Galerkin method for compressible …math.tifrbng.res.in/~praveen/slides/valrose_9May2019.pdf · 2019. 6. 3. · Divergence-free discontinuous Galerkin

Smooth vortex

Bx E

1023 × 101 4 × 101 6 × 101 2 × 102

Grid size

10 9

10 8

10 7

10 6

10 5

10 4

10 3

L1 erro

r nor

m in

Bx

k=1k=2k=3

1023 × 101 4 × 101 6 × 101 2 × 102

Grid size

10 10

10 9

10 8

10 7

10 6

10 5

10 4

10 3

L1 erro

r nor

m in

E

k=1k=2k=3

31 / 35

Page 32: Divergence-free discontinuous Galerkin method for compressible …math.tifrbng.res.in/~praveen/slides/valrose_9May2019.pdf · 2019. 6. 3. · Divergence-free discontinuous Galerkin

Orszag-Tang test

Density, t = 0.5, 512× 512 cells

Weakly div-free Strongly div-free

32 / 35

Page 33: Divergence-free discontinuous Galerkin method for compressible …math.tifrbng.res.in/~praveen/slides/valrose_9May2019.pdf · 2019. 6. 3. · Divergence-free discontinuous Galerkin

Rotated shock tube: 128 cells, HLL

2

0

% error in B||

2

4

B

0.5

0.0

0.5

1e 15 Bz

1

2

3

0

50

100

150p

2

0

% error in v||

1.0 0.5 0.0 0.5 1.0

2

4

v

1.0 0.5 0.0 0.5 1.05.0

2.5

0.0

2.51e 16 vz

0.04

0.02

0.00

% error in B||

2

4

B

0.5

0.0

0.5

1.01e 15 Bz

1

2

3

0

50

100

150p

0.04

0.02

0.00

% error in v||

1.0 0.5 0.0 0.5 1.0

2

4

v

1.0 0.5 0.0 0.5 1.0

0.5

0.0

0.51e 15 vz

weakly div-free strongly div-free

33 / 35

Page 34: Divergence-free discontinuous Galerkin method for compressible …math.tifrbng.res.in/~praveen/slides/valrose_9May2019.pdf · 2019. 6. 3. · Divergence-free discontinuous Galerkin

Blast wave: 200× 200 cells

ρ = 1, v = ( 0, 0, 0), B =1√4π

(100, 0, 0), p =

1000 r < 0.1

0.1 r > 0.1

B2x +B2

y v2x + v2y34 / 35

Page 35: Divergence-free discontinuous Galerkin method for compressible …math.tifrbng.res.in/~praveen/slides/valrose_9May2019.pdf · 2019. 6. 3. · Divergence-free discontinuous Galerkin

Summary

• Div-free DG scheme using RT basis for B• Multi-D Riemann solvers essential

I consistency with 1-d solver is not automatic; ok for HLL andHLLC (3-wave); what about HLLD ?

• Div-free limiting needs to ensure strong div-free conditionI Reconstruction of B using div and curl

• Extension to 3-D seems easy, also AMR• Extension to unstructured grids (use Piola transform)• Limiters are still major obstacle for high order

I WENO-type ideasI Machine learning ideas (Ray & Hesthaven)

• No proof of positivity limiter for div-free schemeI Not a fully discontinuous solution

• Extension to resistive case: Bt +∇×E = −∇× (ηJ), J = ∇×B

∂Bx

∂t+∂

∂y(Ez+ηJz) = 0,

∂By

∂t− ∂

∂x(Ez−ηJz) = 0, Jz =

∂By

∂x−∂Bx

∂y

35 / 35

Page 36: Divergence-free discontinuous Galerkin method for compressible …math.tifrbng.res.in/~praveen/slides/valrose_9May2019.pdf · 2019. 6. 3. · Divergence-free discontinuous Galerkin

Numerical results: 2-D Maxwell equation

@Dx

@t @Hz

@y= 0 (1)

@Dy

@t+

@Hz

@x= 0 (2)

@Bz

@t+

@Ey

@x @Ex

@y= 0 (3)

where

(Ex, Ey) =1

"(x, y)(Dx, Dy), Hz =

1

µ(x, y)Bz

Divergence-free constraint: r · D = 0

Flux reconstruction on faces for Dx, Dy, and DG scheme on cells for Bz

Riemann solvers to estimate numerical fluxes at faces/vertices

29 / 38

Page 37: Divergence-free discontinuous Galerkin method for compressible …math.tifrbng.res.in/~praveen/slides/valrose_9May2019.pdf · 2019. 6. 3. · Divergence-free discontinuous Galerkin

Plane wave propagation in vacuum

Nx Ny kDh DkL1 Ord kDh Dk

L2 Ord kBhz BzkL1 Ord kBh

z BzkL2 Ord

16 16 3.0557e-07 — 3.5095e-07 — 1.9458e-04 — 2.5101e-04 —32 32 1.1040e-08 4.79 1.3428e-08 4.71 1.1275e-05 4.11 1.4590e-05 4.1064 64 5.0469e-10 4.45 6.1548e-10 4.45 6.7924e-07 4.05 8.9228e-07 4.03

128 128 2.6834e-11 4.23 3.3945e-11 4.18 4.1802e-08 4.02 5.5449e-08 4.01

Table: Plane wave test, degree=3: convergence of error

Nx Ny kDh DkL1 Ord kDh Dk

L2 Ord kBhz BzkL1 Ord kBh

z BzkL2 Ord

8 8 2.4982e-07 — 2.8435e-07 — 2.5514e-04 — 3.2612e-04 —16 16 6.3357e-09 5.30 7.2655e-09 5.29 6.4340e-06 5.31 8.5532e-06 5.2532 32 1.7113e-10 5.21 2.0807e-10 5.13 1.9021e-07 5.08 2.5521e-07 5.0764 64 5.1213e-12 5.06 6.4133e-12 5.02 5.9026e-09 5.01 7.9601e-09 5.00

128 128 1.5949e-13 5.00 2.0054e-13 5.00 1.8412e-10 5.00 2.4890e-10 5.00

Table: Plane wave test, degree=4: convergence of error

Error = O(hk+1)

30 / 38

Page 38: Divergence-free discontinuous Galerkin method for compressible …math.tifrbng.res.in/~praveen/slides/valrose_9May2019.pdf · 2019. 6. 3. · Divergence-free discontinuous Galerkin

Refraction of Gaussian pulse by discr = 5 4 tanh((

px2 + y2 0.75)/0.08) 2 [1, 9], radius = 0.75 m

Initial condition, = 1.5m

31 / 38

Page 39: Divergence-free discontinuous Galerkin method for compressible …math.tifrbng.res.in/~praveen/slides/valrose_9May2019.pdf · 2019. 6. 3. · Divergence-free discontinuous Galerkin

Refraction of gaussian pulse by discr = 5 4 tanh((

px2 + y2 0.75)/0.08) 2 [1, 9]

t = 23.3 ns

200 200 cells. Top row: k = 3, bottom row: k = 4

32 / 38

Page 40: Divergence-free discontinuous Galerkin method for compressible …math.tifrbng.res.in/~praveen/slides/valrose_9May2019.pdf · 2019. 6. 3. · Divergence-free discontinuous Galerkin

Refraction of gaussian pulse by disc: energy conservation

100 100 200 200

400 400 800 800

33 / 38

Page 41: Divergence-free discontinuous Galerkin method for compressible …math.tifrbng.res.in/~praveen/slides/valrose_9May2019.pdf · 2019. 6. 3. · Divergence-free discontinuous Galerkin

Refraction of plane wave: "0 " 2.25"0r = 1.625 + 0.625 tanh(x/108), = 0.5µm

Initial condition

34 / 38

Page 42: Divergence-free discontinuous Galerkin method for compressible …math.tifrbng.res.in/~praveen/slides/valrose_9May2019.pdf · 2019. 6. 3. · Divergence-free discontinuous Galerkin

Refraction of plane wave: "0 " 2.25"0r = 1.625 + 0.625 tanh(x/108), = 0.5µm

650 475 cells. t = 4 1014s. Top row: k = 3, bottom row: k = 4

35 / 38

Page 43: Divergence-free discontinuous Galerkin method for compressible …math.tifrbng.res.in/~praveen/slides/valrose_9May2019.pdf · 2019. 6. 3. · Divergence-free discontinuous Galerkin

Total internal reflection of plane wave: 4"0 " "0r = 2.5 1.5 tanh(x/4 108), = 0.3µm

Initial condition

36 / 38

Page 44: Divergence-free discontinuous Galerkin method for compressible …math.tifrbng.res.in/~praveen/slides/valrose_9May2019.pdf · 2019. 6. 3. · Divergence-free discontinuous Galerkin

Total internal reflection of plane wave: 4"0 " "0

350 425 cells. t = 5 1014s. Top row: k = 3, bottom row: k = 4

37 / 38