DirectMethod Beams

Embed Size (px)

Citation preview

  • 7/30/2019 DirectMethod Beams

    1/49

    CCOORRNNEELLLLU N I V E R S I T Y 1MAE 4700 FE Analysis for Mechanical & Aerospace DesignN. Zabaras (9/13/2011)

    Finite Element Analysis forMechanical and Aerospace Design

    Prof. Nicholas ZabarasMaterials Process Design and Control Laboratory

    Sibley School of Mechanical and Aerospace Engineering

    101 Rhodes Hall

    Cornell University

    Ithaca, NY 14853-3801

    [email protected]

    http://mpdc.mae.cornell.edu/

    mailto:[email protected]://mpdc.mae.cornell.edu/http://mpdc.mae.cornell.edu/mailto:[email protected]
  • 7/30/2019 DirectMethod Beams

    2/49

    CCOORRNNEELLLLU N I V E R S I T Y 2MAE 4700 FE Analysis for Mechanical & Aerospace DesignN. Zabaras (9/13/2011)

    A refresher on beam bending

    Beams are different from truss structuresin that they are designed to resisttransverse loads.

    The tranverse loads are transported tothe supports of the beam viaextensional action.

    There are several beam models

    depending on the assumptionsemployed. We herein consider theBernoulli-Euler beam theoryusuallyintroduced in introductory staticscourses.

    We assume thatnormals to the middle line of

    the beam remain straight and normal.

    This will allow us to approximate thedisplacements at a given point.,x yu u

  • 7/30/2019 DirectMethod Beams

    3/49

    CCOORRNNEELLLLU N I V E R S I T Y 3MAE 4700 FE Analysis for Mechanical & Aerospace DesignN. Zabaras (9/13/2011)

    Bernoulli-Euler beam theory

    The x-component of the displacementthrough the depth of the beam is given as:

    xu

    sin ( ) ( : 0 0)x x

    u y x Note y u= < >

    where (x) is the rotation of the middle line(positive counterclockwise) at x and y isthe distance from the middle line.

    We assume that

    For (x) small, sin =,

    ( )ydu x

    dx =

    y

    x

    duu y

    dx=

    Thus we conclude:

    2

    2

    yxx

    d uduy y

    dx dx = = =

    y

    curvature

    y( , ) ( ).y yu x y u x=

  • 7/30/2019 DirectMethod Beams

    4/49

    CCOORRNNEELLLLU N I V E R S I T Y 4MAE 4700 FE Analysis for Mechanical & Aerospace DesignN. Zabaras (9/13/2011)

    Displacements im Bernoulli-Euler Beam model

    In summary, the following displacements are considered:

    ( )( , )( , ) ( )

    ( )

    yx

    y yy

    du xu x y yy

    dxu x y u x

    u x

    = =

    ( )ydu xdx

    =,y

    y u

    ( , ) ( , 0)y y

    u x y u x=

    ,x

    x u

    '( , )x yP x u y u+ +

  • 7/30/2019 DirectMethod Beams

    5/49

    CCOORRNNEELLLLU N I V E R S I T Y 5MAE 4700 FE Analysis for Mechanical & Aerospace DesignN. Zabaras (9/13/2011)

    Stress and moment calculation

    From Hookes law, we can compute theaxial stress as:

    2

    2

    y

    x

    d uy

    dx

    =

    2

    2

    y

    x x

    d uE Ey

    dx = =

    With integration, we can now computethe bending moment as follows:

    2 2 2

    2

    2 2 2( ) y y y

    x

    A A A

    d u d u d uM x ydA Ey ydA E y dA EIdx dx dx

    = = = = Here I denotes the moment of inertia of

    the cross section:

    2

    A

    I y dA=

    : 0,

    0

    xNote For

    M

    >

    2

    2.y

    d uM EI M

    dx =

    2

    2 .y

    d u

    M EI Mdx =

    0M >

    .V

    2

    2

    2

    2

    ,

    ,

    ,

    .

    yy u

    y

    y

    M

    y

    V

    u u on

    duon

    dx

    d uMn EI n M on

    dxd ud

    Vn EI n V ondx dx

    =

    =

    =

    =

  • 7/30/2019 DirectMethod Beams

    11/49

    CCOORRNNEELLLLU N I V E R S I T Y 11MAE 4700 FE Analysis for Mechanical & Aerospace DesignN. Zabaras (9/13/2011)

    Boundary conditions for beams

    Free end with an applied load:

    Simple support:

    Clamped support:

    ,

    .

    M

    V

    Mn M on

    Vn V on

    =

    =

    0 ,

    0 .

    y u

    M

    u on

    M on

    =

    =

    0 ,

    0 .

    y uu on

    on

    =

    =

  • 7/30/2019 DirectMethod Beams

    12/49

    CCOORRNNEELLLLU N I V E R S I T Y 12MAE 4700 FE Analysis for Mechanical & Aerospace DesignN. Zabaras (9/13/2011)

    Potential energy of a beam element: Pe=Ue-We

    Using these, let us compute the potential energy of a beamelement of length Le (to be defined shortly in more detail).

    Strain energy:

    External work:

    2 22 2( )

    2 2 2e ee e

    e

    e e ee x

    L A

    I

    E E y EU dV dAdx y dA dx

    = = =

    2

    2 2

    2( )

    2 2

    y

    e e

    ee e e ee

    d uE I E IU dx dx

    dx

    = =

    Notes:

    For this strain energy to make sense as anintegral, we need to introduce an approximation(interpolation) for such that issquare integrable (C1 continuity)

    From now-on, we simply denote with thex-dimensional domain of a beam element e oflength Le (to be defined later in more detail)

    e

    yu 2 2/e

    yd u dx

    2

    2( ) ,

    yd u

    M x EI

    dx

    =2

    2,

    yd udM d

    V EI

    dx dx dx

    = =

    22

    2 2

    yd udV dq EI

    dx dx dx

    = =

    ( ) ( ) ( ) | ( ) |e eMV

    e

    e e e

    y y y

    e

    W q x u x dx Vu x M x

    = + +

    e

  • 7/30/2019 DirectMethod Beams

    13/49

    CCOORRNNEELLLLU N I V E R S I T Y 13MAE 4700 FE Analysis for Mechanical & Aerospace DesignN. Zabaras (9/13/2011)

    C1 continuity

    Displacement that is C1

    continuous: Both andare continuous.

    yu

    yu

    yu ydu

    dx=

    yu

    yuy

    du

    dx =

    Displacement that is C0continuous: iscontinuous but

    is discontinuous.y

    u

    http://../FiniteElementClass/CarlosFelippa/Introduction%20to%20Finite%20Element%20Methods%20(ASEN%205007)%20Course%20Material.mhthttp://../FiniteElementClass/CarlosFelippa/Introduction%20to%20Finite%20Element%20Methods%20(ASEN%205007)%20Course%20Material.mhthttp://../FiniteElementClass/CarlosFelippa/Introduction%20to%20Finite%20Element%20Methods%20(ASEN%205007)%20Course%20Material.mhthttp://../FiniteElementClass/CarlosFelippa/Introduction%20to%20Finite%20Element%20Methods%20(ASEN%205007)%20Course%20Material.mhthttp://../FiniteElementClass/CarlosFelippa/Introduction%20to%20Finite%20Element%20Methods%20(ASEN%205007)%20Course%20Material.mhthttp://../FiniteElementClass/CarlosFelippa/Introduction%20to%20Finite%20Element%20Methods%20(ASEN%205007)%20Course%20Material.mhthttp://../FiniteElementClass/CarlosFelippa/Introduction%20to%20Finite%20Element%20Methods%20(ASEN%205007)%20Course%20Material.mhthttp://../FiniteElementClass/CarlosFelippa/Introduction%20to%20Finite%20Element%20Methods%20(ASEN%205007)%20Course%20Material.mhthttp://../FiniteElementClass/CarlosFelippa/Introduction%20to%20Finite%20Element%20Methods%20(ASEN%205007)%20Course%20Material.mht
  • 7/30/2019 DirectMethod Beams

    14/49

    CCOORRNNEELLLLU N I V E R S I T Y 14MAE 4700 FE Analysis for Mechanical & Aerospace DesignN. Zabaras (9/13/2011)

    Two-noded beam element

    We need interpolation forboth displacements and

    slopes at the ends of thebeam (C1 continuity)

    Our element degrees offreedomare taken as the

    following:

    1

    1

    2

    2

    { }

    y

    e

    y

    u

    d u

    =

    1

    1

    2

    2

    { }

    y

    e

    y

    F

    M

    f F

    M

    =

    The corresponding

    conjugate nodal forcesare:

    Note that:( ),

    1, 2

    I IM M X

    I

    =

    el

    2yu1y

    u

  • 7/30/2019 DirectMethod Beams

    15/49

    CCOORRNNEELLLLU N I V E R S I T Y 15MAE 4700 FE Analysis for Mechanical & Aerospace DesignN. Zabaras (9/13/2011)

    Two-noded beam element: Sign conventions

    Please note the convention forpositive nodal

    displacements and slopesat both ends (posit ive y-axis- upwards andcounterclockwise,respectively)

    As a result, the notation for the conjugate nodal forces is asfollows:

    1 2,y yF F are positive when they point in the positive y-axis

    1 2,y yM M are positive when they are anticlockwise

    1V2

    V2

    M1

    M

    1x x= 2x x=2

    1 2yu1y

    u

  • 7/30/2019 DirectMethod Beams

    16/49

    CCOORRNNEELLLLU N I V E R S I T Y 16MAE 4700 FE Analysis for Mechanical & Aerospace DesignN. Zabaras (9/13/2011)

    Interpolation functions for 2-noded beam element

    We interpolate thedeflection along the beam

    using the followingHermite interpolationfunctions for beamelements.

    21

    21

    22

    22

    1(1 ) (2 )

    4

    (1 ) (1 )

    81

    (1 ) (2 )4

    (1 ) ( 1)8

    u

    e

    u

    e

    N

    LN

    N

    LN

    = +

    = +

    = +

    = +

    12( )

    1, 1 1

    e e

    e

    x x

    L

    =

    1

    1

    1 1 2 2

    2

    2

    ( ) [ ]

    y

    e

    y u u

    y

    u

    u x N N N N u

    =

    ( ) [ ] { }

    e e e

    yrow vector column vector

    u x N d =

    1e

    x x= 2e

    x x=

    1(1 ) , 1 12

    eeL

    x x = + +

  • 7/30/2019 DirectMethod Beams

    17/49

    CCOORRNNEELLLLU N I V E R S I T Y 17MAE 4700 FE Analysis for Mechanical & Aerospace DesignN. Zabaras (9/13/2011)

    How the interpolation functions are computed?

    We are looking for anapproximation of the form:

    We compute byinterpolation using thevalues of deflection andslope at the ends of theelement:

    1x x= 2x x=

    0

    12 3 2 3

    0 1 2 3

    2

    3

    ( ) 1y

    aa

    u x a a a aa

    a

    = + + + =

    1

    2

    1 1 1 0 1 2 3

    1 1 1 1 2 3

    1 2 2 0 1 2 3

    1 2 2 1 2 3

    1: | ,

    1: | | , 2 32 2 2

    1: | ,

    1: | | , 2 32 2 2

    y y y

    e e e

    y yx x

    y y y

    e e ey y

    x x

    u u u a a a a

    du du L L L a a ad dx

    u u u a a a a

    du du L L La a a

    d dx

    =

    = =

    =

    = =

    = = = +

    = = = = +

    = = = + + + = = = = + +

    1= 1= +

    12( ) 1, 1 1e

    e

    x x

    L

    =

    0 1

    1 1

    2 2

    3 2

    1 / 2 / 8 1 / 2 / 83 / 4 / 8 3 / 4 / 8

    0 / 8 0 / 8

    1 / 4 / 8 1 / 4 / 8

    e e

    y

    e e

    e ey

    e e

    a uL La L L

    a uL L

    a L L

    =

    in :

    2

    ey y y

    du du dudx LCha rule

    d dx d dx

    = =

    1(1 ) , 1 12

    eeL

    x x = + +

    2

    1 2 3

    ( )2 3

    ydu xa a a

    d

    = + +

  • 7/30/2019 DirectMethod Beams

    18/49

    CCOORRNNEELLLLU N I V E R S I T Y 18MAE 4700 FE Analysis for Mechanical & Aerospace DesignN. Zabaras (9/13/2011)

    How the interpolation functions are computed?

    With substitution, weobtain:

    This can finally besimplified as:

    1x x= 2x x=

    0

    12 3 2 3

    0 1 2 3

    2

    3

    ( ) 1y

    a

    a

    u x a a a a a

    a

    = + + + =

    1= 1= +

    12( ) 1, 1 1e

    e

    x x

    L

    =

    0 1

    1 1

    2 2

    3 2

    1 / 2 / 8 1 / 2 / 8

    3 / 4 / 8 3 / 4 / 8

    0 / 8 0 / 8

    1 / 4 / 8 1 / 4 / 8

    e ey

    e e

    e ey

    e e

    a uL L

    a L L

    a uL L

    a L L

    =

    1

    12 3

    2

    2

    1/ 2 / 8 1/ 2 / 8

    3 / 4 / 8 3 / 4 / 8( ) 1

    0 / 8 0 / 8

    1/ 4 / 8 1/ 4 / 8

    e ey

    e e

    y e ey

    e e

    uL L

    L Lu x

    uL L

    L L

    =

    1 21 2

    1

    13 2 3 3 2 3

    2

    2

    1 3 1 1 1 1 1 1 3 1 1 1 1 1( )

    2 4 4 2 4 4 4 4 2 4 4 2 4 4 4 4u u

    y

    e e

    y

    y

    N NN N

    u

    L Lu x

    u

    = + + + + +

    1(1 ) , 1 12

    eeL

    x x = + +

  • 7/30/2019 DirectMethod Beams

    19/49

    CCOORRNNEELLLLU N I V E R S I T Y 19MAE 4700 FE Analysis for Mechanical & Aerospace DesignN. Zabaras (9/13/2011)

    Interpolation functions for 2-noded beam element

    Use change rule to findderivatives with respect to

    x, e.g.

    12( ) 1, 1 1e

    e

    x x

    L

    =

    1 1u udN dN d

    dx d dx

    =

    21 3 (1 )4

    udN

    d

    =

    2eddx L

    =

    21

    2

    1

    22

    22

    1(1 ) (2 )

    4

    (1 ) (1 )8

    1(1 ) (2 )

    4

    (1 ) ( 1)8

    u

    e

    u

    e

    N

    L

    N

    N

    LN

    = +

    = +

    = +

    = +

    1x x= 2x x=

    1(1 ) , 1 12

    eeL

    x x = + +

  • 7/30/2019 DirectMethod Beams

    20/49

    CCOORRNNEELLLLU N I V E R S I T Y 20MAE 4700 FE Analysis for Mechanical & Aerospace DesignN. Zabaras (9/13/2011)

    Continuity of displacements

    Note that at =-1 (left node), . Similarly at

    the right node.

    1

    11 1 2 2

    2

    2

    ( ) [ ]

    y

    ey u u

    y

    u

    u x N N N N u

    =

    1 1 2 2( 1) 1, ( 1) ( 1) ( 1) 0u uN N N N = = = = = = = =

    1( )e

    y yu left node u=

    1 =

  • 7/30/2019 DirectMethod Beams

    21/49

    CCOORRNNEELLLLU N I V E R S I T Y 21MAE 4700 FE Analysis for Mechanical & Aerospace DesignN. Zabaras (9/13/2011)

    Continuity of slopes

    Note that at =-1 (left node), . Similarly at

    the right node.

    1

    11 1 2 2

    2

    2

    ( )( ) [ ]

    y

    e

    y u u

    y

    u

    du x dN dN dN dN x

    udx dx dx dx dx

    =

    1 1 2 2( 1) 1, ( 1) ( 1) ( 1) 0u udN dN dN dN

    dx dx dx dx

    = = = = = = = =

    1( )e

    left node =

  • 7/30/2019 DirectMethod Beams

    22/49

    CCOORRNNEELLLLU N I V E R S I T Y 22MAE 4700 FE Analysis for Mechanical & Aerospace DesignN. Zabaras (9/13/2011)

    Curvature calculation

    12( ) 1, 1 1e

    e

    x x

    L

    =

    1 1 2 2( ) [ ]{ }ye eu u

    du dN dN dN dN x d

    dx dx dx dx dx

    = =

    2 2 2 2 21 1 2 2

    2 2 2 2 2[ ]{ }

    ey eu ud u d N d N d N d N d

    dx dx dx dx dx

    = =

    2

    2 2 2 2 21 1 2 2

    2 2 2 2 2

    4[ ]{ }

    e

    y eu u

    e

    d u d N d N d N d N d

    dx d d d d L

    =

    2

    2

    1 6 6[ 3 1 3 1]{ }

    e

    e

    y e

    e e e

    B

    d u

    ddx L L L

    = +

    2

    2[ ]{ }

    e

    y e ed u

    B ddx

    =

    2

    2

    e

    yd u

    dx

    =

    We will need to alsocompute the curvature

    to compute the strainenergy. Starting from:

    21

    21

    22

    22

    1(1 ) (2 )4

    (1 ) (1 )8

    1(1 ) (2 )

    4

    (1 ) ( 1)8

    u

    e

    u

    e

    N

    LN

    N

    LN

    = +

    = +

    = +

    = +

    1(1 ) , 1 12

    eeLx x = + +

  • 7/30/2019 DirectMethod Beams

    23/49

    CCOORRNNEELLLLU N I V E R S I T Y 23MAE 4700 FE Analysis for Mechanical & Aerospace DesignN. Zabaras (9/13/2011)

    Strain energy calculation

    Recall that:

    Thus with our Hermite interpolation, we can write:

    Recall that (from global to local degrees offreedom), so the assembly of the strain energy term will

    give:

    2

    2

    2( )

    2e

    ee eye

    d uE IU dx

    dx

    =

    1{ } [ ] [ ] { }

    2 e

    e e T e T e e e e e

    Beam element stiffness

    U d B E I B dx d

    =

    { } [ ]{ }e ed L d=

    1

    1

    1 { } ([ ] [ ] [ ] [ ]){ }2 2

    eT e T e T e e e e

    e

    Jacobian

    dx

    LU d L B E I B d L d

    =

    2

    2[ ]{ }

    e

    y e ed u

    B ddx

    =

  • 7/30/2019 DirectMethod Beams

    24/49

    CCOORRNNEELLLLU N I V E R S I T Y 24MAE 4700 FE Analysis for Mechanical & Aerospace DesignN. Zabaras (9/13/2011)

    Element stiffness

    For constant on the element, the

    stiffness is given as (use directintegration):

    e eE I

    [ ]

    e

    K

    22 2

    3 3

    2 2

    2 2

    1 2 2

    2 21

    2 2

    12 6 12 636 6 (3 1) 36 6 (3 1)

    6 4 66 (3 1) (3 1) 6 (3 1) (9 1)

    36 6 (3 1) 36 6 (3 1)2

    6 (3 1) (9 1) 6 (3 1) (3 1)

    e ee e

    e ee e e ee e e ee

    e ee e

    e e e

    L LL L

    L LL L L LE I E IK d

    L LL L

    L L L L

    +

    = =

    + + + +

    2

    2 2

    2

    12 6 12 6

    6 2 6 4

    e e

    e e

    e e e e

    L L

    L L

    L L L L

    1

    1 2

    Te

    e e e e e LK B E I B d

    =

  • 7/30/2019 DirectMethod Beams

    25/49

    CCOORRNNEELLLLU N I V E R S I T Y 25MAE 4700 FE Analysis for Mechanical & Aerospace DesignN. Zabaras (9/13/2011)

    The external

    work is: Upon assembly all terms with V and M cancel at each nodeunless external force and/or moments are applied there.

    We can thus write:

    The boundary is non-zero only if the element e has at oneof its ends a prescribed shear force .

    Similarly, the boundary is non-zero only if the element e

    has at one of its ends a prescribed moment . Note that the sign notation for and is consistent with the

    sign convention for , respectively.

    External work calculation

    ( ) ( ) ( ) | ( ) |e eMVe

    e e e

    y y yeW q x u x dx Vu x M x

    = + + e

    V

    e

    M

    1 1 2 1 1 1 2 2( ) ( ) ( ) ( ) ( ) ( )e

    e e e e e e e e e e e e e

    y y y y y

    e

    W q x u x dx V u x V u x M x M u x

    = + + + +

    V M

    V

    M

    1 2 1 2, ,e e e e

    V V and M M

  • 7/30/2019 DirectMethod Beams

    26/49

    CCOORRNNEELLLLU N I V E R S I T Y 26MAE 4700 FE Analysis for Mechanical & Aerospace DesignN. Zabaras (9/13/2011)

    Recall that:

    For example, if we only account for prescribedmoments and shear force at both ends, the

    above equation is written explicitly as:

    External work calculation

    ( ) ( ) ( ) | ( ) |e eMV

    e

    e e e

    y y y

    e

    W q x u x dx Vu x M x

    = + +

    2 12 12 1 2 1( ) ( )e

    e

    y

    e

    W q x u x dx V u V u M M

    = + + + +

    1V2V

    2M1M

    1x x= 2x x=2

    1 2yu1y

    u

    E l k l l i

  • 7/30/2019 DirectMethod Beams

    27/49

    CCOORRNNEELLLLU N I V E R S I T Y 27MAE 4700 FE Analysis for Mechanical & Aerospace DesignN. Zabaras (9/13/2011)

    We will keep the general notation here as it will alsoallow us to account for shear force and moments

    applied even inside the element!

    We will consider these cases in our followingderivations but please note that if you apply amoment or shear force at a point, you will be betterserved to make that point a finite element node!!

    External work calculation

    ( ) ( ) ( ) | ( ) |e eMV

    e

    e e e

    y y y

    e

    W q x u x dx Vu x M x

    = + +

    1V2V

    2M1M

    1x x= 2x x=2

    1 2yu1y

    u

    M

    V

    E t l k l l ti

  • 7/30/2019 DirectMethod Beams

    28/49

    CCOORRNNEELLLLU N I V E R S I T Y 28MAE 4700 FE Analysis for Mechanical & Aerospace Design

    N. Zabaras (9/13/2011)

    Recall that:

    We assume known distributed load, applied concentratedload and applied concentrated moments. Applying theHermite interpolation:

    Note that in this expression, only the elements e that haveboundaries (i.e. one of their end points) on the boundaries

    contribute to the last two terms.

    External work calculation

    ( ) ( ) ( ) | ( ) |e eMV

    e

    e e e

    y y y

    e

    W q x u x dx Vu x M x

    = + +

    [ ]

    { } ( )[ ] [ ] | |e eMVe

    e Te e T e T e T d N

    W d q x N dx N V M dx

    = + +

    ,V M

    E t l k l l ti

  • 7/30/2019 DirectMethod Beams

    29/49

    CCOORRNNEELLLLU N I V E R S I T Y 29MAE 4700 FE Analysis for Mechanical & Aerospace Design

    N. Zabaras (9/13/2011)

    Also note that with our notation, and are row vectorsand is a column vector. Assembling (transform fromlocal to global degrees of freedom) then gives:

    External work calculation

    [ ]eN [ ]e

    B

    { }ed

    [ ]{ } [ ] ( )[ ] [ ] | |

    [ ]

    { } [ ] ( )[ ] [ ] | |

    e eV M

    e

    e eV M

    e

    e T

    T e T e T e T

    e

    e TT e T e T e T

    e columnvector column

    vector

    d NW d L q x N dx N V M dx

    d N

    d L q x N dx N V M dx

    = + +

    + +

    [ ]{ } ( )[ ] [ ] | |e e

    MVe

    e Te e T e T e T d N

    W d q x N dx N V M dx

    = + +

    Mi i i ti f t t l t ti l

  • 7/30/2019 DirectMethod Beams

    30/49

    CCOORRNNEELLLLU N I V E R S I T Y 30MAE 4700 FE Analysis for Mechanical & Aerospace Design

    N. Zabaras (9/13/2011)

    This minimization problem results in:

    Minimization of total potential energy

    { }{ }

    1min min { } ([ ] [ ] [ ] [ ]){ }

    2[ ]

    { } [ ] ( )[ ] [ ] | |

    e

    e

    e eV M

    e

    T e T e T e e e e e

    dde

    e TT e T e T e T

    e

    d L B E I B dx L d

    d Nd L q x N dx N V M

    dx

    =

    + +

    [ ] { }

    [ ]([ ] [ ] [ ] [ ]){ } [ ] ( )[ ] [ ] | |e e

    V Me e

    e Te T e T e e e e e e T e T e T

    e e

    Global stiffness K Global force vector F

    d NL B E I B dx L d L q x N dx N V M

    dx

    = + +

    Fi l fi it l t ti

  • 7/30/2019 DirectMethod Beams

    31/49

    CCOORRNNEELLLLU N I V E R S I T Y 31MAE 4700 FE Analysis for Mechanical & Aerospace Design

    N. Zabaras (9/13/2011)

    Note that the above minimization process is with respect tothe nodal displacements (i.e. excluding the DOF withprescribed displacement or rotation).

    As was done in earlier lectures, by splitting the stiffnessmatrix, we finally obtain:

    Final finite element equations

    [ ]([ ] [ ] [ ] [ ]){ } [ ] ( )[ ] [ ] | |e e

    V Me e

    e Te T e T e e e e e e T e T e T

    e e

    d NL B E I B dx L d L q x N dx N V M

    dx

    = + +

    { }Fd

    [ ]{ } [ ] { }T EF F F F EF K d f f K d = +

    Distributedloads

    BoundaryLoads (forces,moments)

    U if di t ib t d l d

  • 7/30/2019 DirectMethod Beams

    32/49

    CCOORRNNEELLLLU N I V E R S I T Y 32MAE 4700 FE Analysis for Mechanical & Aerospace Design

    N. Zabaras (9/13/2011)

    For uniform over the element load q the first term gives:

    Uniform distributed load

    1

    612

    6

    e

    e

    e

    e

    L

    qLf

    L

    =

    ( )[ ]e

    e e Tf q x N dx

    =

    1

    11

    21int

    2 tan

    ( )[ ] ( )

    2e

    u

    ee e T

    performuegration

    forcons t q

    N

    NLf q x N dx q x d

    NN

    = =

    2

    eqL

    2

    eqL2

    12

    eqL2

    12

    eqL

    1 2

    C t t d l d i id th l t

  • 7/30/2019 DirectMethod Beams

    33/49

    CCOORRNNEELLLLU N I V E R S I T Y 33MAE 4700 FE Analysis for Mechanical & Aerospace Design

    N. Zabaras (9/13/2011)

    Assume a contentrated load at . We write this load asa distributed load using a delta function (nice trick!):

    Substitution into the first term of the formula for gives:

    Concentrated load inside the element

    ( )[ ]e

    e e Tf q x N dx

    =

    e

    L

    1F1x x=

    1x x=

    1 1( ) ( )q x F x x=

    1 1( )[ ]e

    e e Tf F x x N dx

    =

    ef

    1 1[ ( )]e e Tf F N x =

    If the applied load is at a

    node e.g. , then:2e

    x1

    00

    1

    0

    ef F

    =

    E l bl

  • 7/30/2019 DirectMethod Beams

    34/49

    CCOORRNNEELLLLU N I V E R S I T Y 34MAE 4700 FE Analysis for Mechanical & Aerospace Design

    N. Zabaras (9/13/2011)

    Example problem

    The beam ABC is clamped at the left side

    and simply supported at the right side.Dimensions are in m, forces in N andloading q in N/m . Also, EI = 104 Nm2. Atx

    =12m, and . Find thedeflection, shear forces and moments.20V Nt

    = 20 .M N m

    =

    20M = 20V =

    Fi it l t di ti ti

  • 7/30/2019 DirectMethod Beams

    35/49

    CCOORRNNEELLLLU N I V E R S I T Y 35MAE 4700 FE Analysis for Mechanical & Aerospace Design

    N. Zabaras (9/13/2011)

    Finite element discretization

    We consider 2 beam elements as follows:

    1 2

    1,2 3,4 5,6Degrees

    of freedom

    20M = 20V =

    Stiffness of element 1

  • 7/30/2019 DirectMethod Beams

    36/49

    CCOORRNNEELLLLU N I V E R S I T Y 36MAE 4700 FE Analysis for Mechanical & Aerospace Design

    N. Zabaras (9/13/2011)

    Stiffness of element 1

    2 2

    3

    3

    2 2

    12 6 12 6 0.23 0.94 0.23 0.94

    6 4 6 2 0.94 5.00 0.94 2.5010

    12 6 12 6 0.23 0.94 0.23 0.94

    0.94 2.50 0.94 5.006 2 6 4

    e

    L L

    L L L LEIK

    L LL

    L L L L

    = =

    4

    10 , 8EI L= =

    1 2 3 41

    2

    3

    4

    Stiffness of element 2

  • 7/30/2019 DirectMethod Beams

    37/49

    CCOORRNNEELLLLU N I V E R S I T Y 37MAE 4700 FE Analysis for Mechanical & Aerospace Design

    N. Zabaras (9/13/2011)

    Stiffness of element 2

    2 2

    3

    3

    2 2

    12 6 12 6 1.88 3.75 1.88 3.75

    6 4 6 2 3.75 10.00 3.75 5.0010

    12 6 12 6 1.88 3.75 1.88 3.75

    3.75 5.00 3.75 10.006 2 6 4

    e

    L L

    L L L LEIK

    L LL

    L L L L

    = =

    3 4 5 63

    4

    5

    6

    410 , 4EI L= =

    Global stiffness

  • 7/30/2019 DirectMethod Beams

    38/49

    CCOORRNNEELLLLU N I V E R S I T Y 38MAE 4700 FE Analysis for Mechanical & Aerospace Design

    N. Zabaras (9/13/2011)

    Global stiffness

    3

    0.23 0.94 0.23 0.94 0 0

    0.94 5.00 0.94 2.50 0 0

    0.23 0.94 2.11 2.81 1.88 3.75

    10 0.94 2.50 2.81 15.00 3.75 5.00

    0 0 1.88 3.75 1.88 3.75

    0 0 3.75 5.00 3.75 10.00

    K

    =

    1 2 3 4 5 61

    2

    3

    4

    5

    6

    Boundary moments and forces

  • 7/30/2019 DirectMethod Beams

    39/49

    CCOORRNNEELLLLU N I V E R S I T Y 39MAE 4700 FE Analysis for Mechanical & Aerospace Design

    N. Zabaras (9/13/2011)

    Boundary moments and forces

    Element 1 has no boundary with applied V or M.

    Element 2 has and at its right end.

    Assembly of this vector gives:

    [ ][ ] | |e e

    V M

    e Te e T d N

    f N V M

    dx

    = +

    20V Nt= 20 .M N m=

    410 , 4EI L= =

    2

    0 0 0

    0 0 0

    1 0 20

    0 1 20

    f V MN

    N

    = + =

    3

    4

    5

    6

    0

    0

    0

    0

    20

    20

    f

    N

    N

    =

    1

    2

    3

    4

    5

    6

    Distributed load and concentrated load inside the element

  • 7/30/2019 DirectMethod Beams

    40/49

    CCOORRNNEELLLLU N I V E R S I T Y 40MAE 4700 FE Analysis for Mechanical & Aerospace Design

    N. Zabaras (9/13/2011)

    Distributed load and concentrated load inside the element

    Element 1 has distributed load q=-1 andconcentrated load P1=-10Nt.

    11 0

    1 1

    [ ( )] |

    1 1 1928

    1 15.3( 1)86 6( 0) ( 10)1 1 1 92 2

    28 15.316 6

    T

    T

    A

    N P

    L

    qL

    f N P

    L

    =

    = + = = + =

    1 2

    1

    2

    3

    4

    410 , 8EI L= =

    ( ) 1q x = 20M = 20V =

    21

    21

    22

    22

    1(1 ) (2 )

    4

    (1 ) (1 )8

    1(1 ) (2 )

    4

    (1 ) ( 1)8

    u

    e

    u

    e

    N

    LN

    N

    LN

    = +

    = +

    = +

    = + 0=

    Distributed load

  • 7/30/2019 DirectMethod Beams

    41/49

    CCOORRNNEELLLLU N I V E R S I T Y 41MAE 4700 FE Analysis for Mechanical & Aerospace Design

    N. Zabaras (9/13/2011)

    Distributed load

    Element 2 has concentrated load P2 at an end point

    2 22

    5

    0( 1)

    00

    T

    f N P

    = = =

    1 2

    3

    4

    56

    410 , 8EI L= = 2 2

    2 1[ ( )] |T

    f N P ==

    20M = 20V =

    1=

    Assembled load

  • 7/30/2019 DirectMethod Beams

    42/49

    CCOORRNNEELLLLU N I V E R S I T Y 42MAE 4700 FE Analysis for Mechanical & Aerospace Design

    N. Zabaras (9/13/2011)

    Assembled load

    Assembling all load contributions gives:

    1 2

    1 2

    0 9 0 9

    0 15.3 0 15.3

    0 9 5 4

    0 15.3 0 15.3

    20 0 0 20

    20 0 0 20

    Boundary From element From elementconditions

    f

    N

    N

    = + + =

    1

    2

    3

    4

    5

    6

    20M = 20V =

    Solution step

  • 7/30/2019 DirectMethod Beams

    43/49

    CCOORRNNEELLLLU N I V E R S I T Y 43MAE 4700 FE Analysis for Mechanical & Aerospace Design

    N. Zabaras (9/13/2011)

    Solution step

    1

    1

    23

    2

    3

    3

    0 90.23 0.94 0.23 0.94 0 000.94 5.00 0.94 2.50 0 0

    0.23 0.94 2.11 2.81 1.88 3.7510

    0.94 2.50 2.81 15.00 3.75 5.00

    0 0 1.88 3.75 1.88 3.75

    0 0 3.75 5.00 3.75 10.00

    y

    y

    y

    y

    y

    y

    u

    u

    u

    = =

    =

    1

    115.3

    4

    15.3

    20

    20

    uR

    R

    + +

    1 2

    1,2 3,4 5,6

    Note that we applied the essential boundary conditions and included thecorresponding reaction force and moment at this location

    20M = 20V =

    Solution step

  • 7/30/2019 DirectMethod Beams

    44/49

    CCOORRNNEELLLLU N I V E R S I T Y 44MAE 4700 FE Analysis for Mechanical & Aerospace Design

    N. Zabaras (9/13/2011)

    Solution step

    2

    23

    3

    3

    2.11 2.81 1.88 3.75 4

    2.81 15.00 3.75 5.00 15.310

    1.88 3.75 1.88 3.75 20

    3.75 5.00 3.75 10.00 20

    y

    y

    y

    y

    u

    u

    =

    1 2

    1,2 3,4 5,6

    2

    2

    3

    3

    0.55

    0.11

    1.03

    0.12

    y

    y

    y

    y

    u

    u

    =

    2

    2 13

    3 1

    3

    90.23 0.94 0 010

    0.94 2.50 0 0 15.3

    y

    y u

    y

    y

    uR

    u R

    +

    = +

    1

    1

    33

    252 .

    uR N

    R N m

    =

    20M = 20V =

    Displacement field

  • 7/30/2019 DirectMethod Beams

    45/49

    CCOORRNNEELLLLU N I V E R S I T Y 45MAE 4700 FE Analysis for Mechanical & Aerospace Design

    N. Zabaras (9/13/2011)

    Displacement field

    For element 1:

    For element 2:

    1 1 1 1 1 1 11 1 2 2 2 2 2 2

    2

    2

    00

    ( ) [ ]y u u u y y

    y

    y

    u x N N N N N u N u

    = = +

    2

    22 2 2 2 2 2 2 2 3

    1 1 2 2 1 2 1 2 2 3 2 33

    3

    ( ) [ ]

    y

    y

    y u u u y y u y yy

    y

    u

    u x N N N N N u N N u N u

    = = + + +

    Moments and shear forces

  • 7/30/2019 DirectMethod Beams

    46/49

    CCOORRNNEELLLLU N I V E R S I T Y 46MAE 4700 FE Analysis for Mechanical & Aerospace Design

    N. Zabaras (9/13/2011)

    Moments and shear forces

    1

    2 12 1 2 1 2 1 2 11 11 2 2

    2 2 2 2 2[ ]{ } 236.67 23.76y u u

    d Nd u d N d N d N M EI EI d x

    dx dx dx dx dx

    = = = +

    1

    3 13 1 3 1 3 1 3 11 11 2 2

    2 3 3 3 3[ ]{ } 23.76y u u

    d Nd u d N d N d N V EI EI d

    dx dx dx dx dx= = =

    1

    2 22 2 2 2 2 2 2 22 21 2 2

    2 2 2 2 2[ ]{ } 222 20.25y u u

    d Nd u d N d N d N M EI EI d x

    dx dx dx dx dx= = = +

    1

    3 23 2 3 2 3 2 3 22 21 2 2

    2 3 3 3 3[ ]{ } 20.25y u u

    d Nd u d N d N d N V EI EI d

    dx dx dx dx dx

    = = =

    Place nodes on location of concentrated load

  • 7/30/2019 DirectMethod Beams

    47/49

    CCOORRNNEELLLLU N I V E R S I T Y 47MAE 4700 FE Analysis for Mechanical & Aerospace Design

    N. Zabaras (9/13/2011)

    Place nodes on location of concentrated load

    To compute an accurate shear force, youneed to split element 1 in more elements.For sure place a node at the application of

    load P1.

    0 2 4 6 8 10 12-1.5

    -1

    -0.5

    0

    x

    displacement

    Displacements: FE versus analytical beam solutions

    FE

    Exact S olution

    0 2 4 6 8 10 12-300

    -250

    -200

    -150

    -100

    -50

    0

    50

    100

    x

    moment

    Moments: FE versus analytical beam solutions

    FE

    Exact Solution

    0 2 4 6 8 10 12-35

    -30

    -25

    -20

    -15

    -10

    x

    shear

    Shear: FE versus analytical beam solutions

    FE

    Exact Solution

    Results with refined grids: 3 elements

  • 7/30/2019 DirectMethod Beams

    48/49

    CCOORRNNEELLLLU N I V E R S I T Y 48MAE 4700 FE Analysis for Mechanical & Aerospace Design

    N. Zabaras (9/13/2011)

    Results with refined grids: 3 elements

    0 2 4 6 8 10 12

    -1.5

    -1

    -0.5

    0

    x

    displacement

    Displacements: FE versus analytical beam solutions

    FE

    Exact Solution

    0 2 4 6 8 10 12-300

    -250

    -200

    -150

    -100

    -50

    0

    50

    100

    x

    moment

    Moments: FE versus analytical beam solutions

    FE

    Exact Solution

    0 2 4 6 8 10 12-35

    -30

    -25

    -20

    -15

    -10

    x

    shear

    Shear: FE versus analytical beam solutions

    FE

    Exact Solution

    Results with refined grids: 101 elements

  • 7/30/2019 DirectMethod Beams

    49/49

    MAE 4700 FE Analysis for Mechanical & Aerospace Design

    Results with refined grids: 101 elements

    0 2 4 6 8 10 12-1.5

    -1

    -0.5

    0

    x

    displacement

    Displacements: FE versus analytical beam solutions

    FE

    Exact Solution

    0 2 4 6 8 10 12-300

    -250

    -200

    -150

    -100

    -50

    0

    50

    100

    x

    moment

    Moments: FE versus analytical beam solutions

    FE

    Exact Solution

    0 2 4 6 8 10 12-35

    -30

    -25

    -20

    -15

    -10

    x

    shear

    Shear: FE versus analytical beam solutions

    FE

    Exact Solution