Differential form of Maxwell's equations

Embed Size (px)

Citation preview

  • 8/13/2019 Differential form of Maxwell's equations

    1/10

  • 8/13/2019 Differential form of Maxwell's equations

    2/10

    Courtesy of Krieger Publishing. Used with permission.

    Courtesy of Krieger Publishing. Used with permission.

    6.641, Electromagnetic Fields, Forces, and Motion Lecture 2Prof. Markus Zahn Page 2 of 10

  • 8/13/2019 Differential form of Maxwell's equations

    3/10

    = Ax (x,y,z dydz) Ax (x - )x,y,z dydz1 1'

    + Ay (x,y+ ) Ay )y,z dxdz (x,y,z dxdz2 2'

    + Az (x,y,z+ ) Az )z dxdy (x,y,z dxdy3 3'

    ( ) ( -x,y,z)A x,y,z A x x x x y z + x

    ( ) A x,y,z( )A x,y,z + z z z + z

    Ax Ay Az V x

    +y

    +z

    A dSi A A Adiv A = lim

    S

    =x

    +y

    +z

    V 0 V x y z

    Del Operator: = i

    x+ i

    y+ i

    zx y z

    Ax Ay Azdiv A= iA = + +x y z

    2. Gauss Integral Theorem

    A x,y + y,z A x,y,z y

    y ( ) y ( )

    Courtesy of Krieger Publishing. Used with permission.

    6.641, Electromagnetic Fields, Forces, and Motion Lecture 2Prof. Markus Zahn Page 3 of 10

  • 8/13/2019 Differential form of Maxwell's equations

    4/10

    N

    A dS = i ii A dSS i=1 dS

    N i

    N

    = lim (iA)ViN V 0 i=1

    n

    = iA dVV

    V iA dV = S A ida

    3. Gauss Law in Differential Form0 E ida= i(0E dV =) dVS V V

    i 0E = ( ) H ida= i H dV = 0 0 ( 0 )

    S V

    0H = 0i( )II. Stokes Theorem

    1. Curl OperationA ds = Curl A( ) i i da

    C S

    A ds iCurl A = lim C( )

    n n 0 dada n

    6.641, Electromagnetic Fields, Forces, and Motion Lecture 2Prof. Markus Zahn Page 4 of 10

  • 8/13/2019 Differential form of Maxwell's equations

    5/10

    A ida = A idsS C

    Courtesy of Krieger Publishing. Used with permission.

    6.641, Electromagnetic Fields, Forces, and Motion Lecture 2Prof. Markus Zahn Page 5 of 10

  • 8/13/2019 Differential form of Maxwell's equations

    6/10

    x+x y+ y x A ids = A (x, y dx +) Ay x + ) A x, y + )( x, y dy + x ( y dxxC x x+ x y

    1 2 3

    y

    + x, y dy Ay ( )y+ y

    4

    A x, y( ) - A x, y + ) A x + x, y) - A x, y( ) x x ( y y ( y = x y + y x

    Ay Ax =daz - x y A ds

    xCurl A =( )z=

    da

    i A

    x

    y-

    A

    yz

    By symmetry

    ( ) = A dsi A

    -A

    Curl A = x zy da z xy

    Curl A = A dsi

    =Az -

    Ay( )x dax y z

    A Ay A A Ay A Curl A = i

    x z - + i y x - z + i z - x y z z x x y

    i x i y i z

    = det x y z Ax Ay Az

    = A

    6.641, Electromagnetic Fields, Forces, and Motion Lecture 2Prof. Markus Zahn Page 6 of 10

  • 8/13/2019 Differential form of Maxwell's equations

    7/10

    2. Stokes Integral Theorem

    Courtesy of Krieger Publishing. Used with permission.

    N

    lim A dsi = A dsiiN i=1 dCi C

    N = (A)idai

    i=1

    = (A)idaS

    Courtesy of Krieger Publishing. Used with permission.

    6.641, Electromagnetic Fields, Forces, and Motion Lecture 2Prof. Markus Zahn Page 7 of 10

  • 8/13/2019 Differential form of Maxwell's equations

    8/10

    3. Faradays Law in Differential Formi = (E)ida = - d H idaE ds dt 0C S S

    HE = -0

    t

    4. Ampres Law in Differential Form

    H ds = H ida = J da+ d 0 E idai i dtC S S SH = J+ 0 Et

    III. Applications to Maxwells Equations

    1. Vector Identitylim A ids =0 = A ida= i A dV ( ) ( )C 0

    C S V

    i(A)= 02. Charge Conservation

    iH = J + 0 E t

    0 = iJ + 0 E t

    0 = iJ +

    t

    3. Magnetic Field H iE=-0 t

    0 = -t

    0 i(0H)= 0i H

    6.641, Electromagnetic Fields, Forces, and Motion Lecture 2Prof. Markus Zahn Page 8 of 10

  • 8/13/2019 Differential form of Maxwell's equations

    9/10

    4. Vector Identity

    b

    E dl = a i ( ) ( ) ba

    if a=b

    i = ( ) (a)= 0E dl a C

    E = idl = 0C

    f d f d = f 0( ) i a= i l 0 ( )=S C

    6.641, Electromagnetic Fields, Forces, and Motion Lecture 2Prof. Markus Zahn Page 9 of 10

  • 8/13/2019 Differential form of Maxwell's equations

    10/10

    IV. Summary of Maxwells Equations in Free Space

    Integral Form Differential Form

    Faradays Law

    d H E dli = 0 H da E = 0idt tC S

    Amperes Law

    H dl J da+ 0 i 0i = i d E da H =J + Edt tC S S

    Gauss Law E da ( 0 )i = dV i E = 0S V

    0i 0 i(0H)= 0H da =S

    Conservation of charge

    d C

    J da+ dt V

    = 0 iJ +t

    = 01. i dV

    2. S

    J + 0

    E

    t

    ida = 0 i

    J + 0

    E

    t

    = 0

    EQS Limit MQS Limit

    H E 0, E = E = 0 t iE = i = = (Poissons Eq.) H =J

    0( ) 2

    ( ) (x ',y ',z ') dx'dy'dz' x,y,z =x',y',z' 40

    (x x ')2

    +(y y ')2

    +(z z ')2

    i( H)= 0 H = A 0 02 A = 0 J, iA =0

    0 J x ',y ', z' dx dy dzA x,y,z( )= ( ) ' ' '

    x',y',z' 4 (x x ')2

    +(y y ')2

    +(z z ')2

    12

    12

    6.641, Electromagnetic Fields, Forces, and Motion Lecture 2Prof. Markus Zahn Page 10 of 10