21
Viability of Dyeing of Natural and Viability of Dyeing of Natural and Synthetic Fibers Synthetic Fibers with with Nanopigments in Supercritical CO Nanopigments in Supercritical CO 2 2 Bàrbara Micó, Verónica Marchante, Francisco Martínez-Verdú, Eduardo Gilabert Ciencia y Tecnología del Color Seminario 2009

Diapositiva 1 - RedIRIS

Embed Size (px)

Citation preview

Page 1: Diapositiva 1 - RedIRIS

Viability of Dyeing of Natural and Viability of Dyeing of Natural and Synthetic FibersSynthetic Fibers with Nanopigments in with Nanopigments in

Supercritical COSupercritical CO22

Bàrbara Micó, Verónica Marchante,Francisco Martínez-Verdú, Eduardo Gilabert

Ciencia y Tecnología del ColorSeminario 2009

Page 2: Diapositiva 1 - RedIRIS

ÍNDEX Introduction

Supercritical CO2

Dyeing in supercritical CO2

Nanopigments and nanoclays Objectives State of the art

Colorant selection Fibres Process variables

Challenges Solutions / Future perspectives Advantages of using Nanopigments References / Acknowledgements

Page 3: Diapositiva 1 - RedIRIS

INTRODUCTION Supercritical CO2 : Solvent Properties

Low cost Non-Toxic Density: liquid Viscosity: Gas Recycling up to 90% Inert Non-explosive Low critical point

Pressure: 73.858 ± 0.005 bar Temperature: 31.05 ± 0.05 ºC

Page 4: Diapositiva 1 - RedIRIS

ADVANTAGESNo waste water

(problem in textile industry)

No require additivesNo final dryingRecycling

Solvent Colorants

Environmental friendly

DYEING IN SUPERCRITICAL CARBON DIOXIDE DRAWBACKS

Investment Solve colorantsTime of process

Page 5: Diapositiva 1 - RedIRIS

NANOPIGMETS NANONATERIALS: since 90’s

Hybrid materials consisting of organic dyes and layered silicate nanoparticles

Nanoclay: particle size < 20nm Ionic-exchange reaction: Colorant + Nanoclay

(H+)Nanoclays: Smectite group

Montmollonite: laminar Sepiolite: acicular

Page 6: Diapositiva 1 - RedIRIS

Scheme of nanopigments’ synthesis at laboratory Nanoclay

SievingH2O deionized

Dispersion

Stag

e 1

+

Colorant solution

Ionic Exchange

Washing and Filtering

Drying

Stag

e 2

APLICATIONS:- Coloration of Plastics- Printing Inks- Functional materials

Page 7: Diapositiva 1 - RedIRIS

Schematic representation of clay sheet, dye molecule (methylene blue) and blue Nanopigment.

Capa de arcilla

Azul de metileno

Capa de arcilla

Page 8: Diapositiva 1 - RedIRIS

OBJECTIVES: PROJECT AITEX-AINIA-UA1.

STA

TE O

F TH

E A

RT

2. SELECTION/MATERIAL DEVELOPMENT

3. DISSOLUTION OF MATERIALS IN SC CO2

4. POLYMER IMPREGNATION IN SC-CO2

6. REENGINIEERING

5. CHARACTERIZETREATED MATERIAL

WITH SC-CO2

7. VIABILITY / ECONOMIC

8. R

ESU

LTS

AN

D D

OFU

SIO

N

2.1. POLIMERS 2.2. COLORANTS 2.3.AGENTS ANTIBACTERIAL

Page 9: Diapositiva 1 - RedIRIS

Colorants that can be solved in scCO2

Textile dyes classification:DirectsReactiveAcids/BasicsSulphurVatMordantDispersePigments

STATE OF THE ART

NOT DISSOLVED IN SC- CO2

DISSOLVED IN SC-CO2

Page 10: Diapositiva 1 - RedIRIS

Azoic [ N N ]The most important disperse dyesCheaper and easy manufacture From non polar fibers

DISPERSE DYESCOLORANT SELECTION

Anthraquinone It’s more soluble [1]More expensive

MORE SOLUBILITY

Page 11: Diapositiva 1 - RedIRIS

REACTIVE DISPERSE DYES [2]

(mono-di-)chlorotriazine Dyeing of natural fibers Protein or synthetic fibers

COLORANT: SELECTION

(mono-di-)-fluorotriazine Dyeing cotton Using different co-solvents Methanol improves the

solubility REACTIVE GROUPS CHANGE THE COLORANT’S SOLUBILITY

N N

N ClR

Colorante

+ Fibra-OH N N

NR

Colorante

O Fibra

Fibre

Colorant

Fibre

Colorant

Page 12: Diapositiva 1 - RedIRIS

Vinylsulphone : Improve fixations [3] Are suitable for dyeing textiles containing polyester,

nylon, silk or wool. Fixations between 70 – 90%

REACTIVE DYESCOLORANT SELECTION

Solubility : [4]

-Decrease: OH, NH2,COOR’-Increase: HX NO2

[X=F,Cl,Br,..]

Page 13: Diapositiva 1 - RedIRIS

Dyeing stepsTransport of dye to the fibres: SOLUBILITY

Works: different cosolventsAcetonitrileMethanolWaterAcetone

Reaction of the dye with the textile: AFFINITYDIFFUSSION of dye into the fibres: D coefficient.

PROCESS VARIABLES

IMPROVE THE RESULTS REACTIVE

GROUPS

PARTICLE SIZE

Page 14: Diapositiva 1 - RedIRIS

EQUIPMENTS

Gas cylinder

Carbon dioxide pump

Pump head cooler

Cosolvent reservoir

Cosolvent pump

Stop valves

Pressure gauge Back pressure

regulator

Dyeing vessel

StirrerHeating jacket

Dyeing beam

Page 15: Diapositiva 1 - RedIRIS

Planta FSC500

EQUIPMENTS: AINIA PILOT PLANT

Planta PFS20

Planta SFF-58_60

Page 16: Diapositiva 1 - RedIRIS

PET the most studied Changes in the structure of polymers:

Plastics: >TgSize stability

Natural fibres [5]

Pre-treatments: Hydrophobic and nonpolar Polyurethane DMDHEU Solvents: Alcohol and water

FIBRES

Page 17: Diapositiva 1 - RedIRIS

CHALLENGES We only can use non polar colorants in scCO2: These kind of colorant haven’t affinity of natural

fibres. There are a lot of variables in the process: Solubility

can change with: Colorants (Reactive group, Particle size…) Pressure Temperature Substrates: Natural or synthetic fibers

The time of process is too long: 4h

Page 18: Diapositiva 1 - RedIRIS

SOLUTIONS / FUTURE PERSPECTIVES Pre-treated fibres:

PET: with UV, N,N-dimethylacrylamideCO: DMDHEU, PUR, acetone…

Changes in structure of colorants [6] Novel reactive disperse dyes has been synthesized.

Control the solubility and dye process.Equations to predict the solubility.

NANOPIGMENTS

Page 19: Diapositiva 1 - RedIRIS

ADVANTAGES OF NANOPIGMENTS Nanopigments are a viable and environmental-

friendly alternative to traditional pigments because of their easy synthesis and conventional processing.

Increase the color gamut: We can use a lot of conventional organic dyes.

Increase the resistance of colors: UV, O2, Temperature

Improve substrate properties: stability, strength, permeability…

Page 20: Diapositiva 1 - RedIRIS

REFERENCESREFERENCES[1] S. N. Joung et all. “Solubility of Disperse Anthraquinone and Azo Dyes in Supercritical Carbon Dioxide at 313.15 to 393.15 K and from 10 to 25 MPa” J. Chem. Eng. 43, 9-12. 1998[2] M.V. Fernandez et all “A significant approach to dye cotton in supercritical carbon dioxide with fluorotriazine reactive dyes” J. of Supercritical Fluids 40 477–484. 2007[3] M. van der Kraan et all. “Dyeing of natural and synthetic textiles in supercritical carbon dioxide with disperse reactive dyes” J. of Supercritical Fluids 40 470–476. 2007[4] Gerardo A. Montero et all. “Supercritical Fluid Technology in Textile Processing: An Overview” Ind. Eng. Chem. Res., 39, 4806-4812. 2000[5] P. L. Beltrame, et all.“Dyeing of Cotton in Supercritical Carbon Dioxide”. Dyes and Pigments, 39, 335-340. 1998 [6] Andreas Schmidt, Elke Bach and Eckhard Schollmeyer. “Supercritical fluid dyeing of cotton modified with 2,4,6-trichloro-1,3,5-triazine”. Color. Technol., 119. 2003

Page 21: Diapositiva 1 - RedIRIS

This work is supported by Ministry of Science and Innovation (MICINN) with the project “Aplicación de la tecnología de fluidos supercríticos en la impregnación de sustratos poliméricos” ref.: CIT-20000-2009-2.

AcknowledgementsAcknowledgements