136
1/270 DC-DC Converters: Topologies, Modeling, and Control 台灣新竹交通大學電機控制工程研究所電力電子實驗室~鄒應嶼 教授 電力電子系統與晶片實驗室 Power Electronic Systems & Chips Lab. 交通大學 電機控制工程研究所 Power Electronic Systems & Chips Lab., NCTU, Taiwan 2/270 Basic Structure of a Switching Power Supply PWM OSC COMP REF 60 Hz line input PFC converter and filter PWM Controller High frequency inverter 20-200 KHz DC output output rectifier and filter Load Source 120 Hz Feedback Sensing and Isolator PFC Controller Input EMI filter Output EMI filter

DC-DC Converters: Topologies, Modeling, and Controlpemclab.cn.nctu.edu.tw/W3news/實驗室課程網頁... · 2018. 9. 11. · Full-Bridge Converter S L CR S n:1 Vg n:n S S1 S2 n:1

  • Upload
    others

  • View
    67

  • Download
    1

Embed Size (px)

Citation preview

  • 1/270

    DC-DC Converters: Topologies, Modeling, and Control

    台灣新竹‧交通大學‧電機控制工程研究所‧電力電子實驗室~鄒應嶼 教授

    電力電子系統與晶片實驗室Power Electronic Systems & Chips Lab.交通大學 • 電機控制工程研究所

    Power Electronic Systems & Chips Lab., NCTU, Taiwan

    2/270

    Basic Structure of a Switching Power Supply

    PWM

    OSC

    COMP

    REF

    60 Hz

    lineinput PFC converter

    and filter

    PWM Controller

    Highfrequencyinverter

    20-200 KHz DC

    output

    output rectifierand filter

    LoadSource

    120 Hz

    Feedback Sensing and

    IsolatorPFC

    Controller

    Input EMI filter

    Output EMI filter

  • 3/270

    Why Topologies is Important in SPS Design?

    Power ratings (voltage and current) are primary concerns in determination of SPS topologies Converters are classified as nonisolated and isolated converters DC-DC converters are basic of other converters Resonant and soft-switching converters are derivatives of their corresponding PWM converters

    AC/DC Battery Charger DC/DCDC/DC

    DC

    AC

    85…

    265V

    PFC Controller PWM Controller

    DC/DCController

    SMPS AC/DC

    BatteryCharger

    DC/DCController

    IC

    DC/DC Converter

    Power Conversion, Control, and Management

    4/270

    ac inputsupply

    dc output

    voltage

    Transformers in SPS+

    v1(t)

    i1(t)+

    v2(t)

    i2(t)n1:n2

    +

    i3(t)

    v3(t)

    n3

    Isolation Turns Ratio Provide Wide Range Output Multiple Outputs Transformer

    Input rectificationand filtering

    duty cyclecontrol

    controlcircuitry

    HighFrequency

    switch

    PowerTransformer

    Output rectificationand filtering

    Vref

    mosfet orbipolar

    TPWM

    OSC

    Signal Coupling

  • 5/270

    Objectives of Transformer

    Isolation of input and output ground connections, to meet safety requirements

    Extend the voltage conversion range Reduction of transformer size by incorporating high frequency

    isolation transformer inside converter Minimization of current and voltage stresses when a large step-up or

    step-down conversion ratio is needed — use transformer turns ratio Obtain multiple output voltages via multiple transformer secondary

    windings and multiple converter secondary circuits Transformer isolation is required for all circuits operating at a dc

    input voltage of 60 V DC or more.

    6/270

    Transformers for Asymmetrical and Symmetrical Converters

    Asymmetrical Converter Symmetrical Converter

    2Bs

    B

    H

    Bssymmetricalconverters

    asymmetricalconverters

    symmetricalconverters

    forwardconverter

    flybackconverter

    AvailableFlux swing

    A

    BCDN2

    N1

    v1

    i1

    v2

    i2

    Ll2Ll1

    Lm

    A

    B

    C

    D

  • 7/270

    Buck Derived Isolated DC-DC Converters with Synchronous Switch

    Push-Pull Converter

    Forward Converter Half-Bridge Converter

    Full-Bridge Converter

    S

    L

    C RSn:1

    Vg

    n:n

    S

    S1

    S2n:1

    S2

    S1

    Vg

    S1

    S2n:1

    S2

    S1

    Vg

    S1

    S2

    S1

    S2

    n:1

    S1

    S2

    Vg

    LC R

    LC R

    LC R

    8/270

    Buck-Boost Derived Isolated DC-DC Converter

    Flyback Converter

    n:1

    S

    Vg Lp Ls

    S

    R

  • 9/270

    Most Commonly Used Isolated Converters for Low-Power Applications

    Flyback Converter

    LOAD

    Forward Converter

    LOAD

    An isolated dc-dc converter module (MS Kennedy Corporation)

    10/270

    Basic Topologies of PWM DC-DC Converters

    Buck

    Boost

    Buck-Boost L C

    D

    vovi

    L

    C

    D

    vovi

    vi vo

    L

    CD

    One Inductor, One Capacitor

     

     

     

    C,uk

    L1

    C2D

    L2C1

    L1

    C2

    D

    L2

    C1

    SEPIC

    Zeta L1 C2D

    L2C1

    SEPIC: Single-Ended Primary Inductor Converter

    Two Inductors, Two Capacitors

    vi

    vi

    vi

    vo

    vo

    vo

  • 11/270

    Basic DC-DC Converters in CCM

    Buck Converter

    Boost Converter

    Buck-Boost Converter

    V

    Buck converter

    +

    V

    Boost converter

    +

    V

    Buck-boost converter

    0 0.2 0.4 0.6 0.8 10

    0.20.40.60.8

    1

    M(D

    )

    D

    0 0.2 0.4 0.6 0.8 10

    M(D

    )

    D

    0 0.2 0.4 0.6 0.8 1

    -5

    M(D

    )

    D

    -4-3-2-10

    +

    V

    Cuk converter

    +

    V

    Sepic

    0 0.2 0.4 0.6 0.8 1

    -5

    M(D

    )

    D

    -4-3-2-10

    0 0.2 0.4 0.6 0.8 10

    M(D

    )

    D

    12345

    12345

    Transform to Isolated Converters

    Buck-Boost Converter

    L C

    D

    vovi

     

    L1

    C2

    D

    L2

    C1

    vi vo

    SEPIC Converter

     

    L1

    C2D

    L2C1

    vi vo

    Cuk Converter

    LOAD

    Flyback Converter

    Isolated SEPIC Converter

    LOAD

    L1 L2

    V1 V2

    V0

    i1 i2

    C1 C2

    VinLOAD

    Isolated Cuk Converter

  • 13/270

    Power Supply Topologies (sluw001a)

    14/270

    Power Supply Topologies (sluw001a)

  • 15/270

    Selection of Isolated SPS Topologies in Watts

    Topologies

    1 10 100 1000 10000Output power, watts

    Com

    plex

    ity

    Flyback

    Resonant resetForward

    Current fedPush-pull

    Single transistorforward

    Tow transistorforward

    Half bridge

    Dual interleavedForward converter

    Full bridge

    Phase shiftedFull bridge

    Server applications

    16/270

    Modeling of Switching Converters

    台灣新竹‧交通大學‧電機控制工程研究所‧電力電子實驗室~鄒應嶼 教授

    電力電子系統與晶片實驗室Power Electronic Systems & Chips Lab.交通大學 • 電機控制工程研究所

    Power Electronic Systems & Chips Lab., NCTU, Taiwan

  • 17/270

    Modeling of Switching Converters

    Why Modeling ? Classification of Modeling Techniques Modeling of Switching Power Converters State-Space Averaging Technique Transfer Functions Small-Signal Equivalent Circuit Model

    18/270

    Objective of Modeling

    Objective of Modeling

    Analysis

    Simulation

    DesignEfficiency

    Output Impedance

    Static Characteristics

  • 19/270

    Difficulties with Modeling of SPS

    Nonsmooth Systems (time and state discontinuity)Nonlinearity due to operating point Concepts of existence, uniqueness, stability not clearly defined for systems with discontinuous right half-plan zero Inherent Nonlinear Dynamic Behavior! Concept of chaotic dynamics relatively new to power electronics

    20/270

    Working Profile of a Switching Converter

    Power-on Power-off

    ov

    oi

    Wat

    ts

    % C

    PU

    tim

    e

    Dell power edge 2400 (web/SQL server)

  • 21/270

    Operating Region State-Variable Plane

    DCM

    D = 1.0

    0.1

    0.3

    0.5

    0.7

    0.9

    CCM

    80% 100%60%40% 110%90%10% 20%

    從工作點

    到工作點

    的軌跡均在連續導

    通工作區內,但是從工作點

    到工作點

    則有部分會進入不連續導通工作區。

    Vo/Vi = 1.0

    0.25

    0.5

    0.75

    0

    1.0

    22/270

    Operating Region Operating Point Operating Mode?

    IN

    OUT

    VV

    )(max,LB

    o

    II

    0 0.5 1.0 1.5 2.0

    0

    0.25

    0.50

    0.75

    1.0

    DCM

    D = 1.0

    0.1

    0.3

    0.5

    0.7

    0.9

    CCMCRM

    VIN = constant

    (min)

    (max)

    IN

    OUT

    VV

    (max)

    (min)

    IN

    OUT

    VV

    (max)OUTI(min)OUTI

  • 23/270

    Modeling of Switching Power Converters

    Modeling of Voltage-Mode DC-DC Converters- Power Stage Modeling State-space average model (Middlebrook and C'uk 1977) Discrete time-domain model (Lee 1979) Equivalent circuit model (Chetty 1981) Unified topological model (Pietkiewicz and Tollik, 1987) PWM switch model (Voperian 1988) Injected-absorbed-current model (Kisovski 1991)

    - Error Processor Modeling (Chetty 1982)- Pulsewidth Modulator Modeling Describing function model (Lee 1983) Equivalent circuit model (Bello 1981)

    - Larger Signal Modeling (Vicua 1992) Modeling of Current-Mode DC-DC Converters

    - Equivalent Circuit Model (Chetty 1981)- y-parameter Model (Middlebrook 1989)

    24/270

    Modeling Techniques

    State Space Averaging Method[1] R. D. Middlebrook and S. Cuk, “A general unified approach to modeling switching-converter

    stages,” IEEE PESC Conf. Rec., pp. 18-34, 1976.[2] S. Cuk and R. D. Middlebrook, “A general unified approach to modeling switching DC-to-DC

    converters in discontinuous conduction mode,” IEEE PESC Conf. Rec., pp. 36-57, 1977.

    Modeling of Switching Converters in DCM Operation[1] D. Maksimovic and S. Cuk, “A unified analysis of PWM converters in discontinuous modes,” IEEE

    Trans. Power Electron., vol. 6, pp. 476–490, May 1991. [2] J. Sun, D. M. Mitchell, M. F. Greuel, P. T. Krein, and R. M. Bass, “Averaged modeling of PWM

    converters operating in discontinuous conduction mode,” IEEE Trans. Power Electron., vol. 16, pp. 482-492, July 2001.

  • 25/270

    Modeling Techniques ..

    PWM Switch Method[1] V. Vorperian, “Simplified Analysis of PWM Converters Using Model of PWM Switch Part I:

    Continuous Conduction Mode,” IEEE Trans. on Aero. and Elec. Sys., vol. 26, no. 3, pp. 490-496, May 1990.

    [2] V. Vorperian, “Simplified Analysis of PWM Converters Using Model of PWM Switch Part II: Discontinuous Conduction Mode,” IEEE Trans. on Aero. and Electron. Sys., vol. 26, no. 3, pp. 497-505, May 1990.

    Fast Analytical Techniques for Electrical and Electronic Circuits,V. Vorperian, Cambridge Press, 2004.

    26/270

    Modeling Techniques ..

    Discrete Time-Domain Method[1] F. C. Lee, R. P. Iwens, Y. Yu, and J. E. Triner, “Generalized computer-aided discrete time-domain

    modeling and analysis of DC-DC converters,” IEEE Trans. IECI, vol. 26, pp. 58-69, May 1979.

    Equivalent Circuit Method[1] P.R.K. Chetty, Switch-Mode Power Supply Design, TAB BOOKS, Inc., 1986.

    Modeling of Current-Programmed Converter[1] R. D. Middlebrook, “Modeling current programmed Buck and Boost converters,” IEEE Trans. on

    Power Electronics, vol. 4, pp. 36-52, January 1989.

    Unified Topological Method[1] Pietkiewicz, A. and D. Tollik, “Unified topological modeling method of switching dc-dc converters

    in duty-ratio programmed mode,” IEEE Trans. on Power Electron., vol. 2, no. 3, pp. 218-226, July 1987.

    Injected-Absorbed-Current Method[1] Kislovski, A. S., R. Redl, and N. O. Sokal, Dynamic Analysis of Switching-Mode DC/DC

    Converters, Van Nostrand Reinhold, 1991.

  • 27/270

    Recommended Books: Modeling and Simulation

    Dynamic Analysis of Switching-Mode DC/DC Converters,Andre'S. Kislovski, Richard Redl, and Nathan O. Sokal,Van Nostrand Reinhold, New York, 1991.

    Complex Behavior of Switching Power Converters, Chi Kong Tse, CRC Press, 2004.

    Switch-Mode Power Supply Simulation: Designing with SPICE 3Steven M. Sandler, McGraw-Hill Professional; 1 edition, Nov. 11, 2005.

    Switch-Mode Power Supplies - SPICE Simulations and Practical Designs, Christophe Basso, McGraw-Hill, Feb. 1, 2008.

    Modeling of DC-DC Converters

    voltagereference

    Pulse-widthmodulator

    cv)(t sGc

    refv

    +– v

    H

    tsTsdT

    tv

    t

    Complex Behavior of Switching Power Converters, Chi Kong Tse, CRC Press, 2004.

    Dynamic Analysis of Switching-Mode DC/DC Converters, Andre'S. Kislovski, Richard Redl and Nathan O. Sokal, Van Nostrand Reinhold, New York, USA, 1991

    SMPS Simulation with SPICE 3, Steven M. Sandler, McGraw-Hill Professional, Dec. 1, 1996.

    Computer-Aided Analysis and Design of Switch-Mode Power Supplies, Yim-Shu Lee, Marcel Dekker, Inc., Feb. 23, 1993.

    Switch-Mode Power Supplies - SPICE Simulations and Practical Designs, Christophe Basso, McGraw-Hill, Feb. 1, 2008. Fast Analytical Techniques for Electrical and Electronic Circuits,

    V. Vorperian, Cambridge Press, 2004.

  • 29/270

    Modeling and Control of DC-DC Converters

    Output voltage feedback only!

    PWMModulator

    LoopCompensator

    vo

    digital signal processor analog signal processor

    vR

    d

    load

    LR di~

    Buck Converter Boost Converter

    Buck/Boost Converter C,uk Converter

    vi vo

    L

    CD

    L

    C

    D

    vovi

     

    L C

    D

    vovi

         

    L1

    C2D

    C1

    vi vo

    Switching power converters

    oi

    Define the Operating Point!

    Define the Load Disturbance

    vgosZ

    sv~

    sV

    Define the Line

    Disturbance

    Define the Source Output Impedance!

    Small-Signal Modeling of a Buck Converter

    IN

    OUT

    VV

    )(max,LB

    o

    II

    0 0.5 1.0 1.5 2.0

    0

    0.25

    0.50

    0.75

    1.0

    DCM

    D = 1.0

    0.1

    0.3

    0.5

    0.7

    0.9

    CCMCRM

    Averaged Switch Modeling of Boundary Conduction Mode DC-to-DC ConvertersJ, Chen, R. Erickson, and D. Maksimovic, IECON 2001.

    VIN = constant

    V. Vorperian, "Simplified Analysis of PWM Converters Using Model of PWM Switch Part II: Discontinuous Conduction Mode," IEEE Trans. on Aero. and Electron. Sys., vol. 26, no. 3, pp. 497-505, May 1990.

    V. Vorperian, "Simplified Analysis of PWM Converters Using Model of PWM Switch Part I: Continuous Conduction Mode," IEEE Trans. on Aero. and Elec. Sys., vol. 26, no. 3, pp. 490-496, May 1990.

  • 31/270

    Modeling of Switching Converters in DCM Operation

    IN

    OUT

    VV

    )(max,LB

    o

    II

    0 0.5 1.0 1.5 2.0

    0

    0.25

    0.50

    0.75

    1.0

    DCM

    D = 1.0

    0.1

    0.3

    0.5

    0.7

    0.9

    CCMCRM

    VIN = constant

    V. Vorperian, "Simplified Analysis of PWM Converters Using Model of PWM Switch Part II: Discontinuous Conduction Mode," IEEE Trans. on Aero. and Electron. Sys., vol. 26, no. 3, pp. 497-505, May 1990.

    J. Sun, D. M. Mitchell, M. F. Greuel, P. T. Krein, and R. M. Bass, “Averaged modeling of PWM converters operating in discontinuous conduction mode,” IEEE Trans. Power Electron., vol. 16, pp. 482-492, July 2001.

    D. Maksimovic and S. Cuk, “A unified analysis of PWM converters in discontinuous modes,” IEEE Trans. Power Electron., vol. 6, pp. 476–490, May 1991.

    Systematic View of DC-DC ConvertersEfficiency

    Output Impedance

    Selection of Switching Frequency amd PWM Strategies

    Frequency Responses

    Time Responses

    Current Injection Testing

  • 33/270

    PWM DC-DC Power Conversion and Regulation

    CLOCK RAMP

    vref

    vo

    cv

    vi

    TON

    s

    ON

    TTD

    cv

    clock

    RS

    Q

    clock

    ramp

    PWM

    D

    sT

    台灣新竹‧交通大學‧電機控制工程研究所‧電力電子實驗室~鄒應嶼 教授

    1Z

    2Z

    REF: AN937 Designing with L4971, 1.5 A high efficiency DC-DC converter.pdf

    swv

    swvMV

    34/270

    Signal Composition of a PWM DC-DC Converters

    comparator

    D

    V c

    vc ˆcv

    V g

    v g ˆgv

    i gI g

    ĝi

    clock ramp

    analogamplifier

    reference

    load

    modulator-power-stagesubsystem

    Ii î

    Vv

  • 35/270

    Frequency Spectrum

    outputspectrum

    bandpassfilter

    frequency

    sf sf fsf f3 f2 ff 2 sf 3 sf

    36/270

    AC and DC Quantities in a PWM Switching DC-DC Converter

    ˆi iI i vd ioio

    Io

    ôvvo Vo

    vrefvc

    ˆI iV v

    CLOCK RAMP

    vd

    Vc

    vc ˆcv

    io

    voLoad

    INPUT oR

    Analysis of Dynamic Responses

    1Z

    2Z

    Frequency Response of Converter

    Loop Gain

    FR of Disturbance Rejection

    Root Locus

    Pole-Zero Identification

    Transient Disturbance

    L

    C

  • 37/270

    Small-Signal Modeling of a Switching Power Converter

    iIi iIi ˆ

    error processor

    Z i

    Z f

    vref

    vc

    ˆi I iv V v

    duty cyclemodulator

    power stage

    ˆd D d

    open

    oOo iIi ˆ ˆo O ov V v

    AveragedPower Stageîv

    oî

    ôvvo

    The concerned transfer functions under small perturbations can be measured under an open loop condition.

    L

    C oZ

    1

    oZ

    38/270

    Definition of

    v to( )

    t

    V I VO O I, ,

    ioo viv ˆ,ˆ,ˆi to( )

    v ti( )

    small signal perturbationTtD on

    D

    d t( )IOO VIV ,, T

    td xˆ

    power switch gating waveform

    xt

    Tont

    ˆd D d

    represents the averaging small-signal perturbation of the duty ratio d around a constant operation duty ratio D.

    ( )d t

    t

    t

  • 39/270

    Small-Signal Modeling of Voltage-Mode DC-DC Converters

    BuckBoost

    Buck/Boost

    Switching Power Converter

    PulseModulator

    ErrorProcessor

    ˆrv

    ˆov

    ˆcv

    ôi

    ˆiv

    1

    oZ

    Source Disturbances

    Load Disturbances Load Variations Mode (DCM, CCM, CRM) Variations

    ˆrv

    rV

    t

    Voltage Scaling

    Measurement Noises

    ˆnv

    Sensing position Sensor characteristicsParameter Variations

    Switching frequency Variations

    Source disturbances DC-link limitations

    Transfer function of the disturbance source to the desired output, for example, from to .

    Sensitivity function of the parameter variation to the desired output, for example, from to .

    ˆnv ˆov

    ˆovL̂

    d̂i

    Modeling of Single-Loop DC-DC Converters

    ˆov

    ĉv

    ôid̂

    îv ˆ ˆ ˆ; ;ˆ ˆˆ

    o o o

    i o

    v v vv i d

    PWMk

    ˆˆˆ ˆ( , , )o i ov f v i d

    îv

    ôi

    d ˆcv

    ˆovvG

    pZ

    dG

    ( )A s ( )A s

    : Open-loop input-to-output (audio-susceptibility)

    : Open-loop output impedance

    : Control to output transfer function

    PWMk

    ˆ ˆ0, 0

    ˆ( )ˆ

    o

    ov

    i d i

    vG sv

    ˆ ˆ0, 0

    ˆˆ

    i

    op

    o d v

    vZi

    ˆˆ 0, 0

    ˆˆ

    i o

    od

    v i

    vGd

    PWM

    ˆˆc

    dkv

    : PWM modulator gain

    ˆ( )

    ˆc

    o

    vA sv

    : Compensator gain

  • 41/270

    Small Signal Transfer Functions

    : Open-loop input-to-output (audio-susceptibility)

    PWM

    ˆˆcdkv

    : Open-loop output impedance

    : Control to output transfer function

    : PWM modulator gain

    ˆ( )

    ˆc

    o

    vA sv

    PWM1

    p

    KV

    : Compensator gain: PWM dc gain

    ˆ ˆ0, 0

    ˆ( )

    ˆo

    ov

    i d i

    vG sv

    ˆ ˆ0, 0

    ˆˆ

    i

    op

    o d v

    vZi

    ˆˆ 0, 0

    ˆˆ

    i o

    od

    v i

    vGd

    42/270

    Modeling of PWM DC-DC Converters

    A dc-to-dc switching regulator incorporating a three-port duty ratio programmedmodulator-power-stage subsystem whose transfer functions are defined in terms ofratios of small-signal ac quantities (hats) superimposed upon large-signal dcquantities (capitals).

    The spectrum of the output signal contains the switching frequency, the controlfrequency, their respective harmonics, and sidebands.

    The modeling objective is to find, as function of frequency, the loop gain and theclosed properties of the regulator.

    The essential prerequisite is to find the transfer function of the three-port subsystemof the modulator-power-stage.

    台灣新竹‧交通大學‧電機控制工程研究所‧電力電子實驗室~鄒應嶼 教授

  • 43/270

    Concerned Transfer Functions

    Control-to-output transfer function Line-to-output transfer function (audio susceptibility) Reference-to-output transfer function Input impedance Output impedance

    A voltage sourcing power supply should have a low (zero) output impedance,while a current sourcing power supply should have a high (infinite) outputimpedance.

    44/270

    Closed-Loop Transfer Functions

    Gv,CL (Closed-loop Audio-Susceptibility)

    ˆˆ ˆo v i dv G v G d

    PWMˆ ˆod AK v

    PWM

    ˆˆ 1 1o v v

    i d

    v G Gv G K A T

    Zp,CL (Closed-loop Output Impedance)

    ˆˆˆo p o dv Z i G d

    PWMˆ ˆod AK v

    ˆ1

    po

    o

    Zvi T

    Loop Gain : PWMT A s K Gd ( )

    ˆov

    ĉv

    ôid̂

    îv ˆ ˆ ˆ; ;ˆ ˆˆ

    o o o

    i o

    v v vv i d

    KPWM

    ˆˆˆ ˆ( , , )o i ov f v i d

    ( )A s

    îv

    ôi

    d̂ ˆcv

    ˆovvG

    pZ

    dG

    ( )A sPWMK

    )(sT

  • 45/270

    State-Space Averaging Technique

    台灣新竹‧交通大學‧電機控制工程研究所‧電力電子實驗室~鄒應嶼 教授

    電力電子系統與晶片實驗室Power Electronic Systems & Chips Lab.交通大學 • 電機控制工程研究所

    Power Electronic Systems & Chips Lab., NCTU, Taiwan

    46/270

    State-Space Averaging Techniques

    State Space Averaging Modeling Static Analysis Small-Signal Model at CCM Small-Signal Model at DCM Frequency Response Analysis

  • 47/270

    Concept of Time Averaging (Low Frequency Response Behavior)

    ˆi iI i vd ôiio

    I o

    ˆovv oV o

    RLC

    L

    Z i

    Z f

    vrefv c

    ˆI iV v

    CLOCK RAMP

    v d

    V c

    vc ˆcv

    io

    v o

    48/270

    Linear Approximation of State Space Trajectories

    x( )0

    x( )dTs

    x ( )Ts

    x A x B u

    1 1 x A x B u

    dT s( )Ton

    ( )1 d Ts( )Toff

    t

    x( )t

    2 2 x A x B u

  • 49/270

    State-Space Averaging Method (CCM)

    1 1

    1 1

    2 2

    2 2

    During

    During

    ON

    OFF

    T

    T

    x A x B uy C x E ux A x B uy C x E u

    When the circuit time constant is far greater than the switching period, the above equations can be averaged as:

    x d1

    averaging by using state duty ratio weighting

    x d2+

    Switch-ON Period Switch-OFF Period

    2 2

    2 2

    x A x B uy C x E u1 1

    1 1

    x A x B uy C x E u

    50/270

    State-Space Averaging Method

    1 1 2 2 1 1 2 2

    1 1 2 2 1 1 2 2

    ( ) ( )( ) ( )

    d d d dd d d d

    x A A x B B uy C C x E E u

    x Ax Buy Cx Du

    A A AB B BC C CE E E

    where =

    1 1 2 2

    1 1 2 2

    1 1 2 2

    1 1 2 2

    d dd dd dd d

  • 51/270

    State Averaging by Active Duty Ratios

    1 1

    1 1

    2 2

    2 2

    During

    During

    ON

    OFF

    T

    T

    x A x B uy C x E ux A x B uy C x E u

    When the circuit time constant is far greater than the switching period, the above equations can be averaged as:

    d1

    state averaging by using duty ratio weighting

    d2

    Switch-ON Period Switch-OFF Period

    2 2

    2 2

    x A x B uy C x E u1 1

    1 1

    x A x B uy C x E u

    1 1 2 2 1 1 2 2

    1 1 2 2 1 1 2 2

    ( ) ( )( ) ( )

    d d d dd d d d

    x A A x B B uy C C x E E u

    x Ax Buy Cx Du

    A A AB B BC C CE E E

    where =

    1 1 2 2

    1 1 2 2

    1 1 2 2

    1 1 2 2

    d dd dd dd d

    52/270

    Small-Signal Perturbation at a DC Operating Point

    Substitute

    1 1 2 2

    ˆ ˆ ˆ; ; ;ˆ ˆ;d D d d D d

    x X x y Y y u U u

    1 1 2 2 1 1 2 2ˆ ˆ ˆ ˆˆ ˆ ˆ( ) ( ) ( ) ( ) ( ) ( ) ( )d D d D d D d D d

    dt X x A A X x B B U u

    00

    1 1 2 2 1 1 2 2

    1 1 2 2 1 1 2 2

    1 2 1 2

    1 2 1 2

    ˆ ( ) ( )

    ˆ ˆ) ( )ˆ) ( )

    ˆ ˆˆ ˆ) ( )

    dc termsdc terms

    ignore nonlinear term

    (

    (

    (

    id d D D D Ddt dt

    D D D D

    d

    d d

    X x A A X B B U

    A A x B B u

    A A X B B U

    A A x B B u

    Note:The nonlinear dynamic system is linearized around a selected operating point!

  • 53/270

    DC Model and AC Model

    DC Model

    X A BU1

    Y ( CA B E)U1

    where

    ddt

    d

    d

    x Ax Bu F

    y Cx Eu G

    AC ModelA A AB B BC C CE E EF A A X B B UG C C X E E U

    1 1 2 2

    1 1 2 2

    1 1 2 2

    1 1 2 2

    1 2 1 2

    1 2 1 2

    D DD DD DD D

    ( ) ( )( ) ( )

    54/270

    Transfer Function Matrix

    )()()(

    )()(

    )()()()(

    )()(

    2

    1

    2221

    1211 sdsGsG

    sisv

    sGsGsGsG

    sisv

    d

    d

    d

    i

    uu

    uu

    i

    o

    )()()()()()()()()( 11

    sdssssdssss

    du HuHFAIBuAIx

    y C A B E u C A F GG u G

    ( ) [ ( ) ] ( ) [ ( ) ] ( )( ) ( ) ( ) ( )

    s sI s sI d ss s s d su d

    1 1

    G C A B Eu s sI( ) ( ) 1

    G C A F Gd s sI( ) ( ) 1

    H I A BH I A F

    u

    d

    s ss s d s

    ( ) ( )( ) ( ) ( )

    1

    1

  • 55/270

    Open Loop Transfer Functions

    control-to-output (open-loop transfer function): v sd s

    G s s so d d( )( )

    ( ) ( ) ( ) 1 11

    1G C I A F G

    line-to-output (audio susceptibility):

    output impedance:

    v sv s

    G s s soi

    u u( )( )

    ( ) ( ) ( ) 11 111

    11G C I A B E

    v si s

    G s s sod

    u u( )( )

    ( ) ( ) ( ) 12 121

    12G C I A B E

    56/270

    Example: Buck Converter

    Step 1. Draw the linear equivalent circuit for each switching state of the converter.

    L

    CD

    Q iL io

    vc

    icrc

    rL

    R vo id

    iRu1 vi u2

    iiy2

    y1

    x1

    x2

    Q closed, D open

    L

    C

    iL io

    vc

    icrc

    rL

    vi R vo

    id

    iRii

    D closed, Q open

    L

    C

    iL io

    vc

    icrc

    rL

    R vo

    id

    iRii

  • 57/270

    Select State Variables

    Select the inductor current iL and capacitor voltage vL state variables.

    c

    L

    vi

    xx

    2

    1x

    i

    o

    iv

    yy

    2

    1y

    Select the input dc voltage and output disturbance current as input variables.

    Select the output voltage and input current as output variables.

    d

    i

    iv

    uu

    2

    1u

    58/270

    Derive Circuit Equations: State Equations

    Step 2. Write the circuit equations for each equivalent circuit in a state-variable format.

    L

    C

    iL io

    vc

    icrc

    rL

    vi R vo

    id

    iRiiQ-ON and D-OFF State:

    v L didt

    i r r C dvdt

    vi L L L C c C

    r Cdvdt

    v i i i R

    i Cdvdt

    i R

    i R RCdvdt

    i R

    Cc

    C L C d

    Lc

    d

    Lc

    d

    ( )

    ( )

    ( )R r Cdvdt

    i R v i RC c L C d

    dvdt

    RR r C

    iR r C

    v RR r C

    icC

    LC

    CC

    d

    ( ) ( ) ( )1

  • 59/270

    State-Space Average Modeling: State Equations

    dC

    CiC

    CLL

    C

    C

    CdC

    CC

    C

    CL

    C

    CLLi

    L

    irR

    RrvvrR

    RirrR

    Rr

    virR

    RrvrR

    rirR

    RrrivdtdiL

    )()()(

    dC

    CiC

    CLL

    C

    CL irR

    RrL

    vL

    vrR

    RL

    irrR

    RrLdt

    di

    1111

    Replace in with R

    R ri

    R rv R

    R ri

    CL

    CC

    Cd( ) ( ) ( )

    1C dv

    dtc

    CdC

    CC

    LC

    CLLL

    i virRRv

    rRi

    rRRrri

    dtdiLv

    )()(

    1)(

    We can obtain:

    60/270

    State-Space Average Modeling: State Equations

    i ii L

    dC

    CC

    CL

    C

    C

    ddC

    CC

    LC

    L

    dCL

    dCLo

    irR

    RrvrR

    RirR

    Rr

    RiiCrR

    RvCrR

    iCrR

    RRCRi

    RiRiRiRiiiv

    )()()(

    )()(1

    )(

    )(

    v RrR r

    i RR r

    v RrR r

    io CC

    LC

    CC

    Cd

    ( ) ( ) ( )

    d

    iC

    C

    C

    LCC

    C

    i

    o

    d

    i

    C

    C

    C

    C

    L

    CC

    CL

    C

    C

    C

    L

    iv

    rRRr

    vi

    rRR

    rRRr

    iv

    iv

    rRR

    C

    rRRr

    LLvi

    rRCrRR

    C

    rRR

    Lr

    rRRr

    Lvi

    00

    0

    01

    10

    11

    111

    11

    Q-OFF and D-ONState Equation

  • 61/270

    State-Space Average Modeling: State Equations

    Q-OFF and D-ON State:

    0 Ldidt

    i r r Cdvdt

    vL L L C c C

    RidtdvRCRi

    RidtdvCi

    RiiivdtdvCr

    dc

    L

    dc

    L

    dCLCc

    C

    )(

    )(

    L

    C

    iL io

    vc

    icrc

    rL

    R vo

    id

    iRii

    RivRidtdvCrR dCLcC )(

    dC

    CC

    LC

    c iCrR

    RvCrR

    iCrR

    Rdtdv

    )()(1

    )(

    62/270

    State-Space Average Modeling: State Equations

    dC

    CiC

    CLL

    C

    C

    CdC

    CC

    C

    CL

    C

    CLL

    L

    irR

    RrvrR

    RirrR

    Rr

    virR

    RrvrR

    rirR

    RrridtdiL

    )()()(

    dC

    CiC

    CLL

    C

    CL irR

    RrL

    vrR

    RL

    irrR

    RrLdt

    di

    111

    ( )R r Cdvdt

    i R v i RC c L C d

    dvdt

    RR r C

    iR r C

    v RR r C

    icC

    LC

    CC

    d

    ( ) ( ) ( )1

    Replace in with RR r

    iR r

    v RR r

    iC

    LC

    CC

    d( ) ( ) ( )

    1C dv

    dtc

    CdC

    CC

    LC

    CLLL vi

    rRRv

    rRi

    rRRrri

    dtdiL

    )()(

    1)(

    0We can obtain:

  • 63/270

    State-Space Average Modeling: State Equations

    ii 0

    dC

    CC

    CL

    C

    C

    ddC

    CC

    LC

    L

    dCL

    dCLo

    irR

    RrvrR

    RirR

    Rr

    RiiCrR

    RvCrR

    iCrR

    RRCRi

    RiRiRiRiiiv

    )()()(

    )()(1

    )(

    )(

    v RrR r

    i RR r

    v RrR r

    io CC

    LC

    CC

    Cd

    ( ) ( ) ( )

    d

    iC

    C

    C

    LCC

    C

    i

    o

    d

    i

    C

    C

    C

    C

    L

    CC

    CL

    C

    C

    C

    L

    iv

    rRRr

    vi

    rRR

    rRRr

    iv

    iv

    rRR

    C

    rRRr

    Lvi

    rRCrRR

    C

    rRR

    Lr

    rRRr

    Lvi

    00

    0

    00

    10

    10

    111

    11

    Q-ON and D-OFFState Equation

    64/270

    State-Space Average Modeling: State Equations

    d

    iC

    C

    C

    LCC

    C

    i

    o

    d

    i

    C

    C

    C

    C

    L

    CC

    CL

    C

    C

    C

    L

    iv

    rRRr

    vi

    rRR

    rRRr

    iv

    iv

    rRR

    C

    rRRr

    LLvi

    rRCrRR

    C

    rRR

    Lr

    rRRr

    Lvi

    00

    0

    01

    10

    11

    111

    11

    Q Conducted:

    D Conducted:

    d

    iC

    C

    C

    LCC

    C

    i

    o

    d

    i

    C

    C

    C

    C

    L

    CC

    CL

    C

    C

    C

    L

    iv

    rRRr

    vi

    rRR

    rRRr

    iv

    iv

    rRR

    C

    rRRr

    Lvi

    rRCrRR

    C

    rRR

    Lr

    rRRr

    Lvi

    00

    0

    00

    10

    10

    111

    11

  • 65/270

    State-Space Average Modeling: State Equations

    00

    0 ,01

    10

    11

    ,111

    11

    11

    11

    C

    C

    CC

    C

    C

    C

    C

    CC

    CL

    C

    C

    rRRr

    rRR

    rRRr

    rRR

    C

    rRRr

    LL

    rRCrRR

    C

    rRR

    Lr

    rRRr

    L

    EC

    BA

    00

    0 ,00

    10

    10 ,

    111

    11

    22

    22

    C

    C

    CC

    C

    C

    C

    C

    CC

    CL

    C

    C

    rRRr

    rRR

    rRRr

    rRR

    C

    rRRr

    L

    rRCrRR

    C

    rRR

    Lr

    rRRr

    L

    EC

    BA

    Q Conducted:

    D Conducted:

    66/270

    State-Space Average Modeling: Averaging

    Step 3. Average each state by using duty ratio as a weighting factor and then combine thetwo sets of equations into a single set.

    x A x B uy C x E u

    1 1

    1 1uExCyuBxAx

    22

    22

    Q : D :x d1

    averaging by using state duty ratio weighting

    x d2+

    ( ) ( )( ) ( )

    x A A x B B uy C C x E E u

    1 1 2 2 1 1 2 2

    1 1 2 2 1 1 2 2

    d d d dd d d d

    x Ax Buy Cx Eu

    A A AB B BC C CE E E

    where =

    1 1 2 2

    1 1 2 2

    1 1 2 2

    1 1 2 2

    d dd dd dd d

  • 67/270

    State-Space Average Modeling: Perturbation

    Step 4. Perturb the averaged equation set to produce DC and small signal terms and eliminatenonlinear product terms.

    Substitute

    into the averaged equations (in Steps 3)

    x X x y Y y u U u

    ; ; ; ; d D d d D d1 1 2 2

    ( ) ( )( ) ( )

    x A A x B B uy C C x E E u

    1 1 2 2 1 1 2 2

    1 1 2 2 1 1 2 2

    d d d dd d d d

    uBuBUBUB

    uBuBUBUB

    xAxAXAXA

    xAxAXAXA

    uUBB

    xXAAxX

    ˆˆˆˆ

    ˆˆˆˆ

    ˆˆˆˆ

    ˆˆˆˆ)ˆ))(ˆ()ˆ((

    )ˆ))(ˆ()ˆ(()ˆ(

    222222

    111111

    222222

    111111

    2211

    2211

    dDdD

    dDdD

    dDdD

    dDdD

    dDdD

    dDdDdtd

    68/270

    State-Space Average Modeling: Perturbation

    1 1 2 2 1 1 2 2

    1 1 2 2 1 1 2 2

    1 2 1 2

    1 2 1 2

    ˆ( ) ( ) ( )

    ˆ ˆ ( ) ( )ˆ ( ) ( )

    ˆ ˆˆ ˆ ( ) ( )

    d D D D Ddt

    D D D D

    d

    d d

    X x A A X B B U

    A A x B B u

    A A X B B U

    A A x B B u

    1 1 2 2

    1 1 2 2

    1 1 2 2 1 1 2 2

    1 1 2 2 1 2 1 2

    1 1 2 2 1 2 1 2

    ˆ ˆˆ ˆ( ( ) ( ))( )ˆ ˆ ˆ ( ( ) ( ))( )

    ( ) ( )ˆˆ ( ) ( ) ( )

    ˆ ˆˆ ˆ ˆ ( ) ( ) ( )

    D d D d

    D d D dD D D D

    D D d

    D D d d

    Y y C C X x

    E E U uC C X E E U

    C C x C C X E E U

    E E u C C x E E u

    Perturbation of the State Equations

    x1

    x1Operating Point New Coordinates

    1x̂

    2x̂

    台灣新竹‧交通大學‧電機控制工程研究所‧電力電子實驗室~鄒應嶼 教授

  • 69/270

    State-Space Average Modeling: DC Analysis

    DC Analysis:

    Set all variation terms to zero, we can obtain

    X A BU1

    Y ( CA B E)U1

    0 1 1 2 2 1 1 2 2

    ( ) ( )A A X B B UAX BU

    D D D D

    Y C C X E E UCX EU

    ( ) ( )1 1 2 2 1 1 2 2D D D D

    Therefore, DC characteristics is

    1 1 2 2 1 1 2 2

    1 1 2 2 1 1 2 2

    1 2 1 2

    1 2 1 2

    ˆ( ) ( ) ( )

    ˆ ˆ ( ) ( )ˆ ( ) ( )

    ˆ ˆˆ ˆ ( ) ( )

    d D D D Ddt

    D D D D

    d

    d d

    X x A A X B B U

    A A x B B u

    A A X B B U

    A A x B B u

    1 1 2 2

    1 1 2 2

    1 1 2 2 1 1 2 2

    1 1 2 2 1 2 1 2

    1 1 2 2 1 2 1 2

    ˆ ˆˆ ˆ( ( ) ( ))( )ˆ ˆ ˆ ( ( ) ( ))( )

    ( ) ( )ˆˆ ( ) ( ) ( )

    ˆ ˆˆ ˆ ˆ ( ) ( ) ( )

    D d D d

    D d D dD D D D

    D D d

    D D d d

    Y y C C X x

    E E U uC C X E E U

    C C x C C X E E U

    E E u C C x E E u

    0 0

    0

    00 0

    0 0 0 00 0 0

    0

    000 0

    70/270

    State-Space Average Modeling: DC Model

    AX BU 0Eliminate the DC term ddt

    X 0 and Y CX EU

    LS

    CC

    LCo

    CC

    LC

    iCC

    LCL

    DII

    VrR

    RIrRV

    VrR

    IrR

    R

    DVVrR

    RIrRr

    CD

    )//(

    10

    )//(0

    ..

    We obtain the dc model equation:

    Comments:1. DC model gives DC information (steady-state behavior). 2. DC model can be used for loss estimation.

  • 71/270

    State-Space Average Modeling: AC Model

    ˆˆ ˆ ˆ

    ˆˆ ˆ ˆ

    d dd t

    d

    x A x B u F

    y C x E u G

    Neglect the nonlinear product term ˆ ˆˆ ˆ and d d x u

    where

    A A AB B BC C CE E EF A A X B B UG C C X E E U

    1 1 2 2

    1 1 2 2

    1 1 2 2

    1 1 2 2

    1 2 1 2

    1 2 1 2

    D DD DD DD D

    ( ) ( )( ) ( )

    dIiDi

    vrR

    RirRv

    vrRL

    irR

    RCdt

    vd

    dLVv

    LDv

    rRR

    Li

    LrRr

    dtid

    CA

    LLs

    CC

    LCo

    CC

    LC

    C

    iiC

    CL

    CLL

    ˆˆˆ

    ˆˆ)//(ˆ

    ˆ11ˆ1ˆ

    ˆˆˆ1ˆ//ˆ

    ..

    We obtain the ac model (small-signal) equation:

    Comments:1. AC model gives small signal information.2. AC model parameter value depends on dc operating point.

    72/270

    Time-to-Frequency Transform

    In the following, the hat above the variables will be neglected for simplicity. The small signal(or ac term) of a variable is denoted using lower case letter. Thus, the dynamic equation of aPWM dc-dc converter can be represented as:

    Step 5. Transform ac state-space model into frequency domain (Laplace transform, s-domain).

    ddt

    d

    d

    x Ax Bu F

    y Cx Eu G

    ddt

    d

    d

    x Ax Bu F

    y Cx Eu G

  • 73/270

    Time-to-Frequency Transform

    Take Laplace transform:

    s s s s d ss s s d s

    x Ax Bu Fy Cx Eu G

    ( ) ( ) ( ) ( )( ) ( ) ( ) ( )

    x I A Bu I A FH u H

    ( ) ( ) ( ) ( ) ( )( ) ( ) ( ) ( )

    s s s s d ss s s d su d

    1 1

    y C I A B E u C I A F GG u G

    ( ) [ ( ) ] ( ) [ ( ) ] ( )( ) ( ) ( ) ( )

    s s s s d ss s s d su d

    1 1

    G C I A B Eu s s( ) ( ) 1

    G C I A F Gd s s( ) ( ) 1

    H I A BH I A F

    u

    d

    s ss s d s

    ( ) ( )( ) ( ) ( )

    1

    1

    )()()()(

    )()(2221

    12111

    sGsGsGsG

    ssuu

    uuu EBAICG

    74/270

    State-Space Average Modeling: Transfer Functions

    dsGsG

    iv

    sGsGsGsG

    iv

    d

    d

    d

    i

    uu

    uu

    i

    o

    )()(

    )()()()(

    2

    1

    2221

    1211

    Interpretation of the transfer function matrix

    Input-to-output voltage gain(audio susceptibility)

    Output impedance

    Input AdmittanceLoad-to-line current gain

    Control-to-output voltage gain

    Control-to-input current gain

  • 75/270

    State-Space Average Modeling: Transfer Functions

    ôv

    ĉv

    ôi

    îv

    ˆ ˆ ˆ; ;ˆ ˆˆo o o

    i o

    v v vv i d

    K PWM A(s)

    îidi

    ii

    vi i

    o

    i

    i

    iˆˆ

    ;ˆˆ

    ;ˆˆ

    Loop compensator

    Disturbances Results

    Control action

    76/270

    State-Space Averaging: Time-to-Frequency Transform

    LC

    C

    LLC

    C

    i

    o

    LC

    C

    LLC

    Ci

    o

    rrRrRLCs

    rRLCrRCrs

    CsrDsvsv

    rrRrRLCs

    rRLCrRCrs

    CsrVsdsv

    2

    2

    ]//[1

    1)(ˆ)(ˆ

    ]//[1

    1)(ˆ)(ˆ

    Z s v si s

    G so od dv

    u

    i

    ( ) ( )( )

    ( ) 00

    12

  • 77/270

    State-Space Averaging: Time-to-Frequency Transform

    2

    ˆ ( ) 1ˆ( )o C

    io

    v s sr CVsd s

    LCsCrrRLs

    CsrVsdsv

    LC

    Ci

    o

    2)(1

    1)(ˆ)(ˆ

    CrrRLQ

    LC

    sQ

    ss

    CLo

    o

    oo

    )(

    11

    1

    22

    Note: In most conditions, because R >>(rL + rC), the above equations can be approximated as

    LCsCrrRLs

    CsrVsdsv

    LC

    Ci

    o

    2)(1

    1)(ˆ)(ˆ

    LCsCrrRLs

    CsrDsvsv

    LC

    C

    i

    o

    2)(1

    1)(ˆ)(ˆ

    78/270

    State-Space Average Modeling

    The small signal control-to-output , and line-to-output are transferfunctions of two poles and one zero

    ˆ ( )ˆ ( )ov s

    d sˆ ( )ˆ ( )

    o

    i

    v sv s

    K s zs p s p

    ( )( )( )

    1

    1 2

    with its parameters depending upon component values and operating point. p1, p2 can be complex poles or real poles. But p1, p2 and z1 all lie on LHP.

    Note: The equivalent series resistance of the capacitor will introduce a LHP zero.

  • 79/270

    State-Space Averaging: Output Impedance

    Output Impedance: Z s v si s

    so od du

    ( ) ( )( )

    ( )

    00

    1c I A B du

    ( ) ( )

    ( )v si s

    R

    sQ

    s

    so

    d o

    1

    1 1 1

    2

    2

    CrrLQr

    rLC

    CrrRLQLC

    sQ

    ss

    LC

    C

    L

    CLo

    o

    oo

    11;1

    )(

    11,1

    111

    22

    台灣新竹‧交通大學‧電機控制工程研究所‧電力電子實驗室~鄒應嶼 教授

    Modeling of Load Impedance and Disturbances

    PWMModulator

    LoopCompensator

    vg

    vo

    vR

    Boost Converter Buck/Boost Converter Buck Converter

    load

    RL di~

    GateDrive

    osZ

    sv~

    sV

    iL

    vc

    icrc

    rL

    vi vo

    iR

    io id

    RC

    L

    D

    Q

  • 81/270

    Dynamic Responses for Step Load Changes

    Intel: VRM (Voltage Regulator Module) and Enterprise Voltage Regulator-Down (EVRD) 11.0 Design Guidelines, Nov. 2006.

    Adaptive voltagepositioning offset

    VOFFSET (40mV)

    Nominal setpoint voltageVSET (2.0V)

    Dynamic voltagetolerance, VDYN-(100mV for 2s)

    Initial voltage drop is mainly due to the product

    of the load current step and ESR of the capacitors.

    V = I ESR.(ESL effects are ignored)

    Output voltageVOUT (50mV/Div)

    Steady state voltage athigh current is approximatelyVSET VOFFSET IOUT RSENSE

    Output current transientstep, I = 0 to 14A(5A/Div)

    m5.2 GX;-MV Sanyo F15006 ;H5.2 SENSEOUT RCL

    82/270

    Buck Converter with Load Current DisturbanceBlock Diagram Representation

    D

    Q

    vi

    iL iC vo

    io

    1sL rL

    rsCC

    1

    1R

    id

    iR

  • 83/270

    Buck Converters: Transfer Functions

    12

    1)(ˆ)(ˆ D

    o

    Ci

    o Fs

    CsrVsdsv

    1121

    )(ˆ)(ˆ U

    o

    C

    i

    o Fs

    CsrDsvsv

    122

    2

    111

    )(1

    )(ˆ)(ˆ U

    oeq

    d

    o Fs

    sQs

    Rsisv

    221

    )(ˆ)(ˆ D

    o

    L

    L

    iL Fs

    CsrrV

    sdsi

    2221

    )(ˆ)(ˆ U

    o

    C

    d

    L Fs

    Csrsisi

    22 oo sQss Leq rR

    CrrLQ

    LC

    11

    11

    LCo1

    1 1

    ( )o L CQ L r r C

    R

    C

    L

    rr

    LC1

    1

    dsGsG

    iv

    sGsGsGsG

    iv

    d

    d

    d

    i

    uu

    uu

    i

    o

    )()(

    )()()()(

    2

    1

    2221

    1211

    2121

    )(ˆ)(ˆ U

    oi

    L FsRCs

    RD

    svsi

    vi voC

    L

    R

    Lr

    CrD

    84/270

    Boost Converters: Transfer Functions

    vovi

    22 oo sQss 'o

    DLC

    1' eq

    C

    RDrLC

    ' 1 '

    ' 'Lo

    C

    DQ r CL D r CD R D

    2 ' 'L

    eq Cr DR r

    D D 1 1

    2

    1 1

    ( )' Ceq

    Q L r CD R

    2( ') aD R

    L CrC

    z1

    dsGsG

    iv

    sGsGsGsG

    iv

    d

    d

    d

    i

    uu

    uu

    i

    o

    )()(

    )()()()(

    2

    1

    2221

    1211

    12 2

    (1 )(1 )ˆ ( )ˆ ( ')( )o i z a D

    o

    s sv s V F

    D sd s

    11 2

    ˆ ( ) 1 1ˆ ( ) 'o U

    i o

    v s Fv s D s

    122

    2

    111

    )(1

    )(ˆ)(ˆ U

    oeq

    d

    o Fs

    sQs

    Rsisv

    22 2

    1ˆ ( ) 2 2ˆ ( ')( )L I D

    o

    RCi s V F

    D R sd s

    22

    2

    ˆ 1( ) 1ˆ '( )

    C UL

    od

    r Cs Fi sD si s

    21

    3 2

    ˆ 2( ) 1ˆ ( ) ( ')

    i UL

    i o

    V Fi s RCsv s D R s

  • 85/270

    Buck/Boost Converters: Transfer Functions

    22 oo sQss 'o

    DLC

    C

    eqo r

    R 1

    11

    2

    1 1

    ( )' Ceq

    Q L r CD R

    2( ') aD RDL

    CrCz

    1

    dsGsG

    iv

    sGsGsGsG

    iv

    d

    d

    d

    i

    uu

    uu

    i

    o

    )()(

    )()()()(

    2

    1

    2221

    1211

    12 2

    (1 )(1 )ˆ ( )ˆ ( ')( )o i z a D

    o

    s sv s V F

    D sd s

    11 2

    ˆ ( ) 1ˆ ( ) 'o C U

    i o

    v s r Cs FDv s D s

    122

    2

    111

    )(1

    )(ˆ)(ˆ U

    oeq

    d

    o Fs

    sQs

    Rsisv

    22 2

    ˆ ( ) 1ˆ ( ')( )L I D

    o

    i s V FRCsD R sd s

    22 2

    ˆ 1( ) 1ˆ '( )

    C UL

    od

    r Cs Fi sD si s

    21

    2 2

    ˆ ( ) 1ˆ ( ) ( ')

    i UL

    i o

    V Fi s RCsv s D R s

    ovvi

    2 2

    ' 1

    ( )( ') ' ( ')

    C Lo

    DQ r rL CD R D D

    2 ' '

    Leq C

    r DR rD D

    86/270

    Q-factor of Buck Converter

    Buck

    11)(

    1)(ˆ)(ˆ

    2

    sQ

    sCsrV

    sdsv

    oo

    Ci

    o

    LCo1

    vi vo

    1 1

    ( )o

    oL C

    LC RQ QL L Lr r CR R C

    o

    CLoCLCLCL

    oZ

    rrRZ

    LCrr

    CL

    RCrr

    RL

    LCCrr

    RLQ

    1

    )(11

    )(

    111

    )(

    11

    ESRoo

    CLoCL

    o QQZ

    rrRZCrr

    RLQ

    111

    )(

    11

    C

    L

    D

    CrrRLQ

    CLo )(

    11

    CLZo

    CL

    RQo

    o

    CLESR Z

    rrQ

    If rL and rC can be neglected:

  • 87/270

    Control-to-Output Transfer FunctionsDC-DC Converters in CCM Operating Mode

    Buck

    2

    ˆ ( ) 1ˆ 1( ) ( ) 1o C

    i

    o o

    v s r CsV sd s sQ

    CrrRLQ

    LC

    CLo

    o

    )(

    11

    1

    Boost

    2

    2

    ˆ ( ) (1 )(1 ( ' ))ˆ 1'( ) ( ) 1

    o i C

    o o

    v s V r Cs sL D RsDd s s

    Q

    '

    ' 1

    '' '

    o

    LoC

    DLC

    DQ r CL D r CD R D

    Buck/Boost

    2

    2

    ˆ ( ) (1 )(1 ( ' ))ˆ 1'( ) ( ) 1

    o i C

    o o

    v s V r Cs sDL D RsDd s s

    Q

    2 2

    '

    ' 1

    ( )( ') ' ( ')

    o

    C Lo

    DLC

    DQ r rL CD R D D

    C

    C

    C

    R

    L

    R

    L

    RL

    oviv

    oviv

    oviv

    RHPZ

    Lr

    Cr

    Lr Cr

    Lr

    Cr

    88/270

    Resonant Frequency of Buck Converter

    vi ov

    11)(

    1)(ˆ)(ˆ

    2

    sQ

    sCsrV

    sdsv

    oo

    Ci

    o

    CrrRLQ

    LC

    CLo

    o

    )(

    11

    1

    C

    12Q

    R

    L Lr

    CriV

    20 1r

    1o LC

    20 log( )Q

    CL

    RQo

    o

    CLESR Z

    rrQ

    11

    ESRo

    QQ

    Q

    CLZo

    1z

    Cr C

  • 89/270

    Bode Plot of Control-to-Output of the Buck Converter in CCM

    22

    ˆ ( ) 1 1( ) ˆ( ) 1 ( )

    o C Cvd i i

    oC L

    v s sr C sr CG s V VL sd s s r r C s LCR

    2 2 o os s sQ

    ( )vdG s

    ( )vdG s

    f

    f

    -40dB/dec

    -20dB/dec

    zf

    of 1 1

    ( )o L CQ L r r C

    R

    1o LC

    1

    2of

    LC

    0vd iG V

    0

    90

    180

    12Q

    0.1 of

    10 of 0.1 zf

    10 zf

    zfof

    Frequency Responses of Control-to-Output of Buck Converter in CCM

    ( )vdG s

    ( )vdG s

    f

    f

    -40dB/dec

    -20dB/dec

    zf

    of

    0vd iG V

    0

    90

    180

    0.1 of

    10 of 0.1 zf

    10 zf

    zfof

    100 KHzsf 21 1.27 kHzd of f

    7.95 KHzzf

    of2

    2 2

    ˆ ( ) ( )( ) ˆ 2( )o oz

    vd io o z

    v s sG s Vs sd s

  • 91/270

    Right-Half-Plane Zero of the Boost and Buck-Boost Converters

    RLeez /

    11

    2'

    eLL

    D

    The boost and buck/boost converter introduce a right-half-plane zero:

    Boost

    Buck/Boost2'eDLLD

    Boost

    2

    2

    ˆ ( ) (1 )(1 ( ' ))ˆ 1'( ) ( ) 1

    o i C

    o o

    v s V r Cs sL D RsDd s s

    Q

    '

    ' 1

    '' '

    o

    LoC

    DLC

    DQ r CL D r CD R D

    Buck/Boost

    2

    2

    ˆ ( ) (1 )(1 ( ' ))ˆ 1'( ) ( ) 1

    o i C

    o o

    v s V r Cs sDL D RsDd s s

    Q

    2 2

    '

    ' 1

    ( )( ') ' ( ')

    o

    C Lo

    DLC

    DQ r rL CD R D D

    C

    C

    R

    L

    RL

    oviv

    oviv

    Lr

    Cr

    Lr Cr

    92/270

    Dynamic Responses for Step Load Changes

    Intel: VRM (Voltage Regulator Module) and Enterprise Voltage Regulator-Down (EVRD) 11.0 Design Guidelines, Nov. 2006.

    Adaptive voltagepositioning offset

    VOFFSET (40mV)

    Nominal setpoint voltageVSET (2.0V)

    Dynamic voltagetolerance, VDYN-(100mV for 2s)

    Initial voltage drop is mainly due to the product

    of the load current step and ESR of the capacitors.

    V = I ESR.(ESL effects are ignored)

    Output voltageVOUT (50mV/Div)

    Steady state voltage athigh current is approximatelyVSET VOFFSET IOUT RSENSE

    Output current transientstep, I = 0 to 14A(5A/Div)

    m5.2 GX;-MV Sanyo F15006 ;H5.2 SENSEOUT RCL

    R. Redl, B. P. Erisman and Z. Zansky, “Optimizing the load transient response of the buck converter,” IEEE APEC Conf. Proc., pp. 170-176, Anaheim, CA, 1998.

  • Buck Converter with Load Current DisturbanceBlock Diagram Representation

    vi

    iL iC voio

    1sL rL

    rsCC

    1

    1R

    idiR

    iL io

    vc

    icrc

    rL

    vi vo

    id

    iR

    RC

    L

    D

    id

    t

    dI

    T

    Load Current Slew RateTId

    Q

    D

    Q

    94/270

    Modeling of a Buck Converter

    iv ovci

    LR

    cR

    L

    Lvxv dioR

    Ri

    CdcV D

    Load Disturbance

    iC vos1

    C1CQ

    )( 0tQ C

    cr

    cviv iLs1

    ovLr

    L1L

    )( 0tL

    di

    oR1

    Ri

    dcV DQ

    Inductor Capacitor

  • Modeling of a Buck Converter in CCM

    iv ovci

    Lr

    cr

    L

    Lv

    xv dioRRi

    CdcV D

    Load Disturbance

    iC vos1

    C1CQ

    )( 0tQC

    cr

    cviv iLs1

    ovLr

    L1L

    )( 0tL

    di

    oR1

    Ri

    dcV DQ

    Power MOSFET

    Switching Diode

    Resistive Load or Equivalent Constant Load

    Inductor Capacitor

    Q

    96/270

    Summary: Buck Converters at CCM

    L

    CD

    Q iL io

    vc

    icrc

    rL

    vi R vo

    idiR

    L

    C

    iL io

    vc

    icrc

    rL

    vi R vo

    idiRii

    Transfer Function Transfer Function

    21

    )(ˆ)(ˆ

    o

    Ci

    o

    sCsrV

    sdsv

    21

    )(ˆ)(ˆ

    o

    C

    i

    o

    sCsrD

    svsv

    2

    2

    111

    )(1

    )(ˆ)(ˆ

    oeq

    d

    o

    s

    sQs

    Rsisv

    21

    )(ˆ)(ˆ

    o

    L

    L

    iL

    sCsr

    rV

    sdsi

    21

    )(ˆ)(ˆ

    oi

    L

    sRCs

    RD

    svsi

    21

    )(ˆ)(ˆ

    o

    C

    d

    L

    sCsr

    sisi

    L

    C

    iL io

    vc

    icrc

    rL

    R vo

    idiR

    ii

    x d1

    averaging by using state duty ratio weighting

    x d2

    Switch-ON Period Switch-OFF Period

    x A x B uy C x E u

    2 2

    2 2

    x A x B uy C x E u

    1 1

    1 1

    x Ax Buy Cx Du

    A A AB B BC C CE E E

    where =

    1 1 2 2

    1 1 2 2

    1 1 2 2

    1 1 2 2

    d dd dd dd d

    D ONQ ON

    22 oo sQss

  • 97/270

    PWM Switch Model

    台灣新竹‧交通大學‧電機控制工程研究所‧電力電子實驗室~鄒應嶼 教授

    電力電子系統與晶片實驗室Power Electronic Systems & Chips Lab.交通大學 • 電機控制工程研究所

    Power Electronic Systems & Chips Lab., NCTU, Taiwan

    98/270

    PWM Switch Model

    Introduction PWM Switch and its Invariant Properties CCM Analysis

    DC and Small-Signal Model of PWM SwitchPWM Switch Model of Buck ConvertersPWM Switch Model of Boost ConvertersPWM Switch Model of Buck/Boost ConvertersPWM Switch Model of Cuk ConvertersAnalysis of PWM ConvertersRight-half Plane Zero of the ConvertersPWM Switch Model Including Storage-Time Modulation

    DCM AnalysisDC and Small Model of PWM SwitchAnalysis of PWM ConvertersZero of Control-to-Output Transfer Function in DCM

  • 99/270

    Pulse-Width Modulator

    For natural sampling,

    v c

    vp

    d ts ( )

    vpD T

    Tvv

    ON

    S

    c

    p

    ˆ( ) ( )m cd s K v s

    Kvm p

    1 constant

    100/270

    PWM Switch Model

    ( )ai t

    ( )cpv t

    cd

    1-d

    p

    ( )apv t

    a)(~ tic

    (common)

    (passive)

    (active)

    Instantaneous value

    PWM Switch Modeling[1] V. Vorperian, “Simplified Analysis of PWM Converters Using Model of PWM Switch Part I: Continuous

    Conduction Mode,” IEEE Trans. on Aero. and Electron. Sys., vol. 26, no. 3, pp. 490-496, May 1990.[2] V. Vorperian, “Simplified Analysis of PWM Converters Using Model of PWM Switch Part II: Discontinuous

    Conduction Mode,” IEEE Trans. on Aero. and Electron. Sys., vol. 26, no. 3, pp. 497-505, May 1990.[3] E. Van Dijk, J. N. Spruijt, D. M. O'Sullivan, and J. B. Klaassens, “PWM-switch modeling of DC-DC converters,”

    IEEE Transactions on Power Electronics,, vol. 10, no. 6, pp. 659 -665, Nov 1995.

  • 101/270

    Modeling of the Switch

    ( )ai t )(~ tic

    ( )apv t ( )cpv t

    vcp

    vap

    i Dia c

    v Dvcp ap

    )(~ of valueaverage thedenotes :Note tii aa

    During a PWM switching interval:

    ss

    sea TtDT

    DTttiti

    ,00),(~

    )(~

    ss

    sapcp TtDT

    DTttvtv

    ,00),(~

    )(~

    102/270

    Small-Signal Perturbation

    ccccaa

    ccaa

    ca

    idiDdIDIiI

    iIdDiI

    dii

    ˆˆˆˆˆ)ˆ)(ˆ(ˆ

    ˆˆ ˆ( )( )ˆ ˆˆ ˆ ˆ

    cp ap

    cp cp ap ap

    cp cp ap ap ap ap

    v dv

    V v D d V v

    V v DV V d Dv dv

    ˆˆ

    cp cp cp

    ap ap ap

    v V vv V v

    Make a small-signal perturbation at a DC operating point

    ˆ

    ˆa a a

    c c c

    i I i

    i I i

    d D d

    i Dia c

    v Dvcp ap

    We can obtain

  • 103/270

    DC and AC Analysis

    For dc analysis, eliminate all small signal perturbation terms, we can get itsequivalent dc model.

    I DIV DV

    a c

    cp ap

    For ac analysis, set all dc terms to zero and neglect second order nonlinear terms, we can get its equivalent small-signal ac model.

    cca iDdIi ˆˆˆ

    ˆˆ ˆcp ap apv V d Dv

    104/270

    PWM Switch Model

    DC Model:

    apcp

    ca

    DVVDII

    a c

    p

    1 D

    I a Ic

    Vap Vcp

    AC Model:

    dVvDv

    dIiDi

    apapcp

    cca

    ˆˆˆ

    ˆˆˆ

    ˆapV dD

    a c

    p

    1 DˆcI d

    aî cîciDˆ

  • 105/270

    DC Analysis of a Buck Converter

    DC Analysis

    rL

    rCR

    L

    C

    a

    p

    c

    Li

    o

    rRRD

    VV

    p

    a c

    1Vi Vo

    DR

    rL

    106/270

    AC Analysis of a Buck Converter

    Note:In the following, the hat above the small signal variables are neglected for simplicity.

    Small-signal equivalent circuit model of the buck converter.

    voRrC

    C

    rLL iL io

    vc

    ic

    id

    iR

    I dc

    dDVi ˆ

    p

    1iv̂

    Dii

    aia

    cic

    ii

    Vi

    iS

    iDvoR

    rC

    C

    rLL iL io

    vc

    ic

    id

    iR

  • 107/270

    AC Analysis: Control-to-Output Transfer Function

    Short the unrelated voltage source and open the unrelated current source

    voRrC

    C

    rLL iL io

    vc

    iR

    VD

    dap

    p

    a c

    1 Dii ic

    '

    108/270

    AC Analysis: Control-to-Output Transfer Function

    v VD

    d D

    v v R r sCr sL R r sC

    V d R sr Cs R r LC s r r C r RC L r RC R r

    cpi

    o cpC

    L C

    iC

    C L C L C L

    / /( / )( ) / /( / )

    ( )( ) ( ) ( )

    11

    12

    G s v sd s

    V R sr Cs RLC s r r C L r RC r RC R rd

    oi

    C

    L C L C L

    ( ) ( )( )

    ( )( ) ( )

    1

    2

    if rL

  • 109/270

    AC Analysis: Line-to-Output Transfer Function

    voRrC

    C

    rLL iL io

    vc

    id

    iR

    p

    a c

    1 Dvi

    ii ic'

    R r sC R r sCR r sCC

    C

    C

    / /( / ) ( / )/

    1 11

    110/270

    AC Analysis: Line-to-Output Transfer Function

    )()()()1(

    )1()1)(()1(

    )/1()/1)(()/1(

    /1)/1()(

    /1)/1(

    )/1//()()/1//(

    2LCLCLC

    Ci

    CCL

    Ci

    CCL

    Ci

    C

    CL

    C

    C

    iCL

    Ccpo

    icp

    rRRCrLRCrCrrsLCrRsCsrRDv

    CsrRCsrsRCsLrCsrRDv

    sCrRsCrRsLrsCrRDv

    sCrRsCrRsLr

    sCrRsCrR

    DvsCrRsLr

    sCrRvv

    Dvv

    G s v sv s

    D R sr Cs RLC s r r C L r RC r RC R rv

    o

    i

    C

    L C L C L

    ( ) ( )( )

    ( )( ) ( )

    1

    2

    if rL

  • 111/270

    AC Analysis: Disturbance-to-Output Transfer Function

    voRrC

    C

    rLL iL io

    vc

    id

    iR

    p

    a c

    1 Dii ic

    '

    112/270

    AC Analysis: Disturbance-to-Output Transfer Function

    LLLCCC

    LCLC

    LCC

    LCLC

    LCC

    LC

    LCC

    LC

    LC

    C

    LC

    C

    LC

    CLC

    d

    o

    rsLRCsrCrsrLCrsRLCsRRCsrrsLCrsrLCrsR

    sLrCsrsRCRRCsrrsLCrsrLCrsR

    sLrCsrsRCCsrRsLrCsrR

    sLrsCrRsCrRsLrsCrR

    sLrsCrR

    sCrR

    sLrsCrR

    sCrR

    sLrsCrR

    sCrRsLrsCrRiv

    22

    2

    2

    ))(1())(1()1())(1(

    ))(/1()/1())(/1(

    /1)/1(

    )(/1

    )/1(

    )//(/1

    )/1()//()/1//(

    vi

    R s r LC s L r r C rs R r LC s L r r RC r r C R r

    o

    d

    C L C L

    C C L C L L

    2

    2

    ( )( ) ( ) ( )

  • 113/270

    AC Analysis: Disturbance-to-Output Transfer Function

    if rL

  • 115/270

    AC Analysis: Disturbance-to-Output Transfer Function

    Q LR

    r r Lo C L

    1 1 ( )

    22

    2 11)(

    oo

    LCop

    Qss

    LCLrr

    RCsssZ

    s s sQ

    oo

    2 2

    111

    1

    1)(

    11

    221

    2

    2

    2

    sQ

    sR

    srLLCs

    rr

    LCr

    LCr

    CsrssZ

    oeq

    LL

    CL

    LCoq

    R req L

    11

    rr LC

    L

    C

    Q rLL

    11

    1

    116/270

    AC Analysis: Disturbance-to-Output Transfer Function

    The exact output impedance is derived as:

    LCRr

    Rrrrr

    LRCs

    Rrs

    LCr

    Lrr

    Csrs

    Rr

    RCrrCrr

    RLsLC

    Rrs

    rCrrLsLCrsrRCrrRCrrLsLCrRs

    rCrrLsLCrsRiv

    LCLLC

    C

    LCLC

    LLCLC

    C

    LCLC

    LLCLCC

    LCLC

    d

    o

    1)1()(11)1(

    )1(

    )1()()1(

    )(

    )()()()(

    2

    2

    2

    2

    2

    2

  • 117/270

    AC Analysis: Disturbance-to-Output Transfer Function

    111

    1)(1)(

    11

    221

    2

    22

    sQ

    sR

    sCrrLLCs

    rr

    LCr

    LCr

    Lrr

    CsrssZ

    oeq

    CLL

    CLLCLCoq

    R req L

    11

    rr LC

    L

    C

    Q Lr

    r CL

    C

    11

    1 1

    118/270

    Output Impedance of the Buck Converter

    LCRr

    Rrrrr

    LRCs

    Rrs

    LCr

    Lrr

    Csrs

    sisvsZ

    LCLLC

    C

    LCLC

    d

    oo 1)1()(11)1(

    )1(

    )()()(

    2

    2

    Z s v si s

    R

    sQ

    s

    soo

    deq

    o

    ( ) ( )( )

    ( )

    11 1 1

    2

    2

    Output Impedance of the Buck Converter:

    s sQ

    s R r

    LCQ L

    Rr r C

    LCrr

    Q Lr

    r C

    oo eq L

    oo

    L C

    L

    C

    CL

    2 2

    1 11

    1 1 1

    1 1 1

    ,

    ,( )

    ;

  • 119/270

    Difficulties with Modeling and Control of SPS

    台灣新竹‧交通大學‧電機控制工程研究所‧電力電子實驗室~鄒應嶼 教授

    電力電子系統與晶片實驗室Power Electronic Systems & Chips Lab.交通大學 • 電機控制工程研究所

    Power Electronic Systems & Chips Lab., NCTU, Taiwan

    120/270

    6. Difficulties with Modeling and Control of SPS

    Nonsmooth Systems (time and state discontinuity)Concepts of existence, uniqueness, stability not clearly defined for systems with discontinuous right hand sideConcept of chaotic dynamics relatively new To power electronics

  • 121/270

    Complex Behavior of Switching Power ConvertersChi Kong Tse, Complex Behavior of Switching Power Converters, CRC Press, 2004.

    (c) Simulation results

    (d) Experimental results

    E = 22-33 V, L = 20 mH, C = 47 F, R = 22 , Vref = 11 V, A = 8.4, T = 400 s, VL = 3.8 V, VU = 8.2 V.

    (a) Voltage-mode controlled buck converter.

    (b) Operation waveforms.

    u

    VL

    VU Vrampvcon

    t

    t3T2T1T0

    122/270

    Bifurcation of Voltage Mode Buck Converter in CCM

    RLC

    Z i

    Z f

    vref

    v c

    V vI i

    CLOCK RAMP

    vd

    Vc

    vc vc

    io vo

    rampv

    u

    VL

    VUVramp

    vcon

    t

    t3T2T1T0

    Li

  • 123/270

    Vcon & Vramp at Different Gains

    L = 20 mH, C = 47 F, R = 22 , T = 400 s, VL = 3.8 V, VU = 8.2 V, Vs = 33 V, Vref = 11 V.

    KP = 5.0

    KP = 3.0

    KP = 7.0

    KP = 9.0

    8 msec

    RL

    vrefv c

    vd

    io vo

    rampv

    Li

    PK

    C

    124/270

    Phase Portraits

    KP = 6.8KP = 3.0

    KP = 7.4 KP = 12.0

  • 125/270

    Inductor Current and Output Voltage at Kp = 12.0

    KP = 12.0Inductor Current

    Output Voltage

    126/270

    Simulation Results with Varying Source VoltageSource Voltage

    Output Voltage

    Inductor Curent

  • 127/270

    Experimental Setup for Measuring of a SPS

    Active LoadDC Power Supply

    Buck Converter

    Experimental Setup Experimental Buck Converter

    128/270

    Typical Waveforms

    IL

    VC

    IL

    VC

    Coupling switching noise

    5s

    1ms

    What happens?

  • 129/270

    Bifurcation Occurs in a Switching Power Supply

    IL

    IL

    IL

    IL

    IL

    IL

    VC

    VC

    VC

    VC

    IL

    VC

    130/270

    Intermittency, Parasitic and Common Mode Effects

    IL

    IL

    VC

    VC

    Icom

  • 131/270

    Homework Assignments

    Power Electronic Systems & Chips Lab., NCTU, Taiwan

    台灣新竹‧交通大學‧電機控制工程研究所‧電力電子實驗室~鄒應嶼 教授

    電力電子系統與晶片實驗室

    Power Electronic Systems & Chips Lab.交通大學 • 電機控制工程研究所

    132/270

    Simulation of a Buck Converter

    S. A. Shirsavar, "Teaching Practical Design of Switch-Mode Power Supplies," IEEE Trans. on Education, vol. 47, no. 4, pp. 467-473, Nov. 2004.

    Vinvca

    iL

    LvL vo

    io

    C R

    low-pass filteris

    ic

    Input voltage Vin = 12 VNominal output voltage Vout = 5 V

    Switching Frequency fs = 76.5 kHzInductor L = 100 HCapacitor C = 2.4 FLoad resistor R => 25

    id

  • 133/270

    Buck Converter

    v VDL HrC FrRf KHz

    i

    L

    C

    s

    10502000 14700 05550

    %

    .

    .

    ohm

    ohm ohm

    L

    RvorC

    C

    rL

    vi D

    Q

    iL

    io

    vc

    iciSiD

    Control-to-Output Transfer Function

    ( )( ) ( )

    v sd s

    V r CssQ

    so

    iC

    o o

    11 12

    o o

    L CLC

    Q LR

    r r C

    1 1 1 ,( )

    134/270

    Control Loop Design

    Power Electronic Systems & Chips Lab., NCTU, Taiwan

    台灣新竹‧交通大學‧電機控制工程研究所‧電力電子實驗室~鄒應嶼 教授

    Chapter 12 Feedback Loop Analysis and Stability,Switching Power Supplies A to Z,Sanjaya Maniktala, Newnes, July 6, 2006.

    Designing Control Loops for Linear and Switching Power Supplies: A Tutorial Guide,Christophe Basso, McGraw-Hill, Sept. 30, 2012.

  • Voltage Mode Control of DC-DC Converters

    PWMModulator

    LoopCompensator

    v o

    digital signal processor analog signal processor

    vR

    d

    Output voltage feedback only!

    load

    LR di~

    Buck Converter Boost Converter

    Buck/Boost Converter C,uk Converter

    vi vo

    L

    CD

    L

    C

    D

    vovi

     

    L C

    D

    vovi

         

    L1

    C2D

    C1

    vi vo

    Switching power converters

    oi

    vgosZ

    sv~

    sV

    136/270

    Control Loop Design for DC-DC Converters

    L. H. Dixon, Closing the Feedback Loop, Unitrode, 1988.

    Feedback Control to Achieve: Good Voltage Regulation (Load Variation & Line Variation) High Stability (Load Variation & Line Variation)

    vref

    d

    ve

    v v f do i ( )

    Fm

    ConverterPower Stage

    )(sA

    Rvi

    Single-Loop-Controlled Switching Regulator

  • 137/270

    Small Signal Modeling of Voltage Mode ControlSwitching Mode DC-DC Regulator

    BuckBoost

    Buck/Boost

    Power Stage

    PulseModulator

    ErrorProcessor rv

    ~

    ov~

    cv~

    oi~

    d~

    iv~

    LoadDynamics

    138/270

    Small Signal Transfer Functions

    ˆ ˆ0, 0

    ˆ( )ˆ

    o

    ov

    i d i

    vG sv

    : Open-loop input-to-output

    G vdd

    o

    v ii o

    , 0 0

    K dv c

    PWM

    : Open-loop output impedance

    : Control to output transfer function

    : PWM modulator gain

    Z vip

    o

    o d v i

    , 0 0

    ˆ( )ˆ

    c

    o

    vA sv

    KV p

    PWM 1

    : Compensator gain

    : Power stage transfer function

    : PWM dc gain

    G Z Gv p d, ,

    DC gain: DV Vc p

    1

    A(s) : Compensator to be designed

  • 139/270

    Small Signal Model of Voltage Mode Control

    dv

    iv

    vv o

    o

    o

    i

    o ~~

    ;~~

    ;~~

    KPWM A(s)

    )~,~,~(~ divfv oio Zp

    Gd

    -A(s)

    Gv

    KPWM

    )(1Z

    sLZ

    Z popcpo

    )()()( sGKsAsL dPWM)(1

    sL

    GGG vovcvo

    oi~

    d~

    iv~

    oi~

    d~

    iv~ov~

    cv~cv~

    ov~

    The design problem is to synthesize a loop compensator L(s) to satisfy given specifications of Gvc(s) and Zpc(s).

    140/270

    Small Signal Transfer Functions

    G s vvv

    o

    i d io

    ( ) ,

    0 0

    : Open-loop input-to-output

    G vdd

    o

    v ii o

    ,0 0

    cvdkˆˆ

    PWM

    : Open-loop output impedance

    : Control to output transfer function

    : PWM modulator gain

    Z vip

    o

    o d vi

    , 0 0

    A s vv

    c

    o

    ( )

    KVp

    PWM 1 : Compensator gain: PWM dc gain

  • 141/270

    Control Concept for Switching Regulators

    vo

    vc

    io

    d

    vi

    ; ;

    vv

    vi

    vd

    o

    i

    o

    o

    o

    K PWM A(s)

    iîdi

    ii

    vi i

    o

    i

    i

    iˆˆ

    ;ˆˆ

    ;ˆˆ

    Loop compensator

    Disturbances Results

    Control action

    142/270

    Single-Loop Control Example

    vovi

    PWM Modulator

    Zi

    Zf

    vref

    DriverStage

    Buck Converter

    Power Stage

    Error Amplifierand Compensation

    VoltageDividerNetwork

    vc

    d

    R

    VP

  • 143/270

    Single-Loop-Controlled PWM Converter

    Z i

    Z f

    v ref

    Logic&

    DRIVE

    +

    A

    Se

    vi

    vo

    B

    FvFm

    RL

    Features of Voltage Mode Control: Error voltage compared to external ramp Se. Unique loop gain for control loop design Analog signal can be measured at B. Digital signal can be measured at A.

    144/270

    Control Architecture

    台灣新竹‧交通大學‧電機控制工程研究所‧電力電子實驗室~鄒應嶼 教授

    電力電子系統與晶片實驗室Power Electronic Systems & Chips Lab.交通大學 • 電機控制工程研究所

    Power Electronic Systems & Chips Lab., NCTU, Taiwan

  • 145/270

    The Purpose of Feedback Control

    PWMModulator

    LoopCompensator

    vgvo

    vR

    load

    RL di~

    Buck Converter

    Power Flow Control Efficiency & Stability & Power Quality Output Voltage Regulation Zero Output Impedance Input Voltage Disturbance Rejection Zero Audio Suspetibility Control with Estimated Feedback Signals

    146/270

    Control of Basic PWM DC-DC Converters

    PWMModulator

    LoopCompensator

    vg

    vo

    vR

    Efficiency

    load

    RL di~

    Switching power converters

    Output Impedance

    GateDrive

    osZ

    sv~

    sV

    Buck ConverterBuck-Boost ConverterBoost Converter

  • 147/270

    Multiple-Loop Control Scheme

    PWMModulator

    Voltage LoopCompensator

    vo

    vRCurrent LoopCompensator

    CurrentSensing

    CurrentLoop

    VoltageLoop

    load

    RL di~Buck ConverterBuck-Boost ConverterBoost Converter

    vgosZ

    sv~

    sV

    Switching Power Converters

    CarrierGenerator

    148/270

    Pioneer Voltage-Mode PWM Control IC SG1524

    The First PWM IC: SG1524, Bob Mammano, 1976.

    SG1524: -55°C ~ 125°CSG2524: -25°C ~ 85°CSG3524: 0°C ~ 70°C

  • Pioneer Current-Mode PWM Control IC uc3842

    7/12

    5/9

    4/7

    2/3

    1/1

    3/5

    Vcc

    VFB

    ground

    compCurrent

    sense

    OSC

    34V

    2.50V

    UVLO

    Vrefgoodlogic

    TS2R

    R 1VPWMlatch Power

    ground

    output

    CurrentSense

    comparator

    Vref5.0V

    50mAInternalbias

    5VrefRS /

    Erroramp

    RT /CT

    R

    Vc

    8/14

    7/11

    6/10

    5/8

    Block Diagram of UC3842/3/4/5

    ccV

    RS

    Q

    Latch

    Clock

    PWMcomparator

    Erroramplifier

    reference

    Li

    eV

    sR

    sV

    RV

    oV

    RESET

    LatchOutput(PWM)

    Clock (SET)

    Li

    eV

    sV

    150/270

    Voltage-Mode Control vs. Current-Mode Control

    REF: Bob Bell, National Semiconductor, "Virtual-current mode: current-mode control without the noise," EDN, Feb. 16, 2006.

    Voltage Mode Control Current Mode Control

    VIN VINVOUT VOUTL1 L1

    D1 D1

    Q1 Q1

    FET DRIVER

    CLOCKSAWTOOTHGENERATOR

    1.25VREFERENCE

    Q RS

    Q RS

    CLOCK1.25V

    REFERENCE

    SWITCH DRIVER

    SWITCH-CURRENTMEASURE

    PWMCOMPARATOR

    PWMCOMPARATOR

    ERRORAMPLIFIER

    ERRORAMP

  • 151/270

    Control Block Diagram of a Current-Mode Controller

    152/270

    Peak-Current-Mode-Control of a Buck Converter

  • 153/270

    Current-Mode Control vs. Voltage-Model Control

    A. J. Forsyth and S. V. Mollov, "Modelling and control of DC-DC converters," IEEE Power Engineering Journal, vol. no. 5, pp. 229-236, Oct. 1998.

    (a) Voltage-Mode Control (b) Current-Mode Control

    154/270

    Current-Mode vs. Voltage-Mode Control

    Control-to-output bode plots for voltage and current mode converters. (The current mode converter has an extra 90 degrees of phase.)

  • 155/270

    Voltage Mode Control of DC-DC Converters

    PWMModulator

    LoopCompensator

    vg vo

    digital signal processor analog signal processor

    vR

    d

    Output voltage feedback only!

    load

    LR di~

    Buck Converter Boost Converter

    Buck/Boost Converter C,uk Converter

    vi vo

    L

    CD

    L

    C

    D

    vovi

     

    L C

    D

    vovi

         

    L1

    C2D

    C1

    vi vo

    Switching power converters

    oi

    156/270

    Voltage Mode Control

    REF: Voltage-mode control and compensation - Intricacies for buck regulators (Timothy Hegarty, EDN 2008)

    Converter power stage

    ModulatorType III compensator

    PWMcomparator

    Erroramp

    COMP

    SW

    VIN

    Vout

    IoutRLRESRCO

    LORDCR

    RFB1FB

    RC1CC1

    CC2

    RC2

    RFB2

    CC3

    Vref

    Driver&

    deadtime

    D

    PWM rampVramp

  • 157/270

    Robert W. Erickson and Dragan Maksimovic, Fundamentals of Power Electronics, Kluwer Academic Publishers, 2nd Ed., February 2001.

    Control Loop Design Basics

    電力電子系統與晶片實驗室Power Electronic Systems & Chips Lab.交通大學 • 電機控制工程研究所

    Power Electronic Systems & Chips Lab., NCTU, Taiwan

    158/270

    Control Loop Design Basics

    1. Introduction2. Effect of Negative Feedback

    Feedback reduces the transfer function from disturbances to the output Feedback causes the transfer function from the reference input to the output to

    be insensitive to variations in the gains in the forward path of the loop

    3. Construction of the important quantities 1/(1+T) and T/(1+T) andthe closed-loop transfer functions

    4. Stability The phase margin test The relation between phase margin and closed-loop damping factor Transient response vs. damping factor

  • 159/270

    Control Loop Design Basics ..

    5. Regulator design Feedback Lead (PD) compensator Lag (PI) compensator Combined (PID) compensator Design example

    6. Measurement of loop gains The Voltage injection Current injection Measurement of unstable systems

    7. Summary of key points

    160/270

    Modeling of Switching Converters

    tvg tvo

    tiload

    Pulse-widthmodulator

    Switching converter

    transistor gate driver

    Load

    tvc tδ tδ

    tsTsdT tvo

    tvg

    tiload td

    divftv loadg ,,

    disturbances

    Control input

    Switching converter

    Output voltage of a switchingconverter depends on duty cycled, input voltage vg, and loadcurrent iload

    td

  • 161/270

    The DC Regulator Application

    Objective: maintain constantoutput voltage vo(t) = V, in spite ofdisturbances in vg(t) and iload(t).Typical variation in vg(t) : 100Hz or120Hz ripple, produced by rectifiercircuit.

    Load current variations: a significant step-change in load current, such as from50% to 100% of rated value, may be applied.

    A typical output voltage regulation specification: 5V ± 0.1V.

    Circuit elements are constructed to some specified tolerance. In high volumemanufacturing of converters, all output voltages must meet specifications.

    tvo tvg

    tiload td

    divftv loadgo ,,

    disturbances

    Control input

    Switching converter

    162/270

    The DC Regulator Application

    So we cannot expect to set the duty cycle to a single value, and obtain a givenconstant output voltage under all conditions.

    Negative feedback: build a circuit that automatically adjusts the duty cycle asnecessary, to obtain the specified output voltage with high accuracy, regardless ofdisturbances or component tolerances.

  • 163/270

    Negative Feedback: A Switching Regulator System

    gv v

    tiload

    Pulse-widthmodulator

    Switching converter

    transistor gate driver

    Load

    cvδ

    Powerinput

    H(s)sensorgain

    error signal

    compensator

    sGc ev

    refvreference

    input

    +–

    tvo

    164/270

    Negative Feedback

    tvo tvg

    tiload td

    divftv loadgo ,,

    disturbances

    Control input

    Switching converter

    Pulse-widthmodulator

    cv

    error signal

    sensorgain

    tverefvreference

    input

    +– compensator

  • 165/270

    Effect of Negative Feedback

    台灣新竹‧交通大學‧電機控制工程研究所‧電力電子實驗室~鄒應嶼 教授

    電力電子系統與晶片實驗室Power Electronic Systems & Chips Lab.交通大學 • 電機控制工程研究所

    Power Electronic Systems & Chips Lab., NCTU, Taiwan

    166/270

    Effect of Negative Feedback

    tiloadC tvgˆ svoˆ sdsj ˆ

    eL

    R

    sdse ˆ

    1 : M(D)

    Small signal model: open-loop equivalent circuit mode of a buck converter

    Output voltage can be expressed as

    where

    sisZsvsGsdsGtv loadoutgvgvdo ˆˆˆˆ

    0ˆ0ˆ0ˆ

    0ˆ0ˆ

    0ˆ ˆˆ

    ˆˆ

    ˆˆ

    gloadload

    g

    vdload

    oout

    id

    g

    ovg

    sisv

    ovd si

    svsZsvsvsG

    sdsvsG

  • 167/270

    Voltage Regulator System Small-Signal Model

    Use small-signal converter model

    Perturb and linearize remainder of feedback loop

    . ˆ

    ˆ

    etctvvtv

    tvvtv

    eee

    refrefref

    C tvgˆ svoˆ sdsj ˆ

    eL

    R

    sdse ˆ1 : M(D)

    tiload

    error signal

    sveˆ svrefˆ

    referenceinput

    +–

    svcˆ

    H(s)

    sGccompensator Pulse-width

    modulator

    sd̂

    svsH oˆ

    sensorgain

    MV1

    168/270

    H(s)

    Regulator System Small-Signal Block Diagram

    error signal

    sveˆ svrefˆ

    referenceinput

    svcˆ sGc

    compensator Pulse-widthmodulator

    svsH oˆ

    Sensor gain

    MV1 sd̂ sGvd

    sGvd svgˆac line variation

    svoˆ

    tiloadˆload current variation

    output voltagevariation

    duty cyclevariation

    Converter power stage

    sZout

    Mvdc

    outload

    Mvdc

    vdg

    Mvdc

    Mvdcrefo VGHG

    ZiVGHG

    GvVGHG

    VGGvv/1

    ˆ/1

    ˆ/1

    /ˆˆ

  • 169/270

    Solution of Block Diagram

    Manipulate block diagram to solve for . Result is

    Loop gain T(s) = products of the gains around the negative feedback loop.

    which is of the form

    svoˆ

    Mvdc

    outload

    Mvdc

    vdg

    Mvdc

    Mvdcrefo VGHG

    ZiVGHG

    GvVGHG

    VGGvv/1

    ˆ/1

    ˆ/1

    /ˆˆ

    " "/with 1

    ˆ1

    ˆ1

    1ˆˆ

    gainloopVsGsGsHsTT

    ZiT

    Gv

    TT

    Hvv

    Mvdc

    outload

    vggrefo

    170/270

    Feedback Reduces Sensitivity to Load Disturbances

    Original (open-loop) line-to-output transfer function:

    With addition of negative feedback, the line-to-output transfer function becomes:

    Feedback reduces the line-to-output transfer function by a factor of

    If T(s) is large in magnitude, then the line-to-output transfer function becomessmall.