34
Phase-Controlled AC-DC Converters NCTU 2005 Power Electronics Course Notes 1 page 1 2005419鄒應嶼 教授 Filename: \PEMC-03:投影片\A01 投影片:電力電子(研究所)\PE-07.整流器.相位控制.ppt Phase-Controlled AC-DC Converters 國立交通大學 電機與控制工程研究所 POWERLAB NCTU 電力電子晶片設計與DSP控制實驗室 Power Electronics IC Design & DSP Control Lab. 台灣新竹交通大學 電機與控制工程研究所 國立交通大學電力電子晶片設計與DSP控制實驗室 Power Electronics IC Design & DSP Control Lab., NCTU, Taiwan http://powerlab.cn.nctu.edu.tw/ page 2 Phase-Controlled AC-DC Converters Introduction Thyristor Circuits and Their Control Single-Phase Converters Three-Phase Converters Other Three-Phase Converters

Phase-Controlled AC-DC Converterspemclab.cn.nctu.edu.tw/W3news/開授課程-old/電力... · 2005-04-19 · Phase-Controlled AC-DC Converters NCTU 2005 Power Electronics Course Notes

  • Upload
    others

  • View
    23

  • Download
    0

Embed Size (px)

Citation preview

  • Phase-Controlled AC-DC Converters

    NCTU 2005 Power Electronics Course Notes 1

    page 1

    2005年4月19日

    鄒 應 嶼 教 授

    Filename: \PEMC-03:投影片\A01 投影片:電力電子 (研究所)\PE-07.整流器.相位控制.ppt

    Phase-Controlled AC-DC Converters

    國立交通大學 電機與控制工程研究所

    POWERLABNCTU

    電力電子晶片設計與DSP控制實驗室Power Electronics IC Design & DSP Control Lab.

    台灣新竹交通大學 • 電機與控制工程研究所

    國立交通大學電力電子晶片設計與DSP控制實驗室Power Electronics IC Design & DSP Control Lab., NCTU, Taiwan

    http://powerlab.cn.nctu.edu.tw/

    page 2

    Phase-Controlled AC-DC Converters

    Introduction

    Thyristor Circuits and Their Control

    Single-Phase Converters

    Three-Phase Converters

    Other Three-Phase Converters

  • Phase-Controlled AC-DC Converters

    NCTU 2005 Power Electronics Course Notes 2

    page 3

    Line-Frequency Controlled Converter

    +

    Vd

    Id

    1- or 3-phase (50/60 Hz) Id

    Vd

    0

    Rectification

    Inversion

    Limited by circuit configuration and the input voltage

    Limited by the components′current rating

    (a) (b)

    page 4

    Single-Phase Thyristor Phase-Controlled Converter

    Circuit Type Typical hp Ripple frequencyQuadrant operation

    Half-wave Below 1/2 hp fs

    Semi-converter

    Up to 20 hp (100

    hp in traction

    systems)

    2fs

    Full-converter

    Up to 20 hp (100

    hp in traction

    systems)

    2fs

    2fsUp to 20 hpDual-

    converter

    Ia

    EaFrequencyfs

    ~

    ~

    ~

    ~

    +

    Ia

    Ea

    +

    Ea

    +

    Ea

    +

    Ia

    ~

    Ia

    Ia

    Ia

    Ia

    Ea

    Ea

    Ea

    Ea

  • Phase-Controlled AC-DC Converters

    NCTU 2005 Power Electronics Course Notes 3

    page 5

    Three-Phase Thyristor Phase-Controlled Converter

    Half-wave 3fs

    Semi-converter 3fs

    Full-converter 6fs

    6fsDual-

    converter

    Circuit Type Typical hp Ripple frequencyQuadrant operation

    10-50

    15-150

    100-150

    200-2000

    Ea

    +

    Ia

    Ea

    +

    Ea+

    Ea+

    Supply frequencyfs

    Ia

    Ia

    Ia

    ABC

    ABC

    ABC

    ABC

    Ia

    Ea

    Ia

    Ia

    Ia

    Ea

    Ea

    Ea

    page 6

    Basic Thyristor Converters

    ~

    +

    vd

    ~

    id

    RiG+

    −vs

    R

    ivL+ −L

    vR=Ri

    +

    +

    vdiG

    +

    −vs

    0 0

    0

    00

    0

    ω t

    ω t

    ω t

    ω t

    α π 2π

    vd

    ii , vd

    vsiG

    Area A1

    Area A2

    vR , vd

    vd vR

    vsvdvd

    π vd

    vL

    θ1

    iG

    ( ) RsL vvdtdiLtv −==

    ( ) ( ) ζζω

    ωω

    αdv

    Lti

    t

    L∫=1

  • Phase-Controlled AC-DC Converters

    NCTU 2005 Power Electronics Course Notes 4

    page 7

    Basic Thyristor Converters (continued)

    ~

    i

    +

    −vs

    v thy+

    +

    vd

    −vL

    + −L

    +

    EdiG

    0 ω t

    vd

    iθ1

    Area A2

    0

    vd

    Area A1

    Ed i2π

    vs

    vdθ2 θ3 θ4

    0v thy

    ω t

    0 ω tiG

    ( ) dsL EvdtdiLtv −==

    ( ) ( )[ ]∫ −=t

    ds dEvLti

    ω

    θζζ

    ωω

    2

    1

    Ed

    page 8

    Thyristor Gate Triggering

    t

    t

    t

    0

    0

    0

    vcontrol

    stVωα

    stvωα

    v synchronization

    Gate-triggersignal

    Gate-trigger signal

    vcontrol

    Comparatorand Logic

    v synchronization

    Saw-tooth GeneratorAC line

    voltage

    t

    vst

    t

    vst

    vcontrol

    +−+

    stVv

    ˆ180control°=°α

  • Phase-Controlled AC-DC Converters

    NCTU 2005 Power Electronics Course Notes 5

    page 9

    Practical Thyristor Converters

    ~+

    −vs

    Ls

    id

    +

    vd load

    ~

    id

    +

    vd

    Ls

    ia~

    ~

    a+−

    n load

    Ldvan

    (a) single-phase thyristor converter (b) three-phase thyristor converter

    Line inductanceLoad inductance

    Line InductanceLoad InductanceLoad Bias VoltageContinuous/Discontinuous Thyristor Current

    page 10

    Single-Phase Converter

    Single-phase thyristor converter with Ls = 0 and a constant dc current.

    Id

    +

    vd

    T1

    T2

    ~ Id

    T3

    T4

    is

    +

    −vs

    ~

    is

    +

    −vs

    vd

    +

    T1

    T3

    T4

    T2(a) (b)

  • Phase-Controlled AC-DC Converters

    NCTU 2005 Power Electronics Course Notes 6

    page 11

    Waveforms of the Single-Phase Converters

    is

    is

    vs

    0

    1.2 3.4

    ωt=0ωt

    (a) α = 0

    vd

    vd

    3.41.23.4

    ω t0

    ωt=0

    0

    α α

    α

    ω tπ

    vsvs

    is

    (b) α = finite

    ααπ

    ωωπ

    απ

    ααcos9.0cos22)(sin21 sssd VVtdtVV === ∫

    +

    page 12

    Normalized Output DC Voltage

    Vdo is the average voltage with α=0 and Ls=0

    Normalized Vd as a function of α.

    0 α

    do

    d

    VV

    Rectifier mode

    Inverter mode

    1.0

    -1.0

    0° 90° 180°

    sssdo VVtdtVV 9.022)(sin21

    0=== ∫ πωωπ

    π

    )cos1(9.0 αα −=−=∆ sddodo VVVV

  • Phase-Controlled AC-DC Converters

    NCTU 2005 Power Electronics Course Notes 7

    page 13

    Average Output Power

    ∫ ∫==T T

    dd dtivTdttp

    TP

    0 0

    1)(1

    αcos9.0)1(0 ds

    T

    dddd IVVIdtvTIP === ∫

    +

    vd

    T1

    T2

    ~ Id

    T3

    T4

    is

    +

    −vs

    page 14

    Harmonics and THD of Line Current is

    φ1= α

    vs

    ωt0

    isis1

    12 sI

    1.0

    h

    1s

    sh

    II

    1 3 7 9 11 13 15 17 19 21 235

    31

    51

    71

    91

    L+−+−+−= )](5sin[2)](3sin[2)(2)( 531 αωαωαωω tItItIti ssss

    dds IIi 9.022

    1 == π

    hII shsh =

    ds II =

    %43.48

    100THD%1

    21

    2

    =

    −×=

    s

    ss

    III

  • Phase-Controlled AC-DC Converters

    NCTU 2005 Power Electronics Course Notes 8

    page 15

    Power, Power Factor, and Reactive Volt-Amperes

    S

    α135° 180°90°45°0

    S1Q1P

    αφ coscosDPF 1 ==

    αcos9.0DPFPF 1 ==s

    s

    II

    1cosφssIVP =

    αcos9.0 ss IVP =

    αφ sin9.0sin 111 dsss IVIVQ ==

    2/121

    2111 )( QPIVS s +==

    φ1= α

    vs

    0

    isis1

    12 sI

    page 16

    Effect of Ls

    Single-phase thyristor converter with a finite Ls and a constant dc current.

    +

    vd~ Idis

    +

    −vs

    vLs+ −

    What is the effect of the line inductance?

    Ls

  • Phase-Controlled AC-DC Converters

    NCTU 2005 Power Electronics Course Notes 9

    page 17

    Waveforms of the Single-Phase Converters with Line Inductance

    vs

    ωt0

    isis1

    (a)

    (b)

    u21

    1 +=αθ

    vd

    ωt0

    Au

    vsuα

    dtdiLvv sssLs ==During the commutation interval:

    ∫∫ −+

    == dd

    I

    I dssss

    uILdiLtdtV ωωωω

    α

    α2)()(sin2

    ∫+

    =u

    su tdtVAα

    αωω )(sin2

    page 18

    Voltage Drop by the Line Inductance

    dssu ILuVA ωαα 2)]cos([cos2 =+−=

    s

    ds

    VILu

    22cos)cos( ωαα −=+

    πω

    πdsu

    duILAV 2==∆

    dssd ILVV ωπα 2cos9.0 −=

  • Phase-Controlled AC-DC Converters

    NCTU 2005 Power Electronics Course Notes 10

    page 19

    Example 6.1: Commutation Interval

    φ1= α

    vs

    ωt0

    isis1

    12 sI

    In the converter circuit as the following, Ls is 5% with the rated voltage of 230 V at 60 Hz and the rated volt-amperes of 5 kVA. Calculate the commutation angle u and Vd/Vdowith the rate input voltage, power of 3 kW, and α = 30°

    Example 6.1

    page 20

    Solution of Example 6.1

    A74.21230

    5000rated ==I

    Ω== 58.10rated

    ratedbase I

    VZ mH4.15.0 base ==ωZLs

    kW32cos9.0 2 =−== dsdsddd ILIVIVP ωπα

    06.892853.5332 =+− dd II

    A3.17=dI

    °= 9.5u

    The rated current is

    The base impedance is

    The average power is

    s

    ds

    VILu

    22cos)cos( ωαα −=+

    dssd ILVV ωπα 2cos9.0 −= V5.173=dV

  • Phase-Controlled AC-DC Converters

    NCTU 2005 Power Electronics Course Notes 11

    page 21

    Input Line Current is

    )21cos(DPF u+≅ α

    ddss IVIV =DPF1 )2/cos()/2(cos9.0 2

    1 uVILIVI

    s

    dsdss +

    −≅α

    ωπα

    vs

    ωt0

    isis1

    u21

    1 +=αθ

    dssd ILVV ωπα 2cos9.0 −=

    page 22

    Practical Thyristor Converters

    ~ is+

    −vs

    +

    vd

    Ed

    Ls

    Ld

    +−

    rd = 0

    Line InductanceLoad InductanceLoad ResistanceLoad Back emf

  • Phase-Controlled AC-DC Converters

    NCTU 2005 Power Electronics Course Notes 12

    page 23

    Waveforms

    vd

    ωt0

    vs

    id

    vdEd

    min,)/2(cos9.0 dssd ILVV ωπα −≅

    dd

    dddd EdtdiLirv ++=

    ∫ ∫∫ ++=T TI

    I ddd

    dd

    T

    dd

    dEdi

    TLdti

    Trdtv

    T 0)(

    )0(0

    1dddd EIrV +=

    where Id,min is the minimum value of id that occurs at ωt=α.

    dddd EIrV +=

    page 24

    Example 6.2: PSPICE Simulation

    The signal-phase thyristor converter as the following is supplied by a 240 V, 60 Hz source.

    Assume Ls = 1.4 mH and the delay angle α = 45°. The load can be represented by Ld = 9 mH and Ed = 145 V. Using Pspice, obtain the vd and is waveforms and calculate Is1, Is, DPF, PF, and %THD.

    Example 6.2

    ~is+

    −vs

    +

    vd

    Ed

    Ls

    Ld

    +−

    rd = 0

  • Phase-Controlled AC-DC Converters

    NCTU 2005 Power Electronics Course Notes 13

    page 25

    Solution of Example 6.2

    φ1= 54.84°

    vs

    is

    α=45°

    ωt0

    is1

    Is1 = 59.68 AIs = 60.1 ADPF = 0.576PF = 0.572

    THD = 12.3 %

    Solution

    page 26

    PSPICE Input File for Example

    * Signal-Phase, Thyristor-Bridge Rectifier.PARAM PERIOD = {1/60}, ALFA = 45.0, PULSE_WIDTH=0.5ms.PARAM HALF_PERIOD ={1/120}*LS1 1 2 0.1mH IC = 10ALS2 2 3 1.3mH IC = 10ALD 4 5 9mHVD 5 6 145V*XTHY1 3 4 SCR PARAMS: TDLY= 0 ICGATE=2VXTHY3 0 4 SCR PARAMS: TDLY= {HALF_PERIOD} ICGATE=0VXTHY2 6 0 SCR PARAMS: TDLY= 0 ICGATE=2VXTHY4 6 3 SCR PARAMS: TDLY= {HALF_PERIOD} ICGATE=0V*VS 1 0 SIN(0 340V 60 0 0 {ALFA})*.TRAN 50us 100ms 0 50us UIC.PROBE.FOUR 60.0 v(1) i(ls1) i(ld)

    .SUBCK SCR 101 103 PARAMS: TDLY = 1ms ICGATE = 0V*Power Electronics: Simulation, Analysis Education……by N. Mohan.SW 101 102 53 0 SWITCHVSENSE 102 103 0VRSNUB 101 104 200CSNUB 104 103 1uF*

  • Phase-Controlled AC-DC Converters

    NCTU 2005 Power Electronics Course Notes 14

    page 27

    PSPICE Input File for Example (continued)

    VGATE 51 0 PULSE(0 1V {TDLY} 0 0 {PULSE_WIDTH} {PERIOD})RGATE 51 0 1MEGEGATE 52 0 TABLE {I(VESNSE) + V(51)} = (0.0, 0.0) (0.1, 1.0) (1.0, 1.0)RSER 52 53 1CSER 53 0 1uF IC={ICGATE}*.MODEL SWITCH VSWITCH (RON=0.01).ENDS

    .END

    PSPICE input circuit for example 6.2

    ~ is+

    −vs

    +

    vd

    XTHY1Ls1

    VD

    3

    24

    Ld

    1

    0

    23

    4 5

    6

    +

    −vm

    Ls1

    id

    page 28

    Discontinuous-Current Conduction

    Waveforms in a discontinuous-current-conduction mode.

    α

    ωt

    0id

    vdvs

    Ed

    Period of discontinuity

    At light loads with low values of Id , the id waveform becomes discontinuous!

  • Phase-Controlled AC-DC Converters

    NCTU 2005 Power Electronics Course Notes 15

    page 29

    Vd versus Id in the Single-Phase Thyristor Converter

    0

    Vd

    Id0 10 20 30 40 50 60 70 80

    50

    100

    150

    200

    250

    300

    350

    α = 45°α = 30°α = 0°

    α = 60°

    page 30

    Inverter Mode of Operation

    ~ is+

    −vs

    +

    vd Id

    Ls 1 3

    4 2

    ω t

    0 ωtωt

    0

    0

    vsis

    vd3, 4

    1, 23, 4

    α 3, 4α 1, 2(iG) 1, 2 (iG) 3, 4

    (a) Inverter, assuming a constant dc current (b) Waveforms

    °

  • Phase-Controlled AC-DC Converters

    NCTU 2005 Power Electronics Course Notes 16

    page 31

    Waveform Analysis

    ~is+

    −vs

    +

    vd Ed

    Ls 1 3

    4 2

    +

    id

    Ld(vthy)3−

    + Id

    α 3

    Vd

    α 2

    α 1

    Id=Id10

    Ed=Ed1

    (a) Thyristor inverter with a DC voltage source (b) Vd versus Id

    dsdodd ILVVE ωπα 2cos −==

    Average voltage across the output:

    page 32

    Voltage Across a Thyristor in the Inversion Mode

    0ω t ω t0(iG) 1.2(iG) 3.4

    0 ωtis

    vs

    α 3.4

    (vthy)3

    u γ

    )(180 u+−°= αγ

    The extinction time interval tγ = γ/ω should be greater than the thyristor turn-off time tq . Otherwise, the thyristor will prematurely begin to conduct, resulting in the failure of current to commutate from one thyristor pair to the other.

  • Phase-Controlled AC-DC Converters

    NCTU 2005 Power Electronics Course Notes 17

    page 33

    Inverter Start-up

    0 ω tω t 0(iG) 1.2 (iG) 3.4

    0 ω tid

    vs vsid

    vdvd

    Ed

    The soft start of a phase-controlled thyristor converter operating in inverter mode can be achieved by setting a large delay angle close to 180°.

    α

    page 34

    Three-Phase Converters

    Three-phase thyristor converter with Ls = 0 and a constant dc current.

    ~+

    vd

    ia

    ~

    ~

    a

    b

    c

    T1 T3 T5

    T4 T6 T2

    nib

    ic

    P

    Id

    N

    ~

    ~

    ~

    n

    ia

    ib

    ic

    a

    b

    c

    Id

    +

    vd

    P

    N

    T1T3T5

    T4T6T2

    (a) (b)

  • Phase-Controlled AC-DC Converters

    NCTU 2005 Power Electronics Course Notes 18

    page 35

    Waveforms

    0 ω t

    iavcn

    vPnvan vbn Vdo

    vcn

    ω t=0

    ωt=0

    iavNnvPn van vbn vcn

    0

    0

    ω t

    ω t

    6 2

    1 3

    4

    5

    6

    α

    vNnvcn

    ia

    ia iavcbvcavbavbavacvabvcb vd

    van vbnvcn

    vdα

    ω t=00ω t

    vcn

    α

    (a)

    (b)

    (c)

    (d)

    NnPnd vvv −=

    page 36

    Idealized Circuit with Ls=0 and id (t)=Id

    LLLLdo VVV 35.123 ==

    π

    3/πα

    αAVV dod −=

    tVv LLac ωsin2=

    )cos1(2)(sin20

    αωωα

    α −== ∫ LLLL VtdtVA

    αααπα

    coscos35.1cos23 doLLLLd VVVV ===

    αcos35.1 dLLdd IVIVP ==

    Vdo is the average voltage with α=0 and Ls=0

    Average output voltage:

    Note: Vdo is independent of the current magnitude Id so long as id flows continuously and Ls=0.

    Average output power:

  • Phase-Controlled AC-DC Converters

    NCTU 2005 Power Electronics Course Notes 19

    page 37

    DC-Side Voltage as a Function of α where Vdα = A/(π/3)

    0 (a) ω =0

    0

    0

    0

    ω t

    ω t

    ω t

    ω t

    α

    α

    α

    α

    (b) ω =30°

    (c) ω=60°

    (d) ω =90°

    A

    A

    απα

    cos23 LLd VV =

    At α= 90°, Vdα 0

    page 38

    DC-side Voltage as a Function of α where Vdα = A/(π/3)

    0 ωt

    0 ωt

    0 ωt

    α

    (e) ω=120°

    (f) ω=150°

    (g) ω=180°

    α

  • Phase-Controlled AC-DC Converters

    NCTU 2005 Power Electronics Course Notes 20

    page 39

    Input Line Current

    L)](19sin[2)](17sin[2

    )](13sin[2)](11sin[2

    )](7sin[2)](5sin[2)sin(2)(

    1917

    1311

    751

    αωαω

    αωαω

    αωαωαωω

    −−−−

    −+−+

    −−−−−=

    tItI

    tItI

    tItItIti

    ss

    ss

    sssa

    ),2,1(16 K=±= nnh

    0 ωt

    vcnvbnvanvcnia

    ia1

    φ1=αα

    ωt=0

    The input line current ia, ib, and ic have rectangular waveforms with an amplitude Id.

    where only the nontriplen odd harmonics h are present and

    page 40

    Harmonics of Line Current

    955.031 ==πs

    s

    II

    %08.31TDH =

    dds III 816.032 ==

    ddd

    ds

    III

    DII

    78.0623

    214

    2sin

    214

    1

    ===

    =

    ππ

    ππ

    16 where1 ±== nhh

    II ssh

    1.0

    h

    1s

    sh

    II

    1 7 11 13 17 19 235

    131

    51

    71

    111

    25

  • Phase-Controlled AC-DC Converters

    NCTU 2005 Power Electronics Course Notes 21

    page 41

    Power, Power Factor, and Reactive Volt-Amperes

    αφ coscosDPF 1 ==

    απ

    cos3PF =

    0 ωt

    vcnvbnvanvcnia

    ia1

    φ1=α

    αωt=0

    page 42

    Line Current as a Function of α

    φ

    (a) α = 0

    (b) α = 30°

    (c) α = 60°

    VanIa1

    VanIa1

    Ia1φ

    Van

    (d) α = 90°φ

    Van

    Ia1

    (e) α = 120°

    Van

    Ia1φ

    vania1ia

    α

    ωt

    ωt

    ωt

    ωt

    ωt

    ωt

    Id

    α

    α

    α

    α φ

    Van

    Ia1

    (f) α = 150°

  • Phase-Controlled AC-DC Converters

    NCTU 2005 Power Electronics Course Notes 22

    page 43

    Effect of Ls

    Three-phase converter with Ls and a constant dc current.

    ~+

    vd

    Ls

    ~

    ~

    a

    b

    c

    T1 T3 T5

    T4 T6 T2

    n

    N

    P

    Id

    1

    3/05.0s

    LLs I

    VL ≥ω

    The ac-side inductance can not be ignored in practical thyristor converters. In fact, the German VDE standards require that this inductance must be a minimum of 5%.

    page 44

    Commutation in the presence of Ls

    ~Ls

    ~

    a

    b

    c

    n

    ~

    id=Id

    ia T1

    T6

    T5

    idicLs

    Ls

    vLs P

    N

    ω t

    ω t

    0

    0

    vcn van Au

    vPn

    vbn5 1

    (ωt=0)α

    6u

    2

    3

    2

    vcn5

    4

    Id Id

    α

    ic=i5 ia=i1

    (α+u)

    (a)

    (b)

    (c)

    ∫+

    =u

    Lu tdvA sα

    αω )(

    ds

    I

    asu ILdiLAd

    ωω ∫ == 0

  • Phase-Controlled AC-DC Converters

    NCTU 2005 Power Electronics Course Notes 23

    page 45

    Line current in the presence of Ls

    0 ω t

    α

    vanvcn

    ia

    u

    vcn

    ia1

    21u+= αφ

    sLanPnvvv −=

    dtdiLv asLs =

    During the commutation interval α < ωt < α + u

    where

    ∫+

    =u

    Lu tdvA sα

    αω )( ds

    I

    asu ILdiLAd

    ωω ∫ == 0

    ds

    LLu

    LLd ILVAVV

    πωα

    ππα

    π3cos23

    3/cos23 −=−=

    page 46

    Calculation of Commutation Transient

    dtdiLvv asanPn −=

    dtdiLvv csanPn −=

    )(22

    )ncommutatio during(dtdi

    dtdiLvvv cascnanPn +−

    +=

    dtdi

    dtdi ca −=

    )(21

    cnanPn vvv +=

    cad iiI +=

  • Phase-Controlled AC-DC Converters

    NCTU 2005 Power Electronics Course Notes 24

    page 47

    Calculation of Commutation Interval

    222accnana

    svvv

    dtdiL =−=

    s

    LLa

    LtV

    tddi

    ωω

    ω 2sin2

    )(=

    ∫∫+

    =uI

    s

    LLa tdtL

    Vdidα

    αωω

    ω)(sin

    22

    0

    dLL

    s IVLu

    22cos)cos( ωαα −=+

    Solving for the commutation interval u

    page 48

    Line Current in the Presence of Ls

    )21cos(DPF u+≅ α

    )]cos([cos21DPF u++≅ αα

    0 ω t

    α

    vanvcn

    ia

    u

    vcn

    ia1

    21u+= αφ

    The ac-side inductance reduces the magnitudes of the harmonic currents.

  • Phase-Controlled AC-DC Converters

    NCTU 2005 Power Electronics Course Notes 25

    page 49

    Normalized harmonic current in the presence of Ls

    u20°10°0

    10

    12

    14 h = 7

    α = 0°

    5°15°30°- 90°

    (%)1

    7

    II

    u20°10°0

    u20°10°0

    u20°10°0

    16

    18

    20

    (%)1

    5

    II

    α = 0°5°15°30°- 90°

    h = 5

    10

    4

    5

    6

    7

    8

    9

    (%)1

    11

    II

    h = 11

    α=0°

    5°15°30°- 90°

    4

    6

    8

    (%)1

    13

    II

    h = 13

    2

    α = 0°

    5°15°60°

    (a) (b)

    (c) (d)

    page 50

    Typical and Idealized Harmonics

    Typical

    Idealized

    h 5 7 11 13 17 19 23 25

    Ih / I1

    Ih / I1

    0.17

    0.12

    0.10

    0.14

    0.04

    0.09

    0.03

    0.07

    0.02

    0.06

    0.01

    0.05

    0.01

    0.04

    0.01

    0.04

  • Phase-Controlled AC-DC Converters

    NCTU 2005 Power Electronics Course Notes 26

    page 51

    Example 6.3: Simulation of Practical Thyristor Converter

    A three-phase thyristor converter is supplied by a 480 V (line-to-line) 60 Hz source. Its internal

    inductance Ls1 = 0.2 mH. The converter has a series inductance Ls2 = 1.0 mH. The load is

    represented as the following, with Ld = 5 mH, rd = 0, and Ed =600 V and the delay angle α = 20°. Using Pspice simulation, obtain vs, is and vd waveforms and calculate Is1, Is, DPF, PF, and

    %THD.

    Example 6.3

    A practical thyristor converter.

    ~

    id+

    vd

    Ls Rd

    ~

    ~

    a

    b

    c

    n

    +− Ed

    Ld

    page 52

    Solution of Example 6.3

    0 ω t

    iava

    Edvd

    SolutionThe waveforms are shown as the following, and the calculated results are as follows:

    Is1 = 22.0 A,

    Is = 22.94 A,

    DPF = 0.928, PF = 0.89, and THD = 29.24 %

  • Phase-Controlled AC-DC Converters

    NCTU 2005 Power Electronics Course Notes 27

    page 53

    PSPICE Input File for Example

    * Three-Phase, Thyristor-Bridge Rectifier.PARAM PERIOD = {1/60}, DEG120={1/(3*60)}.PARAM ALFA = 20.0, PULSE_WIDTH = 0.5ms*LS1A 11 12 0.2mH IC = 45ALS2A 12 13 1.0mH IC = 45ALS1B 21 22 0.2mH IC = -45ALS2B 22 23 1.0mH IC = 45ALS1C 31 32 0.2mHLS2C 32 33 1.0mH*LD 4 5 5mH IC=45AVD 5 6 600.0V*XTHY1 13 4 SCR PARAMS: TDLY= 0 ICGATE=2VXTHY3 23 4 SCR PARAMS: TDLY= {DEG120} ICGATE=0VXTHY5 33 4 SCR PARAMS: TDLY= {2*DEG120} ICGATE=0VXTHY2 6 33 SCR PARAMS: TDLY= {DEG120/2} ICGATE=0VXTHY4 6 13 SCR PARAMS: TDLY= {3*DEG120/2} ICGATE=0VXTHY6 6 23 SCR PARAMS: TDLY= {5*DEG120/2} ICGATE=2V*VS 1 0 SIN(0 340V 60 0 0 {ALFA})*VSA 11 0 SIN(0 391.9V 60 0 0 {30+ALFA})VSB 21 0 SIN(0 391.9V 60 0 0 {-90+ALFA})VSC 31 0 SIN(0 391.9V 60 0 0 {-210+ALFA})

    page 54

    PSPICE Input File for Example (continued)

    .TRAN 50us 50ms 0s 50us UIC

    .PROBE

    .FOUR 60.0 v(11) i(ls1A) i(ld)

    .SUBCK SCR 101 103 PARAMS: TDLY = 1ms ICGATE = 0V*Power Electronics: Simulation, Analysis Education……by N. Mohan.SW 101 102 53 0 SWITCHVSENSE 102 103 0VRSNUB 101 104 200CSNUB 104 103 1uF*VGATE 51 0 PULSE(0 1V {TDLY} 0 0 {PULSE_WIDTH} {PERIOD})RGATE 51 0 1MEGEGATE 52 0 TABLE {I(VESNSE) + V(51)} = (0.0, 0.0) (0.1, 1.0) (1.0, 1.0)RSER 52 53 1CSER 53 0 1uF IC={ICGATE}*.MODEL SWITCH VSWITCH (RON=0.01).ENDS

    .END

  • Phase-Controlled AC-DC Converters

    NCTU 2005 Power Electronics Course Notes 28

    page 55

    Pspice Input Circuit for Example

    is

    +−

    +

    vd

    XTHY1Ls1

    id

    312

    4 5

    60

    5

    22

    4 6 2

    Ld

    +−

    +− 32

    13

    23

    32

    Ls211

    21

    31

    +−

    page 56

    Discontinues-Current Conduction

    Waveforms in a discontinuous-current-conduction mode.

    vdEd

    id0 ω t

    A large value of Ed will result in a smaller Id. In order to regulate, α will have to be increased at lower values of Id.

  • Phase-Controlled AC-DC Converters

    NCTU 2005 Power Electronics Course Notes 29

    page 57

    Inverter Mode of Operation

    Inverter with a constant dc current.

    ~+

    vd

    Ls

    ~

    ~

    a

    b

    c

    n Idia

    1 3 5

    4 6 2

    P

    N

    page 58

    Waveforms

    ω t0

    van vbn

    1

    φ1

    id

    α3

    2

    5

    4

    vcn vcn

    4 6

    u

    Vdvd

    ω t0ia1

    ia

    (a)

    (b)

  • Phase-Controlled AC-DC Converters

    NCTU 2005 Power Electronics Course Notes 30

    page 59

    Inverter Start-up

    ~+

    vd

    Ls

    ~

    ~

    a

    b

    cn

    ia

    1 3 5

    4 6 2

    Ld

    vL+ −

    Ed−

    +

    id

    Power

    Vd

    Id

    α0α1α2α3=90°

    α4α5

    0Rectifier

    Inverter

    (a) Thyristor inverter with a dc voltage source (b) Vd versus Id

    page 60

    Voltage Across a Thyristor in the Inverter Mode

    vbn

    1 3

    24

    vcn

    6ωt

    (a)

    (b)

    ωt

    vcnvan

    3

    5

    vPnα

    vcav5

    α

    γ =extinction angleu

    x

    LLV2

  • Phase-Controlled AC-DC Converters

    NCTU 2005 Power Electronics Course Notes 31

    page 61

    Line Notching and Distortion

    Line matching in other equipment voltage (a) circuit.

    ~Ls1

    ~

    ~

    a

    b

    c

    n

    VLL

    equipment

    a′

    b′

    c′

    (vequip)LL

    Ls2

    C3 ia

    T3T1 T5

    T4 T6 T2

    A

    B

    C

    id

    id=continuous

    snubber

    (a)

    21 sss LLL +=

    page 62

    Line-to-Line Voltage Distortion

    (b) phase voltage, (c) line-to-line voltage vAB.

    vbn

    vAB

    ωt0

    vcnvan

    LLV2

    van

    An=2ωL3Id

    LLdn VILA 2

    2Area 3ω==

    u

    α

    ω t = 0

    αsin2 LLn VV =0 ωt

    (b)

    (c)

  • Phase-Controlled AC-DC Converters

    NCTU 2005 Power Electronics Course Notes 32

    page 63

    Calculation of Notch Width

    radians][volt 2 area notch Deep dsn ILA ω=

    angle)delay ( sin2deptharea notch Deep =≅ ααLLV

    rad sin2

    2depth notcharea notch width Notch

    αω

    LL

    ds

    VILu ≅=

    21

    1

    ss

    s

    LLL+

    305.012 LLas

    VIL ≥ω

    The German VDE standards require that this inductance must be a minimum of 5%.

    The notch depths and notch areas are a factor of α

    page 64

    Voltage Distortion

    Line notching and distortion limits for 460V systems.

    [ ]100

    )(%THD Voltage

    amental)phase(fund

    21 ×

    ×= ∑

    VLI sn ω

    Special applications

    Dedicated system

    General system

    Class Line Notch Depthρ(%)Line Notch Area

    (V-µs)Voltage Total

    Harmonic Distortion(%)

    10 16,400 3

    20 22,800 5

    1036,50050

  • Phase-Controlled AC-DC Converters

    NCTU 2005 Power Electronics Course Notes 33

    page 65

    References

    [1] N. Mohan, “Power electronics: computer simulation, analysis, and education using the education version of Pspice,” Minnesota Power Electronics Research and Education, P. O. Box 14503, Minneapolis, MN 55414.

    [2] E. W. Kimbark, Direct Current Transmission, Wiley-Interscience, vol. 1, New York, 1971.

    [3] B. M. Bird and K. G. King, An Introduction to Power Electronics , Wiley, New York, 1983.

    [4] Institute of Electrical and Electronics Engineers, “IEEE guide for harmonic control and reactive compensation of state power converters,” ANSI/IEEE Standard 519-1981, New York.

    [5] D. A. Jarc and R. G. Schieman, “Power line considerations for variable frequency drives,” IEEE Transactions on Industry Applications, vol. IAS, no. 5, pp. 1099-1105, September/October 1985.

    [6] Institute of Electrical and Electronics Engineers, “IEEE standard practice and requirements for general purpose thyristor DC drives,” IEEE Standard 597-1983, New York.

    [7] M. Grotzbach, W. Frankenberg, “Injected currents of controlled AC/DC converters for harmonic analysis in industrial power plants,” Proceedings of the IEEE International Conference on Harmonics in Power Systems, pp. 107-113, Atlanta, GA, September 1992.

    [8] N. G. Hingorani, J. L. Hays and R. E. Crosbic, “Dynamic simulation of HVDC transmission systems on digital computers,” IEEE Conf. Rec., vol. 113, no. 5, pp. 793-802, May 1966.

    page 66

    Home Work

    ~Ls1

    ~

    ~

    a

    b

    c

    n

    VLL

    equipment

    a′

    b′

    c′

    (vequip)LL

    Ls2

    C3 ia

    T3T1 T5

    T4 T6 T2

    A

    B

    C

    id

    id=continuous

    snubber

    21 sss LLL +=

    In the following circuit, Ls1 corresponds to the leakage inductance of a 60 Hz transformer with the following ratings: three-phase kVA rating of 500 kVA, line-to-line voltage of 480 V, and an impedance of 6%.Assume Ls2 is due to as 200-ft-long cable, with a per-phase inductance of 0.1 µH/ft. The ac input voltage is 460 V line to line and the dc side of the rectifier is delivering 25 kVW at a voltage of 525 V.

  • Phase-Controlled AC-DC Converters

    NCTU 2005 Power Electronics Course Notes 34

    page 67

    1. Calculate the notch width in microseconds and the line notch depth σ in percentage at the point of common coupling. Also, calculate the area for a deep line notch at the point of common coupling in volt-microseconds and compare the answers with the recommended limits in the following Table.

    Line notching and distortion limits for 460V systems.

    Special applications

    Dedicated system

    General system

    Class Line Notch Depthρ(%)Line Notch Area

    (V-µs)Voltage Total

    Harmonic Distortion(%)

    10 16,400 3

    20 22,800 5

    1036,50050

    page 68

    2. Repeat Problem 1 if a 480 V 1:1 transformer is also used at the input to the rectifier, which has a leakage impedance of 3%. The three-phase rating of the transformer equals 40 kVA.

    3. Calculate the THD in the voltage at the point of common coupling in problem 1 and 2.

    4. Using the typical harmonics in the input current given in Table 6-1, obtain the THD in the voltage at the point of common coupling in Problem 1.