18
1/18 2007222鄒應嶼 教授 國立交通大學 電機與控制工程研究所 PID Control of a DC Position Servo Drive LAB808 NCTU Lab808: 電力電子系統與晶片實驗室 Power Electronic Systems & Chips, NCTU, TAIWAN 台灣新竹交通大學電機與控制工程研究所 台灣新竹交通大學電機與控制工程研究所808實驗室 電源系統與晶片、數位電源、馬達控制驅動晶片、單晶片DSP/FPGA控制 http://pemclab.cn.nctu.edu.tw/ Lab-808: Power Electronic Systems & Chips Lab., NCTU, Taiwan

2007-02-22:【技術專題】PID Control of a DC …pemclab.cn.nctu.edu.tw/W3news/技術專欄/2007-02-22...1/18 2007年2月22日 鄒應嶼 教授 國立交通大學 電機與控制工程研究所

  • Upload
    others

  • View
    19

  • Download
    0

Embed Size (px)

Citation preview

  • 1/18

    2007年2月22日

    鄒 應 嶼 教 授

    國立交通大學 電機與控制工程研究所

    PID Control of a DC Position Servo Drive

    LAB808NCTU

    Lab808: 電力電子系統與晶片實驗室Power Electronic Systems & Chips, NCTU, TAIWAN

    台灣新竹•交通大學•電機與控制工程研究所

    台灣新竹‧交通大學‧電機與控制工程研究所‧808實驗室電源系統與晶片、數位電源、馬達控制驅動晶片、單晶片DSP/FPGA控制

    http://pemclab.cn.nctu.edu.tw/Lab-808: Power Electronic Systems & Chips Lab., NCTU, Taiwan

  • 2/18

    Position Control of a DC Servo Drive for a Motion Table

    Encoder feedback

    Servo drive

    Y

    X

    Positioncommand

    How to synthesize the PID control law for a DC position servo drive? Block Diagram Construction and Modeling Parameterization Control Architecture or Controller Configuration Control Laws or Control Equations Determination of Control Parameters Controller Realization

  • 3/18

    Block Diagram of PID Control of a DC Position Servo

    位置命令脈寬調變

    產生器

    解碼器

    Controller

    dcVT1

    T2

    T3

    T4

    va

    全橋式脈寬調變電壓放大器

    光電編碼器

    直流伺服馬達

    T 1 T 2 T 3 T 4

    功率晶體

    驅動電路開關式

    電源供應器

    EMI Filter

  • 4/18

    Block Diagram of a Practical DC Position Servo Drive

    dcVT1

    T2

    T3

    T4

    va

    電流控制速度控制位置控制位置命令

    全橋式脈寬調變電壓放大器

    光電編碼器

    直流伺服馬達

    T 1 T 2 T 3 T 4

    功率晶體

    驅動電路

    脈寬調變

    開關式

    電源供應器

    速度估測

    解碼器

    濾波器

    EMI Filter

  • 5/18

    Block Diagram of a Practical BLDC Servo Drive

    dcV

    T5

    T6

    電流控制

    &

    換相控制

    速度控制位置控制位置命令

    三相橋式脈寬調變電壓放大器

    光電編碼器

    無刷直流伺服馬達

    T 1 T 2 T 3 T 4

    功率晶體

    驅動電路

    脈寬調變

    開關式

    電源供應器

    速度估測

    解碼器

    濾波器

    T3

    T4

    T1

    T2

    T 5 T 6濾波器

  • 6/18

    Motion Profile of a Position Servo System

    (c)

    (a)

    (b)

    t

    t

    t

    s1

    s1)( sa )( s )( s

    a(t) : angular acceleration (t) : angular velocity(t) : angular position

    s1

    s1)( sa )( s )(s

    pK

    The proportional control of an double integrator plant is inherently unstable!

  • 7/18

    Multi-Loop Control Architecture

    PositionController

    VelocityController

    Velocity Feedback

    Position Feedback

    Machine TableCurrent

    ControllerPower

    Amplifier

    Current Feedback

    Motor

    MotionPlanning

    PositionCommand

    VelocityCommand

    The purpose of the control loop is to eliminate the loop dynamics. Cascaded control loop design is inherent robust for practical

    applications. Inner loop must be designed with higher bandwidth than outer loop. The loop controllers design should be designed from inside out. Each controller can be design with a PID controller with possibile

    necessary phase leading compensation.

  • 8/18

    PID Control of a DC Position Servo

    Ref: Benjamin C. Kuo and Farid Golnaraghi, Automatic Control Systems, Wiley Text Books, 8th Ed., Aug. 2002. pp. 402-436.

    mm BsJ 1

    TK

    EK

    2K

    rCommand

    preamp Power amplifierwith current FB DC motorGeartrain load

    Tachometer

    Sensory

    Position of control surface

    r e )(sKp

    Sensor preamp

    sLR as 1aE aI mT N

    Gearratio

    s1

    m

    m y

    1K

    Current feedback

    Tachometer velocity feedback

    )(sKv )(sKc vK

  • 9/18

    Modeling of a DC Position Servo Drive

    mm BsJ 1

    dT

    Te m

    aa RsL 1av

    ai

    TK

    EK

    s1 m

    emfvs

    K ivPWMK

    *ai

    sKK icpc

    pvK

    *m

    pvK)1(

    PLCK*m

    Current loop

    Velocity loopPosition

    loop

    Ra 4 7. (ohm )

    KT 0 4511. ( Nm / A )

    J m 0 00098. ( Kg m )

    Bm 0 0015. Nm / ( rad / s)

    K I 0 4. ) (V / A (H)La 0 011.

    KE 0 4511. V / (rad / s)K V

    10 20000 04775

    /.

    rpmV / (rad / s)

    SENSORS & AMP DC SERVO MOTOR

    f kHzs 2

    CURRENT SENSOR

    PWM AMP

    TACHOGENERATOR

    CURRENT LOOPCONTROLLER

    VELOCITY LOOPCONTROLLER

    DUTY-RATIO LIMITER

    G sc( )G sv( )

    CUR. CMD LIMITER

    Kz

    c

    0 62202

    .Kpz

    v

    255 635

    1

    1

    .

    gain

    180

    80Dd

    max %%

    gain

    18 0

    8 0

    max. .

    .*vi

    Table 1. Parameters of a 1HP dc position servo drive.

    Vdc=150V

    POSITION LOOPCONTROLLER

    30PLCK

  • 10/18

    Simplification with Intrinsic Property

    mm BsJ 1

    dT

    Te m

    aa RsL 1av

    ai

    TK

    EK

    s1 m

    emfvs

    K ivPWMK

    *ai

    sKK icpc

    pvK

    *m

    pvK)1(

    PLCK*m

    Current loop

    Velocity loopPosition

    loop

    For study purpose, we can eliminate the current loop!

  • 11/18

    Position Servo Without Current Loop

    mm BsJ 1

    dT

    Te m

    aa RsL 1av

    ai

    TK

    EK

    s1 m

    emfvs

    K ivPWMK

    pvK

    *m

    pvK)1(

    PLCK*m

    Position loop

    Velocity loop

    What about to eliminate the velocity loop?

  • 12/18

    Position Servo Without Velocity Loop

    mm BsJ 1

    dT

    Te m

    aa RsL 1av

    ai

    TK

    EK

    s1 m

    emfv

    PWMK

    *m

    PLCK

    Position loop

    Now, we have a very simple P-controller! What about its performance for practical applications?

  • 13/18

    Position Servo with Small Ra and Bm

    mm BsJ 1

    dT

    Te m

    aa RsL 1av

    ai

    TK

    EK

    s1 m

    emfv

    PWMK

    *m

    PLCK

    In practical applications:The armature resistance is very smallThe friction constant is also very small

    Neglect these parameters!

    Position loop

  • 14/18

    A Pair of Complex Poles and a Pole at the Origin

    sJ m

    1

    dT

    Te m

    asL1av

    ai

    TK

    EK

    s1 m

    emfv

    PWMK

    *m

    PLCK

    Position

    loop

    m2

    1sLJ

    K

    am

    Tav

    EK

    s1 m

    emfv

    PWMK*m

    PLCK

    Position

    loop

    Under zero disturbance condition:

  • 15/18

    Deduction of the Motor Plant

    22

    2

    22

    2

    2

    11

    1

    )(o

    o

    am

    ET

    am

    T

    TEam

    T

    am

    TE

    am

    T

    m sK

    LJKKs

    LJK

    KKsLJK

    sLJKK

    sLJK

    sG

    am

    ETo LJ

    KK

    EKK 1

    mavs1 m

    PWMK*m

    PLCK

    Position loop

    22

    2

    )(o

    om s

    KsG

  • 16/18

    Effect of Inner Current Loop

    C. K. Taft and E. V. Slate, "Pulsewidth modulated DC control: a parameter variation study with current loop analysis," IEEE Trans. on IECI, vol. 26, no.4, pp. 218-226, Nov. 1979.

    RE

    IM

    RE

    IM

    Kv s1

    RLs 1

    SJsKr

    REF )(si )(s

    PWM )(s

    Ka

    KsKp

    REF

    Kv s1

    RLs 1

    SJsKr

    )(si )(s

    PWM)(s

    Kp

    Ks

    Ka

    Ki

  • 17/18

    Model Reduction of a Current Controlled Drive

    REF

    Kv s1

    RLs 1

    SJsKr

    )(si )(s

    PWM)(s

    Kp

    Ks

    Ka

    Ki

    Current loop

    REF

    s

    1

    c

    c

    i sK

    1

    SJsKr

    )(si )(s )(s

    Kp

    Ks

    The current control can be reduced to a first-order system with an equivalent bandwidth of cl. The back emf can be considered as an external disturbances within the current loop.

  • 18/18

    Extended Readings

    Control System Design Guide, George Ellis, Academic Press, 3rd Ed., February 17, 2004.

    Feedback Control of Computing Systems,Joseph L. Hellerstein, Yixin Diao, Sujay Parekh, Dawn M. Tilbury,Wiley-IEEE Press, August, 2004.

    DC Motors, Speed Controls, Servo Systems, including Optical Encoders, (Chap. 6: Brushless DC Motors)An Engineering Handbook by Electro-Craft Corporation,Hopkins, MN, Fourth Edition, 1980.

    Incremental Motion Control: DC Motors and Control Systems, B. C. Kuo and T. Jacob, 1978.