d31 Unis Dr Re 009 Final

Embed Size (px)

Citation preview

  • 8/4/2019 d31 Unis Dr Re 009 Final

    1/63

    ProjectMuMoR IST-34561 1

    IST-2001-34561

    MUMOR

    D3.1

    DigitalBasebandArchitectureScenariosforaMulti-ModeRadioDocumentNumber:IST-2001-34561/IMST/WP3/R/RE/001/01

    ContractualDateofDeliverytotheCEC: October2002

    ActualDateofDeliverytotheCEC: 31.10.2002

    Author(s): UniS

    Participant(s): UniS,NOKIA,LETI

    Workpackage: WP3

    Est.personmonths:

    Security: Public

    Nature: Report

    Version: v09

    Totalnumberofpages: 63

    Abstract:

    Themaintargetofthistaskisthedevelopmentofamulti -modesystemarchitectureforthedi gital

    basebandpartofaUMTS/TDD/FDDandHSDPA/FDDsystem.Futurestandardenhancementswill

    betakenintoaccount.Thereforeadetailedblockdiagramofthetargetsystemhastobedeveloped,

    showingtheneededsystemfunctions,theirparametersandrequ irements.Theultimategoalofthe

    digitalbasebandarchitectureisamulti -mode,i.e.soft -configurablearchitecture,andthesystem

    architecturedesignwillreflectthis.

    Keywordlist:UMTS,HSDPA,FDD,TDD,Multi-mode,Architecture

  • 8/4/2019 d31 Unis Dr Re 009 Final

    2/63

    ProjectMuMoR IST-34561 2

    Abbreviations/Terminology

    ACK AcknowledgeADC AnaloguetoDigitalConverter

    BMC BroadcastMulticastControl(optional,notimplementedhere)

    BW BandWidth

    CCSS CoCentricSystemStudio(alsosimplycalledSystemStudio)

    CDMA CodeDivisionMultipleAccess

    CPICH CommonPilotChannel

    CQI ChannelQualityIndicator

    CRC CyclicRedundancyCheck

    DAC DigitaltoAnalogueConverter

    DL Down-Link

    DPCCH DedicatedPhysicalControlChannel

    DPCH DedicatedPhysicalChannel

    DPDCH DedicatedPhysicalDataChannel

    FDD FrequencyDivisionDuplex

    H-ARQ HybridAutomaticRepeatRequest

    HSDPA HighSpeedDownlinkPacketAccess

    HS-DPCCH HighSpeedDedicatedPhysicalControlChannel

    HS-PDSCH HighSpeedPhysicalDownlinkSharedChannel

    HS-SCCH High-SpeedSharedControlChannel

    IF IntermediateFrequency

    ISI Inter-Symbol-Interference

    L1 Physicallayerasdefinedby3GPP,alsocalledPHY

    L2 ProtocollayerconsistingofMAC,RLC,PDCPandBMCasdefinedby

    3GPP

    LLR LogLikelihoodRatio

    MAC MediumAccessControl

    MAI MultipleAccessInterference

    Mbps MegaBitPerSecond

    Mcps MegaChipsPerSecond

    MMSE MinimumMeanSquareError

    MOSI Multiple-Output-Single-Input.ThetermDLMOSIdiversityrefersto

    STTD(twotransmitantennasatNodeB)andcellmacro-diversity.NACK NotAcknowledge

  • 8/4/2019 d31 Unis Dr Re 009 Final

    3/63

    ProjectMuMoR IST-34561 3

    OVSF OrthogonalVariableSpreadingFactor

    P-CCPCH PrimaryCommonControlPhysicalChannel

    PDCP PacketDataConvergenceProtocol

    PHY Physicallayerasdefinedby3GPP,alsocalledL1

    P-SCH PrimarySynchronizationChannel

    QAM QuadratureAmplitudeModulation

    QPSK QuadraturePhaseShiftKeying

    RF RadioFrequency

    RLC RadioLinkControl

    RRC RadioResourceController

    RRCos RootRaisedCosineFilter

    Rx ReceiverorReceived,dependsonthecontext

    SIR SymboltoInterferenceRatio

    S-SCH SecondarySynchronizationChannel

    TDD TimeDivisionDuplex

    Tx TransmitterorTransmitted,dependsonthecontext

    UARFCN UTRAAbsoluteRadioFrequencyChannelNumber

    UE UserEquipment

    UL Uplink

    UTRAN UMTSTerrestrialRadioAccessNetwork

    WCDMA WidebandCDMA

  • 8/4/2019 d31 Unis Dr Re 009 Final

    4/63

    ProjectMuMoR IST-34561 4

    Tableofcontents

    1 INTRODUCTION ......................................................................................................................... 9

    2 SYSTEMREQUIREMENTS..................................................................................................... 10

    2.1 Transmitter/ReceiverChainsandPhysicalChannelstobeimplemented............................. 102.2 High-levelSystemRequirements.......................................................................................... 11

    2.2.1 General .......................................................................................................................... 112.2.2 UMTSFDDSpecific..................................................................................................... 122.2.3 UMTSTDDSpecific .................................................................................................... 122.2.4 HSDPASpecific............................................................................................................ 12

    2.3 HigherLayerInterface .......................................................................................................... 122.3.1 PrimitivesbetweenphysicallayerandMAClayer ....................................................... 122.3.2 PrimitivesbetweenphysicallayerandRRClayer ........................................................ 12

    2.4 PhysicalLayerProcedures .................................................................................................... 132.5 UEPhysicalLayerMeasurementAbilities ........................................................................... 142.6 UECapabilityParameters ..................................................................................................... 14

    2.6.1 UMTSFDD/TDDCapabilityParameters ..................................................................... 152.6.2 HS-DSCHCapabilityParameters.................................................................................. 17

    3 OVERVIEWOFTHECONSTITUTINGSINGLEMODEARCHITECTURES............... 19

    3.1 BasebandArchitectureforUMTS/FDD ............................................................................... 193.1.1 BasebandSignalProcessing.......................................................................................... 193.1.2 FDDBasebandSampleProcessing ............................................................................... 213.1.3 FDDBasebandChipProcessing ................................................................................... 233.1.4 TransmitterTransportChannelProcessing ................................................................... 29

    3.1.5 TransmitterPhysicalChannelProcessing ..................................................................... 303.1.6 ReceiverPhysicalChannelProcessing.......................................................................... 303.1.7 ReceiverTransportChannelProcessing ....................................................................... 31

    3.2 BasebandArchitectureforUMTS/TDD ............................................................................... 313.2.1 Transmitter .................................................................................................................... 313.2.2 Receiver......................................................................................................................... 34

    3.3 BasebandArchitectureforHSDPA/FDD ............................................................................. 353.3.1 HSDPAspecificUplinkChannelcodingandmodulation ............................................ 363.3.2 HSDPAspecificDownlinkChannelcodingandmodulation ....................................... 373.3.3 PhysicalChannelDecoding........................................................................................... 39

    4 MULTI-MODESYSTEMARCHITECTURE......................................................................... 44

    4.1 FunctionalityMatrixforUplinkTransmitter ........................................................................ 444.1.1 SampleProcessing......................................................................................................... 444.1.2 ChipProcessing............................................................................................................. 444.1.3 TransportChannelProcessing....................................................................................... 454.1.4 PhysicalChannelProcessing......................................................................................... 46

    4.2 FunctionalityMatrixforDownlinkReceiver........................................................................ 464.2.1 SampleProcessing......................................................................................................... 474.2.2 ChipProcessing............................................................................................................. 484.2.3 PhysicalChannelProcessing......................................................................................... 494.2.4 TransportChannelProcessing....................................................................................... 50

    4.3 SystemPartitioning ............................................................................................................... 51

    4.3.1 DigitalbasebandHW/SWpartitioning ......................................................................... 514.3.2 ComponentInteraction .................................................................................................. 524.3.3 Partitioningprocess ....................................................................................................... 53

  • 8/4/2019 d31 Unis Dr Re 009 Final

    5/63

    ProjectMuMoR IST-34561 5

    5 INTERFACETOFRONT-END................................................................................................ 54

    6 VERIFICATIONCHANNELMODELANDPROPAGATIONCONDITIONS................. 58

    6.1 UMTS-SpecValues:(B.2)PropagationConditions ............................................................. 586.1.1 PropagationConditions ................................................................................................. 586.1.2 ChannelModel:SpuriousEmissions ............................................................................ 59

    6.2 RayleighChannelModelwithsimplifiedFront-End ............................................................ 60

    7 CONCLUSION............................................................................................................................ 62

    8 REFERENCES............................................................................................................................ 63

  • 8/4/2019 d31 Unis Dr Re 009 Final

    6/63

    ProjectMuMoR IST-34561 6

    Listoffigures

    Figure2.1:Physicalchannelsimplementationoverview...................................................................... 11

    Figure3-1:BasebandReceiverSignalProcessingandControl,SignalFlow ...................................... 20Figure3-2:BasebandTransmitterSignalProcessingandControl,SignalFlow.................................. 21

    Figure3-3:TransmitterSampleProcessing,SignalFlow..................................................................... 21

    Figure3-4:ReceiverSampleProcessing,SignalFlow ......................................................................... 22

    Figure3-5:TypicalTxpulseshaping(controlleddelayforTDDonly)................................................ 22

    Figure3-6:TypicalRxpulseshaping(controlleddelayforbothFDDandTDD)................................ 22

    Figure3-7:TransmitterChipProcessing,SignalFlow......................................................................... 24

    Figure3-8:ReceiverChipProcessing,SignalFlow ............................................................................. 25

    Figure3-9:Spreadingforuplink........................................................................................................... 25Figure3-10:SpreadingforuplinkDPCCH,DPDCHsandHS-DPCCH .............................................. 26

    Figure3-11:MultipathSearching ......................................................................................................... 27

    Figure3-12:MultipathPowerEstimator,BlockDiagram .................................................................... 27

    Figure3-13:RAKEReceiver ................................................................................................................ 28

    Figure3-14:ExampleofRAKEMRCandChipLevelPreandPostDecisionBasedEqualisation . 28

    Figure3-15:TransmitterTransportChannelProcessing,BlockDiagram............................................ 29

    Figure3-16:TransmitterPhysicalChannelProcessing,BlockDiagram.............................................. 30

    Figure3-17ReceiverPhysicalChannelProcessing,BlockDiagram ................................................... 30

    Figure3-18ReceiverTransportChannelProcessing,BlockDiagram ................................................. 31

    Figure3-19:BlockDiagramoftheTransmitter.................................................................................... 32

    Figure3-20:BlockDiagramofTrCHModule. .................................................................................... 33

    Figure3-21:BlockDivisionofSpreading/ScramblingUnit................................................................. 33

    Figure3-22:StructureofBurstType1. ................................................................................................ 34

    Figure3-23:StructureofBurstType2. ................................................................................................ 34

    Figure3-24:ModuleidentificationofRx ............................................................................................ 35

    Figure3-25:TimingstructureatUEforHS-DPCCHcontrolsignalling.............................................. 37

    Figure3-26:SynchronizationandDemodulation ................................................................................. 38

    Figure3-27:ChannelDecodingchainsHSDPA/HS-DSCH................................................................. 40

    Figure3-28:HS-SCCHDecoding......................................................................................................... 42

    Figure3-29:TimingrelationbetweentheHS-SCCHandtheassociatedHS-PDSCH......................... 43

    Figure4-1:BlockMatrixUplinkTransmitterSampleProcessing .................................................... 44

    Figure4-2:BlockMatrixUplinkTransmitterChipProcessing......................................................... 45

    Figure4-3:BlockMatrixUplinkTransmitterTransportChannelProcessing .................................. 46

    Figure4-4:BlockMatrixUplinkTransmitterPhysicalChannelProcessing..................................... 46

    Figure4-5:BlockMatrixDownlinkReceiver ...................................................................................... 47

  • 8/4/2019 d31 Unis Dr Re 009 Final

    7/63

    ProjectMuMoR IST-34561 7

    Figure4-6:BlockMatrixDownlinkReceiverSampleProcessing .................................................... 47

    Figure4-7:BlockMatrixDownlinkReceiverCellSearch................................................................ 48

    Figure4-8:BlockMatrixDownlinkReceiverChipProcessing ........................................................ 49

    Figure4-9:BlockMatrixDownlinkReceiverPhysicalChannelProcessing .................................... 50

    Figure4-10:BlockMatrixDownlinkReceiverTransportChannelProcessing ................................ 50

    Figure4-11:FE/BBpartitioningdegreesoffreedom ........................................................................... 51

    Figure4-12:TypicalSoCdesign........................................................................................................... 52

    Figure4-13:HW/SWPartitioningMap ................................................................................................ 53

    Figure5-1:Front-EndInterfaceFunctionalityExample.................................................................... 54

    Figure5-2:ControlInterfaceProtocol .................................................................................................. 57

    Figure6-1:Themovingpropagationconditions................................................................................... 58

    Figure6-2:PropagationConditionsforMultipathFadingEnvironments ........................................... 59

    Figure6-4:ChannelModelwithabstractFront-EndModel................................................................. 61

  • 8/4/2019 d31 Unis Dr Re 009 Final

    8/63

    ProjectMuMoR IST-34561 8

    Listoftables

    Table2.1:Transmitterandreceiverchainstobeimplemented ............................................................ 10

    Table2.2:Implementedphysicalchannels ........................................................................................... 10Table2.3:PrimitivesbetweenL1andMAC......................................................................................... 12

    Table2.4:PrimitivesbetweenL1andRRC.......................................................................................... 13

    Table2.5:Supportofphysicallayerprocedures................................................................................... 14

    Table2.6:SupportofUEmeasurementabilities .................................................................................. 14

    Table2.7:Valuerangesforthephysicallayerradioaccesscapabilityparameters .............................. 17

    Table2.8:FDDHS-DSCHphysicallayercategories ........................................................................... 18

    Table2.9:TheselectedFDDHS-DSCHphysicallayercategory ........................................................ 18

    Table3.1:BlockswithinBasebandReceiverSignalProcessingandControlforUMTS/FDD ........... 19Table3.2:BlockswithinBasebandTransmitterSignalProcessingandControlforUMTS/FDD ...... 20

    Table5.1:Front-endInterfacefunctionality ......................................................................................... 54

    Table5.2:Exemplaryfront-endconfigurationparameters ................................................................... 55

    Table5.3:TheselectedFDDHS-DSCHphysicallayercategory ........................................................ 56

    Table6.1:PropagationConditionsforMultipathFadingEnvironments............................................. 58

    Table6.2:ParameteroftheMovingPropagationConditions............................................................... 59

    Table6.3:RequirementsForSpuriousEmissions(FDD) .................................................................... 60

    Table6.4:AdditionalRequirementsForSpuriousEmissions(FDD) .................................................. 60

    Table6.5:ChannelModelParameters .................................................................................................. 61

  • 8/4/2019 d31 Unis Dr Re 009 Final

    9/63

    ProjectMuMoR IST-34561 9

    1 Introduction

    Inthisdocumentanoverallmulti -modearchitectureofthemob ileterminalcoveringthreemodes,

    namelyUMTS/FDD,UMTS/TDD,andHSDPA/FDDwillbeproposed. Firstofall, systemrequirementsofthemulti -modere-configurableterminalwillbepresented. Inorderto explor eand

    developare -configurablearchitecture,so metypicalfeaturesspecifiedinthestandardsneedtobe

    supported.Inthiswaytherequiredeffortcanbeputinthescopeoftheproject.

    Beforegoingintomulti-modearchitecture,eachsingle-modearchitecturewillbeexaminedseparately,

    sothatacl earunderstandingoftheuniquefeaturesofeachmodeandthesimilaritiesamongallthe

    threemodescanbeacquired.Then ,amatrixlikeblockdiagramwillbeproposed.Eachrowofthis

    matrixreferstoaspecificmode,i.e.standard,andeachcolumncons istsofallthesimilarfunctions

    belongingtodifferentmodes.Thegroupingofidenticalfunctionsintocolumnswillbedoneat

    functionallevel.Furthercolumnpartitioningbyfurtherinspectionsinareassuchasrequired

    processingspeed,memory,anddatasizewillbeconsidered.

    Interfacingbetweenfront-endandbasebandpartsinmulti -modesystemisofmoreimportancethanin

    thesinglemodesystem.Re -configurabilityandmulti -modefeaturesarethetargetforbothparts,and

    theirinterfaceshouldref lectthat.Hereageneralinterfacethatiswellcapableofcopingwiththe

    evolutionofthefront -endandbasebandpartswillbedescribed.Alsochannelmodelsforthe

    verificationofthedifferentfunctionalitiesofthemulti-modesystemwillbespecified.

  • 8/4/2019 d31 Unis Dr Re 009 Final

    10/63

  • 8/4/2019 d31 Unis Dr Re 009 Final

    11/63

    ProjectMuMoR IST-34561 11

    U

    channelcoding

    timeMUXed

    withDPDCH

    PayloadData

    Source/

    Drain*

    U

    C

    C

    C

    C

    C

    C

    Spread

    Modulate

    Chip-wise

    sum

    ChannelModel

    Front-EndModel

    Demodulate

    De-Spread

    channeldecoding

    UTRAN UEPayloadDataSource/

    Drain*

    U

    U

    C

    C

    C

    C

    C

    C

    *U=Userplane,C=Controlplane

    DPDCH

    DPCCH

    HS-PDSCH

    HS-SCCH

    CPICH

    P-SCH

    S-SCH

    HS-DPCCH

    4timesparalleltimeMUXed

    withDPDCH

    4timesparallel

    Figure2.1:Physicalchannelsimplementationoverview

    2.2 High-levelSystemRequirements

    2.2.1 General

    Thefunctionalimplementationiscompliantwith3GPPRelease5

    DownlinkTxandRxmodemaresupposedtousedirectconversion

    Supportformultiplededicateddatachannelsenablingconcurrentapplications

    UseachannelequalizerorotheradvancedreceivertechniquesattheDLRxtoreducethechipinterferencecomparedtoRAKE

    Rxsynchronisationfeatures:

    o Frameandslotsynchronisation

    o Frequencysynchronisation

    o Timingsynchronisation

    Staticlinkconfigurationatsimulationstart,noautomaticlinkadaptationthroughhigherlayerassignment

    Completewirelessdownlinksimulated(alldownlinkchannelsthroughchannelmodelandreceivermodel);uplinkwillbesimplified

    Notsupported:

    o Anyhandoverrelatedproceduresandotherrequirements

    o Anypowercontrolrelatedprocedureandotherrequirements

    o Connectionset-up(radiolinkestablishmentandrelease)

    o FlexiblepositionsofTrCHsinCCTrCh

    o Beamforming

    o MIMO

    o Txdiversity

  • 8/4/2019 d31 Unis Dr Re 009 Final

    12/63

    ProjectMuMoR IST-34561 12

    2.2.2 UMTSFDDSpecific

    None,thegeneralrequirementsfromthechapteraboveapplyhere

    2.2.3 UMTSTDDSpecific

    Notsupported:TimingAdvanceprocedureforUL

    2.2.4 HSDPASpecific

    Thepacketdatatransmissionrateofupto10MbpsinHSDPAmodeshouldbeexaminedandsupportediffeasible

    Twomodulationschemes:16-QAMandQPSK

    H-ARQsupport

    2.3 HigherLayerInterface

    ThephysicallayerinteractsdirectlywiththeMAClayerandtheRRClayer.Statusandcontrol

    primitivesareexchangedtoset -upandconfigureradiobearers,toreportmeasurements,toexchange

    datafortransmissionordatathathasbeenreceived,andforfurtherpurposes.

    Thischapterdescribestheservices,neededtointeractwiththeRRCandMAClayer.All

    correspondinginformationelementshavetobepreviouslyknownbyL1andprovidedbyhigherlayers

    oraremeasurementresults(see3GPPTS25.331).

    Thelistoftheprimitiveslistedhererepresentstheinformation,whichhastobeexchangedbetween

    thephysicallayerandtheprotocollayers.Thefinalimplementationinthesystemhastobede finedin

    detail.

    2.3.1 PrimitivesbetweenphysicallayerandMAClayer

    ThefollowingprimitivesareusedtoenablesignallingbetweenMACandphysicallayer.

    Requirement

    (Reference:3GPPTS25.302)

    MuMoRSystemSupport

    10.1.1PHY-Access-REQ Notsupported

    10.1.2PHY-Access-CNF Notsupported

    10.1.3PHY-Data-REQ Supported

    10.1.4PHY-Data-IND Supported

    10.1.5PHY-CPCH_Status-REQ Notsupported10.1.6PHY-CPCH_Status-CNF Notsupported

    10.1.7PHY-Status-IND Supported

    Table2.3:PrimitivesbetweenL1andMAC

    2.3.2 PrimitivesbetweenphysicallayerandRRClayer

    ThefollowingprimitivesareusedtoenablesignalingbetweenRRCandphysicallayer.

    Requirement

    (Reference:3GPPTS25.302)

    MuMoRSystemSupport

    10.2.1.1CPHY-Sync-IND Supported

    10.2.1.2CPHY-Out-of-Sync-IND Supported

  • 8/4/2019 d31 Unis Dr Re 009 Final

    13/63

    ProjectMuMoR IST-34561 13

    Requirement

    (Reference:3GPPTS25.302)

    MuMoRSystemSupport

    10.2.1.3CPHY-Measurement-REQ Supported

    10.2.1.4CPHY-Measurement-IND Supported

    10.2.1.5CPHY-Error-IND Notsupported

    10.2.1.6CPHY-CPCH-EOT-IND Notsupported

    10.2.2.1CPHY-TrCH-Config-REQ Supported

    10.2.2.2CPHY-TrCH-Config-CNF Supported

    10.2.2.3CPHY-TrCH-Release-REQ Notsupported

    10.2.2.4CPHY-TrCH-Release-CNF Notsupported

    10.2.2.5CPHY-RL-Setup-REQ Supported

    10.2.2.6CPHY-RL-Setup-CNF Supported

    10.2.2.7CPHY-RL-Release-REQ Notsupported

    10.2.2.8CPHY-RL-Release-CNF Notsupported

    10.2.2.10CPHY-RL-Modify-CNF Notsupported

    10.2.2.11CPHY-Commit-REQ Notsupported

    10.2.2.12CPHY-CPCH-Estop-IND Notsupported

    10.2.2.13CPHY-CPCH-Estop-RESP Notsupported

    10.2.2.14CPHY-CPCH-Estop-REQ Notsupported

    10.2.2.15CPHY-CPCH-Estop-CNF Notsupported10.2.2.16CPHY -Out-of-Sync-Config-REQ Supported

    10.2.2.17CPHY -Out-of-Sync-Config-CNF Supported

    Table2.4:PrimitivesbetweenL1andRRC

    2.4 PhysicalLayerProcedures

    InthephysicallayerofaCDMAsystemtherearemanyproceduresessentialforthesystemoperation.

    TheseprocedureshavebeennaturallyshapedbytheCDMA -specificpropertiesofthephysicallayer.

    Proceduresaredefinedin3GPPTS25.214fortheFDDandin3GPPTS25.224fortheTDDoption.

    Table2.5givesanoverviewofdefinedproceduresandhowtheywillbesupportedintheMuMoRprojectfortheFDDandTDDoptions.

    Procedure FDD TDD MuMoRSystemSupport

    SynchronisationProcedure X X Partialsupport:Noradiolinkrelease

    andestablishment,onlymonitoring .

    Mainlycoveringthecellsearch

    Powercontrol X X Notsupported

    Randomaccess X X Notsupported

    TransmitDiversity X X Notsupported

    IPDLlocation X X Notsupported

    TimingAdvance - X Notsupported

  • 8/4/2019 d31 Unis Dr Re 009 Final

    14/63

    ProjectMuMoR IST-34561 14

    NodeBSynchronization - X Notsupported

    Discontinuoustransmission - X Notsupported

    DSCHProcedure - X Notsupported

    HS-DSCHrelatedprocedure X X Partialsupport:Nocompressed

    mode.OnlyFDDmode

    Table2.5:Supportofphysicallayerprocedures

    AstheMuMoRprojectisconcentratingonthemulti -modeaspectsofUMTS/FDD,TDDand

    HSDPA/FDDanditsimpactonthesignalprocessingarchitecture, thetargetimplementationwill

    consideronlythesynchronizationprocedure(mainlythecellsearch)fromtheUMTSsystemandthe

    HS-DSCHprocedurefortheHSDPA/FDDoption.Insteadofsignalprocessingmostoftheother

    procedurearebasedoncontrolprocessing(StateMachines).

    2.5 UEPhysicalLayerMeasurementAbilities

    ThischapterdescribesallnecessaryminimumrequirementstofulfiltheUE sL1tasktoserve

    measurementrequestsofhigherlayersintheUEandUTRAN.Thefollowingmeasurement

    specificationsapplytotheUEinFDDmode,beingneitheraGSMnorGPScapableterminal.

    ThelevelofsupportofphysicallayermeasurementsperformedbytheUEandreportedtohigher

    layersaredefined.Onlymeasurementsaresupported,whicharerequiredbythesupp ortedprocedures

    andcanbeperformedbecausetherequiredphysicalchannelsaresupported.Somemeasurementsare

    relevantforbothFDDandTDDmode.ThemeasurementsaredefinedinTS25.215fortheFDDand

    inTS25.225fortheTDDmode.

    Table2.6givesanoverviewofdefinedmeasurementsandhowtheywillbesupportedintheMuMoR

    project.

    Measurement FDD TDD MuMoRSystemSupport

    CPICHRSCP X X Notsupported

    CPICHEc/No X X Notsupported

    SIR - X Notsupported

    TransportchannelBLER X X Supported

    UTRAcarrierRSSI X X NotSupported

    UEtransmittedpower X X NotSupported

    SFN-CFNobservedtimedifference X X NotSupported

    SFN-SFNobservedtimedifference X X NotSupported

    UERx-Txtimedifference X - NotSupported

    P-CCPCHRSCP X X NotSupported

    TimeslotISCP - X Notsupported

    Table2.6:SupportofUEmeasurementabilities

    Theunsupportedmeasurementsaremostlyrelatedtofrequencyandcellhandoverorpowe rcontrol

    andthereforenotimplemented.

    2.6 UECapabilityParametersUEsarenotfullyspecifiedintermsoftheirradioaccesscapability.ToallowUEsofdifferent

    complexitiesandcapabilitiesbeing3GPPcompliantanamountofparametershasbeendefined

  • 8/4/2019 d31 Unis Dr Re 009 Final

    15/63

    ProjectMuMoR IST-34561 15

    togetherwitharangeandgranularityofvalidvaluesforeachofthem.UTRANneedstorespectthe

    UEcapabilitieswhenconfiguringtheradiobearers.

    Thecapabilityparametershavetobeconsideredseparatefromthephysicallayerparameters,which

    all havetobesupportedby any fullycompliantimplementation.ThefollowingtableliststheUE

    radioaccesscapabilityparameters,whicharerelevantforthephysicallayerbase -bandinFDDuplink

    andFDDdownlink.Foramoredetaileddefinitionoftheparamet erspleaserefertothe3GPPTS

    25.306document.

    2.6.1 UMTSFDD/TDDCapabilityParameters

    ThefiguresgivenherehavebeentakenfromtheTS25.306.Thesamedocumentalsogivesreference

    toUEradioaccesscapabilitycombinationsforallofthevaluestobeuse dfortestspecificationsand

    forconformancetestingagainstreferenceradioaccessbearer(RAB)aswellasmoredetailed

    explanationoftheUEradioaccesscapabilityparameterdescriptionusedinTable2.7.

    Thetargetsystemvaluesgivenin Table2.7areforthereferencesimulationmodel.Theperformance

    capabilitiesfortheHW/SWdemonstratormightbelowerduetoimplementationrestrictions.

    Relevance UEradioaccesscap ability

    parameter

    Valuerange MuMoRSystemValue

    Maximumsumofnumberof

    bitsofalltransportblocks

    beingreceivedatanarbitrary

    timeinstant

    640,1280,2560,3840,

    5120,6400,7680,8960,

    10240,20480,40960 ,

    81920,163840

    163840

    Maximumsumofnumberof

    bitsofallconvolutionally

    codedtransportblocksbeing

    receivedatanarbitrarytimeinstant

    640,1280,2560,3840,

    5120,6400,7680,8960,

    10240,20480,40960,

    81920,163840

    163840

    Maximumsumofnumbe rof

    bitsofallturbocoded

    transportblocksbeing

    receivedatanarbitrarytime

    instant

    640,1280,2560,3840,

    5120,6400,7680,8960,

    10240,20480,40960,

    81920,163840

    163840

    Maximumnumberof

    simultaneoustransport

    channels

    4,8,16,32 4

    Maximum numberofsimultaneousCCTrCH

    1,2,3,4,5,6,7,8 1

    Maximumtotalnumberof

    transportblocksreceived

    withinTTIsthatendwithin

    thesame10msinterval

    4,8,16,32,48,64,96,

    128,256,512

    512

    MaximumnumberofTFC 16,32,48,64,96,128,

    256,512,1024

    1024

    MaximumnumberofTF 32,64,128,256,512,

    1024

    1024

    Transportchannel

    parametersin

    downlink

    Supportforturbodecoding Yes/No Yes

  • 8/4/2019 d31 Unis Dr Re 009 Final

    16/63

    ProjectMuMoR IST-34561 16

    Relevance UEradioaccesscap ability

    parameter

    Valuerange MuMoRSystemValue

    Maximumsumofnumberof

    bitsofalltransportblocksbeingtransmittedatan

    arbitrarytimeinstant

    640,1280,2560,3840,

    5120,6400,7680,8960,10240,20480,40960,

    81920,163840

    163840

    Maximumsumofnumberof

    bitsofallconvolutionally

    codedtransportblocksbeing

    transmittedatanarbitrary

    timeinstant

    640,1280,2560,3840,

    5120,6400,7680,896 0,

    10240,20480,40960,

    81920,163840

    163840

    Maximumsumofnumberof

    bitsofallturbocoded

    transportblocksbeing

    transmittedatanarbitrarytimeinstant

    640,1280,2560,3840,

    5120,6400,7680,8960,

    10240,20480,40960,

    81920,163840

    163840

    Maximumnumberof

    simultaneoustransport

    channels

    2,4,8,16,32 2

    Maximumnumberof

    simultaneousCCTrCHof

    DCHtype(TDDonly;for

    FDDthereisalwaysone

    CCTrCHatatime)

    1,2,3,4,5,6,7,8 1

    Maximumtotalnumberoftransportblockstransmitted

    withinTTIsthatstartatthe

    sametime

    2,4,8,16,32,48,64,96,128,256,512

    512

    MaximumnumberofTFC 4,8,16,32,48,64,96,

    128,256,512,1024

    1024

    MaximumnumberofTF 32,64,128,256,512,

    1024

    1024

    Transportchannel

    parametersinuplink

    Supportforturboencoding Yes/No Yes

    MaximumnumberofDPCH/PDSCHcodestobe

    simultaneouslyreceived

    1,2,3,4,5,6,7,8 8

    Maximumnumberof

    physicalchannelbits

    receivedinany10 ms

    interval(DPCH,PDSCH,S -

    CCPCH)

    600,1200,2400,3600,

    4800,7200,9600,

    14400,19200,28800,

    38400,48000,57600,

    67200,76800

    76800

    SupportforSF512 Yes/No Yes

    SupportofPDSCH Yes/No No

    FDDPhysicalchannelparameters

    indownlink

    SimultaneousreceptionofSCCPCHandDPCH

    Yes/No No

  • 8/4/2019 d31 Unis Dr Re 009 Final

    17/63

    ProjectMuMoR IST-34561 17

    Relevance UEradioaccesscap ability

    parameter

    Valuerange MuMoRSystemValue

    Simultaneousreceptionof

    SCCPCH,DPCHandPDSCH

    Yes/No No

    Maximumnumberof

    simultaneousS -CCPCH

    radiolinks

    1 1

    Supportofdedicatedpilots

    forchannelestimation

    Yes/No Yes

    Maximumnumberof

    DPDCHbitstransmittedper

    10ms

    600,1200,2400,4800,

    9600,19200,28800,

    38400,48000,57600

    57600FDDPhysical

    channelparameters

    inuplink

    SupportofPCPCH Yes/No No

    Maximumnumberof

    timeslotsperframe

    1..14 14

    Maximumnumberof

    physicalchannelsperframe

    1,2,3..224 224(16codes

    *14timeslots)

    MinimumSF 16,1 16(SF1not

    supported)

    SupportofPDSCH Yes/No No

    TDD3.84Mcps

    physicalchannel

    parametersin

    downlink

    Maximumnumberof

    physicalchannelspertimeslot

    1..16 16

    MaximumNumberof

    timeslotsperframe

    1..14 14

    Maximumnumberof

    physicalchann elsper

    timeslot

    1,2 1

    MinimumSF 16,8,4,2,1 16(othersnot

    supported)

    TDD3.84Mcps

    physicalchannel

    parametersin

    uplink

    SupportofPUSCH Yes/No NoTable2.7:Valuerangesforthephysicallayerradioaccesscapabilityparameters

    2.6.2 HS-DSCHCapabilityParameters

    FortheUEsupportingHSDPAmodeseveralcapabilityparametershavebeendefined.Otherthanfor

    UMTSthevalidvaluesoftheseparameterscannotbechosenfreely.ApredefinedHS-DSCHcategory

    definedbyafixedcombinationofcapabilityparame tershastobechosen.TheHS -DSCHUE

    capabilitiesareclassifiedaccordingtothefollowingcategories:

    HS-DSCH

    category

    Maximumnumber

    ofHS -DSCH

    codesreceived

    Minimuminter -TTI

    interval

    Maximumnumberofbits

    ofanHS -DSCHtransport

    blockreceivedwith inanHS-DSCHTTI

    TotalNumberof

    softchannelbits

    Category1 5 3 7300 19200

    Category2 5 3 7300 28800

  • 8/4/2019 d31 Unis Dr Re 009 Final

    18/63

    ProjectMuMoR IST-34561 18

    Category3 5 2 7300 28800

    Category4 5 2 7300 38400

    Category5 5 1 7300 57600

    Category6 5 1 7300 67200

    Category7 10 1 14600 115200Category8 10 1 14600 134400

    Category9 15 1 20432 172800

    Category10 15 1 28776 172800

    Table2.8:FDDHS-DSCHphysicallayercategories

    Theselectedcategoryforthetargetsystemiscategory10,asdescribedinTable2.9.

    HS-DSCH

    category

    Maximumnumber

    ofHS -DSCH

    codesreceived

    Minimuminter -TTI

    interval

    Maximumnumberofbits

    ofanHS -DSCHtransport

    blockreceivedwithinan

    HS-DSCHTTI

    TotalNumberof

    softchannelbits

    Category10 15 1 28776 172800

    Table2.9:TheselectedFDDHS-DSCHphysicallayercategory

  • 8/4/2019 d31 Unis Dr Re 009 Final

    19/63

    ProjectMuMoR IST-34561 19

    3 OverviewoftheConstitutingSinglemodeArchitectures

    3.1 BasebandArchitectureforUMTS/FDDAgeneraldescriptionoftheli nklevelforUL/DLofUMTS/FDDwillbepresentedhere,and

    functionalityoftheconstituentblockswillbedescribed.Thissection willgiveaclearunderstanding

    ofthereceiveralgorithmsinUMTS/FDDmode.

    3.1.1 BasebandSignalProcessing

    Anarchitecturalover viewofthe basebandsignalprocessing ofUMTS/FDDwillbegiven inthis

    section.

    Theoperationalblockswithinbothreceiverandtransmitteraregroupedbasedonthesignaltypethat

    theyprocess(sample,chip,physicalchannelandtransportchannel)and ontheirfunctionalrole

    (processingcontrolorjustprocessing). Table 3.1and Table3.2 showthereceiverandtransmitteroperationalblockgrouping.

    SampleProcessing ChipProcessing PhysicalChannel

    Processing

    TransportChannel

    Processing

    RxSignal

    Processing

    Control

    1. RxGain

    Controller.

    2. D.LTime

    Controller.

    3. CellSearcher.

    4. Multipath

    Searcherand

    Channel

    Estimator.

    5. DLTraining

    Sequences,Pilots

    andCodesSignatures

    Generator.

    6. FrequencyOffset

    Estimator.

    7. CRCCheck

    Rx

    Baseband

    Signal

    Processing

    1. A.D.C.

    2. RxPulse

    Shaper.

    3. Feedback

    Frequency

    Synchroniser.

    4. RAKEReceiver

    5. Forward

    Frequency

    Synchronizer.

    6. DLSoftBit

    Mapper

    7. PhysicalChannel

    De-Mapper.

    8. 2nd

    De-

    Interleaver.

    9. PhysicalChannel

    De-Segmentation.

    10.TransportChannel

    De-Multiplexer.

    11.RadioFrameDe-

    Segmentation.

    12.1st

    De-Interleaver.

    13.DTXRemoval.

    14.RateDe-Matching.

    15.ChannelDecoder.

    16.TransportBlock

    De-Concatenation

    andCodeBlock

    Desegmentation.

    Table3.1:BlockswithinBasebandReceiverSignalProcessingandControlforUMTS/FDD

    SampleProcessing ChipProcessing PhysicalChannel

    Processing

    TransportChannel

    Processing

    TxSignal

    1. TxGain

    2. ULPilotsand

  • 8/4/2019 d31 Unis Dr Re 009 Final

    20/63

    ProjectMuMoR IST-34561 20

    Processing

    Control

    Controller. CodesSignatures

    Generator.

    Tx

    BasebandSignal

    Processing

    1. PulseShaper.

    2. TxTruncator

    3. DAC

    4. Spreaderand

    Modulator.

    5. Transport

    Multiplexer.6. PhysicalChannel

    Segmentation.

    7. 2nd

    Interleaver.

    8. PhysicalMapper.

    9. CRCAttachment.

    10.TransportBlockConcatenationand

    CodeBlock

    Segmentation.

    11.ChannelCoder.

    12.RadioFrame

    Equalizer.

    13.1st

    Interleaver.

    14.RadioFrame

    Segmentation.

    15.RateMatching.

    Table3.2:BlockswithinBasebandTransmitterSignalProcessingandControlforUMTS/FDD

    Figure3-1showstheBasebandReceiverSignalProcessingandControlsignalflow,where:

    AnalogueRxSignalisthereceivedsignalfromtheRFFrontEnd

    RxSetGainrepresentstherequiredRFgaininordertooperatetheADCsatoptimumscalegain

    FeedbackControlParametersusedforclose-loopfrequencyandtimecontrol.

    CellParametersforUTRAFDDthisisjustthescramblingcodenumberthatwillbeusedto

    generateDLTrainingSequences,PilotsandCodesSignatures(scramblingandOVSFcodes).

    PhysicalChannelsSoftBitsarethebitmappedcodechannelsymbols.

    TrChDe-MuxSoftBitsarethede-multiplexedTransportchannelssoftbits.

    ReceivedDLDatarepresentsthereceived,decodedandCRCcheckedinformationbits.

    Figure3-1:BasebandReceiverSignalProcessingandControl,SignalFlow

    Figure3-2showstheBasebandTransmitterSignalProcessingandControlsignalflow,where:

    ULDatarepresentsthehigherlayerdatathathastobetransmittedonuplink.

    TrChRateMatchedBitsaretheratematchedTransportchannelsbits.

    PhysicalChannelsBitsarethebitsthathavetobymappedtocodechannelsymbols,modulated

    andspread.

    Received

    DLData

    RxSample

    Processing

    RxChip

    Processing

    Transport

    Channel

    Processin

    Chips

    Cell

    Parameters

    FeedbackControl

    Parameters

    Physical

    Channels

    SoftBits

    Analogue

    RxSi nal

    RxSetGain

    Frame

    Timing

    Physical

    Channel

    Processin

    TrCh

    De-MuxSoftBits

  • 8/4/2019 d31 Unis Dr Re 009 Final

    21/63

    ProjectMuMoR IST-34561 21

    AnalogueTxSignalisthesignalsenttotheRF-FrontEndtransmitter.

    CodeChannelsGainsandTxPowerarethecodechannelnormalizedgainsandtherequired

    transmissionpower.Theseareusedtosetthetransmittergains.

    Figure3-2:BasebandTransmitterSignalProcessingandControl,SignalFlow

    3.1.2 FDDBasebandSampleProcessingFigure 3-3showsthesignalflowwithintheTransmitterBasebandSampleProcessingwherethe

    processflowcouldbedescribedasfollow:

    TheUplinkchipstobetransmittedarepulseshapedandrateconvertedbytheTxPulseShaper

    ThepulseshapedsamplesarebitequalizedatanoptimumwordlengthbytheTxTruncator.

    ThelevelofwordtruncationoftheComplexSamplesissetbytheTxGainControllerandwill

    dependonthenormalizedgainsofthecodechannels(CodeChannelsGains)describingthe

    uplinkphysicalchannel.

    FinallythedigitalsamplesareconvertedtotheAnalogueTxSignalbytheDACsandtheRF

    Front-EndgainissetbytheTxGainController.

    Figure3-3:TransmitterSampleProcessing,SignalFlow

    Figure3-4showsthesignalflowwithintheReceiverBasebandSampleProcessing.Processflow

    wise,theReceiverSampleProcessingcouldbedescribedasfollow:

    ThegainseenattheADCinputismeasuredandcontrolledbytheRxGainController.

    Assuminganearly-lateclose-looptimecontrol,theEarly,In -timeandLateChipsFingersare

    obtainedbytheRxPulseShaperwhichfiltersanddecimatestheComplexSamplestochip

    rate.Thechipfingeroffset(DLChipOffsets)andtheframetimingareadjustedbytheDLTimeControllerbasedonthemultipathgains(MPGains)feedback.

    TheInitialTimingandtheCellParametersaregivenbytheCellSearcher.

    DAC

    TxPulse

    ShaperchipsComplex

    SamplesAnalogue

    TxSignal

    CodeChannels

    Gains

    TxGain

    Controller

    TxPower

    TxSet

    Gain

    WordTruncation

    Level

    Tx

    Truncator

    Truncated

    Samples

    UL

    Data

    RxSample

    Processing

    RxChip

    Processing

    Transport

    Channel

    Processin

    Chips

    CodeChannels

    Gains

    Physical

    Channels

    Bits

    Analogue

    TxSi nal

    TxSet

    Gain

    Physical

    Channel

    Processin

    TrCh

    Rate

    MatchedBits

    TxPower

  • 8/4/2019 d31 Unis Dr Re 009 Final

    22/63

    ProjectMuMoR IST-34561 22

    FinallythechipfingersarefrequencysynchronizedandsenttotheRxChipProcessing.

    Figure3-4:ReceiverSampleProcessing,SignalFlow

    3.1.2.1 PulseShaping(TransmitandReceive)

    Thepulseshapingfilteratthetransmitterisspecifiedin3GPP25.101asaroot -raised-cosine

    (RRCos).Transmitandreceivepulseshapingfilterstogether ,trytominimizetheinter -chip-interference,bysatisfyingtheNyquistcriterionthroughtheappropriateraisedcosinepulseshaping.

    However,someamountofinter-chip-interferencewillstillbeinducedthroughthefrequencyselective

    behaviourofthemultipathchannel.

    Figure 3-5and Figure 3-6showthetypicalsignalprocessingfortransmitterandreceiverpulse

    shapingelements.ThereceiverdelayelementiscontrolledbythereceiverDLTimeControllerin

    ordertomaximizetheSIRattheoutputoftheRAKEreceiver.

    Figure3-5:TypicalTxpulseshaping(controlleddelayforTDDonly)

    Figure3-6:TypicalRxpulseshaping(controlleddelayforbothFDDandTDD)

    ForUL(transmitting)onlyonepulseshapingelementexistsatalltimes. ForDLtherecouldbemore

    thanoneDLsourceswithdifferentchipoffsets(ifDLdiversityisconsidered).Awaytominimize

    RRCos

    Filtercomplex

    samples

    chips

    Z-D

    ULChipOffset

    RRCos

    Filter

    complex

    sampleschips

    Z-D

    DLChipOffset

    Feedback

    Control

    Parameters

    RxPulse

    Shaper

    CellSearcher

    FeedbackFrequency

    Synchronizer

    RxGain

    Controller

    Early,In-

    timeand

    LateChips

    Fingers

    Initial

    TimingD.LTime

    Controller

    M.P.

    Powers

    EarlySync

    Chips

    LateSync

    Chips

    In-TimeSync

    ChipsA.D.C Complex

    Sam les

    FrameTiming

    Feedback

    Frequency

    Offset

    Chips

    D.LChip

    Offsets

    AnalogueRxSignal

    RxSetGainCell

    Parameters

  • 8/4/2019 d31 Unis Dr Re 009 Final

    23/63

    ProjectMuMoR IST-34561 23

    thenumberofPulseShapingElementsrequired,istouseaunionbasedmethodforgeneratingchips

    withsameoffsets,butallocatedtodifferentsources.

    3.1.2.2 CellSearching

    ThepurposeofInitialCellSearcheristoacquiretiming informationofthenearest(orstrongest)basestation.In 3GPPspec ifications,thereare2synchronizationchannels usedinthe downlinkofeach

    cell,namelyasPrimarySynchronizationChannel (P-SCH)andSecondarySynchronizationChannel

    (S-SCH).Thereisalsoacommonpilotchannel(CPICH).Cellsearchprocessconsistsof3stepsusing

    these3channelsforsynchronization,codegroupidentificationandcellidentification. Thefirststepis

    tofindslottimingusingP-SCH,thesecondstepistofindframetimingandcodegroupusingS -SCH,

    andthethirdstepistoidentifythe cellspecificscramblingcodeusingCPICH. DuringSTEP3ofthe

    cellsearchprocedure,theUEdeterminestheexactprimaryscramblingcodeusedbythefoundcell.

    Theprimaryscramblingcodeistypicallyidentifiedthroughsymbol -by-symbolcorrelationover the

    CPICHwithallcodeswithinthecodegroupidentifiedin STEP2.Thereare8scramblingcodesin

    eachcodegroup.Aftertheprimaryscramblingcodehasbeenidentified,thePrimaryCCPCHcanbe

    detected.Andthesystem-andcellspecificBCHinformationcanberead.IftheUEhasreceivedinformationaboutwhichscramblingcodestosearchfor,steps2and3above

    canbesimplified.

    3.1.2.3 DLTimeControl

    Thisblocktracksthetimevaryingdelayofeachpathassociatedwith thefingersoftherakereceiver.

    Thistrackingcanbebasedonearly -latedelaydiscriminatorapproach.Inthisapproach,themetrics

    fortimecontrolaretheM.P.Gains,whicharethepowersumsoftheearly,in -timeandlate

    multipathweights(seesection 3.1.3.3).TheDLTimeControlwilladjustthetimingtofollowthe

    highestofthesepowergains(peaksearchapproach).

    ThistrackingstrategyimpliesthattheCellSearchdoesaninitialchiplevelsynchronization

    (acquisition)andthereportedtimi ngiswithinthefractionaldelayresolutionrequirements.Ifthisisnotthecaseortheoffsetchangesbyavaluelargerthan thedelayresolutionrequirements,thetime

    differencebetweenthechipfingersshallbesetatavaluelargerthan the PulseShapingDelay

    Resolutionandgraduallyreduced(i.e.bisected).Inthiscase,thecurrenttimechangecouldbe

    calculatedusinga2nd

    orderpolynomialpeaksearchontotheM.P.Powers.

    3.1.2.4 FeedbackFrequencySynchronization

    Theneedofcarriersynchronizationatthispointonthesignalflowismainlymotivatedbythe needto

    reducesinc-aliasingcode-channelsmearing(whichcausesco -channelinterference)andtoimprove

    thequalityofthemulti -pathestimation.Implementation -wisethisprocesscouldem bedaDigital

    ControlledOscillatoranddigitalcomplexmixersforcomplexsine -wavemultiplicationofthe

    receivedchips.ThemaincontributiontothecarrierfrequencyoffsetaretheDopplerShift(vehicularspeedlimited

    to250km/h)andinstabilitiesofbothNodeBandUserEquipmentlocaloscillators(constrainedbythe

    conformancerequirements)andcouldbeshownthatmaximumcarrieroffsetisaround 20kHz.

    Thereforethesynchronizationafterpulseshapingcausesanignorablespectraldistortion (compare

    RRCosBW=3.84MHz1.22with20kHz),butreducestheamountofprocessing.

    Notethatfrequencysynchronizationshallbedoneforallchipfingers(early,in-timeandlate).

    3.1.3 FDDBasebandChipProcessing

    Figure 3-7show sthesignalflowwithintheTransmitterBasebandSampleProcessingwherethe

    processflowcouldbedescribedasfollows:

    ThePhysicalChannelsbitsaremodulatedbytheSpreaderandModulatorintothetransmitted

    chips.

  • 8/4/2019 d31 Unis Dr Re 009 Final

    24/63

    ProjectMuMoR IST-34561 24

    TheSpreaderandModulato rmultiplexesthePilotBitswithinDCPCHandusestheCh

    SignaturesgeneratedbytheULPilotsandCodesSignaturesGenerator.

    Figure3-7:TransmitterChipProcessing,SignalFlow

    Theblockdiagram of Figure 3-8showsthesignalflowwithintheReceiverBasebandChip

    ProcessingandControl.

    Processflowwise,theReceiverChipProcessingcouldbesummarizedasfollow:

    TheMultipathSearcherestimatesthein -timemulti pathchannelcomplexweights(MP

    Weights)andusesthein -time,earlyandlatepowergains(MPPowers) tosearchthe

    multipaths.ThepowergainswillbefedbacktotheDLTimeControllerfortimetracking.

    TheRAKEReceiverfirstcombinestheI n-TimeSyncChipswiththeMPWeightsandthen

    descramblesanddespreadstheresultusingtheChSignatures.TheRAKEReceiver willoutput

    theCodeChannelsSoftSymbols.Undercertainconditionsanoptionallevelofequalization

    couldbeconsideredwithintherakereceiver.

    TheresidualfrequencyoffsetisestimatedusingtheCodeChannelsSoftSymbols.

    TheForwardSymbolsFrequencySynchronizercompensatesthechannelsresidualfrequency.

    Finally,thePhysicalChannelsSoftBitsareobtained bybitmappinganddiversitycombiningof

    theChannelsSyncSymbols.

    U.L.PilotsandCodes

    SignaturesGenerator.

    Physical

    ChannelsBits

    chipsSpreaderandModulator

    PilotBits ChSignatures

    CodeChannels

    Gains

  • 8/4/2019 d31 Unis Dr Re 009 Final

    25/63

    ProjectMuMoR IST-34561 25

    Figure3-8:ReceiverChipProcessing,SignalFlow

    3.1.3.1 TransmitterSpreadingandModulation

    Spreadingisappliedtothephysicalchannels.It consistsoftwooperations.Thefirstisthe

    channelisationoperation,whichtransformseverydatasymbolintoanumberofchips,thusincreasing

    thebandwidthofthesignal.ThenumberofchipsperdatasymboliscalledtheSpreadingFactor(SF).

    Thesecondoperationisthescramblingoperation,whereascramblingcodeisappliedtothespread

    signal.

    Withchannelisation,datasymbolsonso -calledI-andQ -branchesareindependentlymultipliedwith

    anOVSFcode.Withthescramblingoperation,theresultan tsignalsontheI -andQ -branchesare

    furthermultipliedbycomplex -valuedscramblingcode,whereIandQdenoterealandimaginary

    parts,respectively.

    j

    I+jQ

    Spreading

    by

    Channelization

    Code

    SetGainfor

    EachChannelPhysicalChannelsbits

    OVSFcodeCodeChGains

    Scramblecode

    chips

    ChSignatures

    Figure3-9:Spreadingforuplink

    3.1.3.1.1 DPCCH/DPDCH/HS-DPCCH

    Figure3-10illustratestheprincipleoftheuplinkspreadingofDPCCH,DPDCHs andHS -DPCCH.

    ThebinaryDPCCH,DPDCHsandHS-DPCCHtobespreadarerepresentedbyreal-valuedsequences,

    M.P.

    Weights

    RAKE

    Receiver

    LateSync

    Chips

    In-Time

    SyncChips

    MultiPath

    Searcherand

    Channel

    Estimator

    Training

    Sequences,Pilots

    andCodes

    SignaturesGenerator

    Feedback

    FrequencyOffset

    CodeChannelsSoftSymbols

    ChSignatures

    FrequencyOffsetEstimator

    DLSoft

    Bit

    Mapper

    EarlySync

    Chips

    Forward

    Symbols

    Frequency

    Synchronizer

    Channels

    SyncS mbols

    Physical

    ChannelsSoftBits

    M.P.

    Gains

    Training

    Sequences

    ChForward

    FreqOffset

    Frame

    Timing

    FeedbackControl

    Parameters

    chips

  • 8/4/2019 d31 Unis Dr Re 009 Final

    26/63

    ProjectMuMoR IST-34561 26

    i.e.thebinary value"0"ismappedtotherealvalue+1,thebinaryvalue"1"ismappedtothereal

    value 1,andthevalue"DTX"(HS -DPCCHonly)ismappedtotherealvalue0.TheDPCCHis

    spreadtothechipratebythechannelisationcodec c.The n:thDPDCHcalledDPDC Hnisspreadto

    thechipratebythechannelisationcodec d,n.TheHS -DPCCHisspreadtothechipratebythe

    channelisationcodeC HS.OneDPCCH,uptosixparallelDPDCHs ,andoneHS -DPCCHcanbetransmittedsimultaneously,i.e.1n6.

    I

    j

    c d,1 d

    S dpch,n

    I+jQ

    DPDCH 1

    Q

    c d,3 d

    DPDCH 3

    c d,5 d

    DPDCH 5

    c d,2 d

    DPDCH 2

    c d,4 d

    c c c

    DPCCH

    S

    C HS HS -DPCCH (IfN max -dpdch =odd)

    DPDCH 4

    C HS HS -DPCCH (IfN max -dpdch =even)

    HSPowersettin gforHS -

    HSPowersettin gforHS -DPCCH

    Figure3-10:SpreadingforuplinkDPCCH,DPDCHsandHS-DPCCH

    Afterchannelisation,thereal-valuedspreadedsignalsareweightedbygainfactors, cforDPCCH,d

    forallDPDCHsand HSforHS-DPCCH(ifoneisactive).

    Aftertheweighting,thestreamofreal -valuedchipsontheI -andQ -branchesarethensummedand

    treatedasacomplex -valuedstreamofchips.Thiscomplex -valuedsignalisthenscra mbledbythe

    complex-valuedscramblingcodeSdpch,n.Theappliedscramblingcodeisalignedwiththeradioframes,

    i.e.thefirstscramblingchipcorrespondstothebeginningofaradioframe. Formoredetails,seethe

    specification3GPPTS25.213v5.1.0.

    3.1.3.2 Modulation

    Seethespecification3GPPTS25.213v5.1.0.

    3.1.3.3 MultipathSearchingandChannelEstimation

    Figure3-11showstheblockdiagramofaMultipathSearchingforasingledownlinksource.

  • 8/4/2019 d31 Unis Dr Re 009 Final

    27/63

    ProjectMuMoR IST-34561 27

    Figure3-11:MultipathSearching

    Themulti-pathchannelisestimatedforthein -timechipsforalldelaysoveramaximumsearching

    rangeandonlythestrongestpathsareselected(bytheWeightsONSelector).Assuminganearly -

    lateclosed -looptimesynchronization,thechannelisagainestimatedonlyatthedelaysassociated

    withthein-timestrongestpaths(atPositionofDelaysON).

    Theresultedpowervalues(seeFigure3-12)areusedasmetricsbytheDLTimeControllerfortime

    trackingandtheMPWeightsareusedbytheRAKEreceivertoexploitthemultipathdiversityby

    MaximalRatiocombiningthein-timechips.

    Figure3-12:MultipathPowerEstimator,BlockDiagram

    3.1.3.4 TheRAKEReceiver

    Multipath

    Power

    Estimator

    MPPowersEarlyPath

    Weights

    LatePath

    Weights

    in-time

    chips

    MPWeights

    (In-time)

    early

    chips

    TrainingSequence

    MaximumSearchingRangeChannelEstimator

    latechips

    TrainingSequence

    Weights

    ON

    Selector

    SelectedTapsChannel

    Estimator

    SelectedTapsChannel

    Estimator

    TrainingSequence

    Positionof

    DelaysON

    || ||2

    || ||2

    || ||2LatePathWeights

    EarlyPath

    Weights

    In-timePath

    Weights

    Early

    Power

    In-time

    Power

    LatePower

    MP

    Powers

  • 8/4/2019 d31 Unis Dr Re 009 Final

    28/63

    ProjectMuMoR IST-34561 28

    In theRAKEreceiveraMaximalRatioCombiner(MRC) isusedtocombine themultipath sto

    increasetheSIRofthereceivedsignal. Figure 3-13showssuchanarrangement,wherethelinear

    MaximalRatioCombinerprecedestheDescramblerandDespreaderblock.

    Figure3-13:RAKEReceiver

    Forlowspreadingfactors,becauseofthelowprocessinggain ,theamountofinter-pathandinter-user

    interferencecoul dbeconsiderable .Equalizationandinterferencecancellationmayberequired.For

    example,iftheMPWeightsconvolutionmeasured inrespecttotheIn -timeGaindividedbythe

    channelspreadingfactorislargerthanasetthresholdfurtherequalizatio nmaybeneeded.If

    equalizationisperformed,aPreandPostcancellationmethodshouldbepreferredoverother

    methodssuchasZero-Forcing(becauseofthespectralnullspresenceinamobileenvironment).

    Figure3-14showsanexampleofanMRCandchiplevelPreandPostdecisionbasedequalization

    where:

    - TheDecisionBlockattemptstoestimatethetransmittedchips.Notethatonlythechannelsof

    interestcouldbemonitored.

    - EqualizationFilterisanodd -symmetricFIR withthecoefficientsgivenbythecircular

    convolutionoftheMPWeightsnormalizedtotheweightspowergain(In -timeGain),butwith

    thecentralcoefficient(tap)settozero.

    - SF:themaximumspreadingfactor

    - N:theMRCdelay

    - |SF-N|:theabsoluteof(SF-N)

    Figure3-14:ExampleofRAKEMRCandChipLevelPreandPostDecisionBased

    Equalisation

    Notethattheaboveexampleperformsequalizationatthechiplevel,butcouldbereducedtoasymbol

    levelequalization.

    3.1.3.5 ForwardSymbolsFrequencySynchronization

    AsopposedtotheFeedbackFrequencySynchronization,thisblockoperatesinforwardmodeand

    itsscopeistocompensatefortheresidualcarrieroffsetleftafterfeedbacksynchronizationat

    channelsymbollevel.Thiswilltendtoreducethesymbolshiftingandcouldbethought of asa

    In-time

    SyncChips

    Descramblerand

    Despreader CodeChannels

    SoftSymbols

    Channel

    Signatures

    MRC

    MPWeights

    CodeChannels

    SoftSymbols

    M.R.C.

    Decision

    Block

    +

    _

    Z-(SF+N)

    Equalization

    Filter

    Descrambler

    and

    Despreader

    Z-|SF-N|

    In-time

    SyncChips

  • 8/4/2019 d31 Unis Dr Re 009 Final

    29/63

    ProjectMuMoR IST-34561 29

    refinementofthecarrierrecovery.ImplementationwisethisprocesscouldembedaDigital

    ControlledOscillatoranddigitalcomplexmixersforcomplexsine -wavemultiplicationoftheCode

    ChannelsSoftSymbols.

    3.1.3.6 DLSoftBitMappingThisprocessmap sthereceivedcomplexchannelssymbolstothePhysicalChannelSoftBits.The

    recommendedmethodforQPSKconstellationistheprojectionsofchannelsymbols intothe

    decisionboundary.Forhigherordermodulation ,reliabilityofeachbitcanbecomputedby

    averagingreliabilityofalltheconstellationsymbolsthathavethesamevalueforthatbit.

    3.1.3.7 FrequencyOffsetEstimation

    Variousmethodsforfrequencyes timationaredescribedandcomparedin[Agapciuc2002],[Hanzo

    2000]and[Meyer1998].Ifadata -aidedmodeischosenforfrequencyestimation,onlythepilot

    symbolsshouldbeconsideredattheinputoftheFrequencyOffsetEstimator.Amethodthatwork s

    forbothdata -aidedandnotdata -aidedisthephasemultiplicationmethod,whichcouldbecombined

    withaFitzestimator(referredin[Meyer1998]asD -Spacedestimator)togivethebestresults(see[Agapciuc2002]).ForthismethodalltheM -PSKmodu latedsymbolscouldbeused(meansthat

    Type316-QAMHSDPAsymbolsshouldbeexcluded)wherethephasemultiplicationfactorequals

    M.TheFeedbackFrequencyOffsetoutputistheangularfrequencyoffsetnormalizedtothechip

    rate,wheretheChFor wardFreqOffsetistheangularfrequencyoffsetnormalizedtoeachcode

    channelsymbolrate.

    3.1.3.8 CodeGeneration

    ForFFDDL(receiver)theCodeGenerationproducesthe:

    FDDDLScramblingandOVSFcodes

    TrainingsequencesforMultipathSearchingandChanne lEstimation(i .e,P-CPICH,DCHpilot

    chips)

    ForFFDUL(transmitter)theCodeGenerationproducesthe:

    FDDULScramblingandOVSFcodes

    FDDULDCPCHpilotbits

    NotethatsameOVSFcodegenerationcouldbeusedforbothULandDL.

    3.1.4 TransmitterTransportChannelProcessing

    Figure3-15showstheprocessingchainofthetransmi tterTransportChannelProcessing,wherethe

    ULDatabitsarecoded,interleavedandratematched.

    CRCAttachment

    TrBkConcatenation

    CodeBlocksegmentation

    ChannelCoding

    RadioFrameEqualization

    1stInterleaving

    RadioFrameSegmentation

    RateMatching

    TrChRateMatched

    Bits

    U.LData

    Figure3-15:TransmitterTransportChannelProcessing,BlockDiagram

    3.1.4.1 CRCAttachment

    TheCRCbitwillbeappendedtoeachtransportblock.CRCsize,whichvariesfrom24,16,12,8to0

    willbedeterminedbyhigherlayercontrol.

    3.1.4.2 Transportblockconcatenation/segmentationandchannelcoding

    AlltransportblocksinaTransportTimeInterval(TTI)areseriallyconcatenated.Iftheconcatenated

    stringsizeislargerthenthemaximumallowablesizeforthecodeblock,thencodeblock

    segmentationwillbeperformed.Theallowableblocksizeforturbocodingis40 X5114andX

  • 8/4/2019 d31 Unis Dr Re 009 Final

    30/63

    ProjectMuMoR IST-34561 30

    504forconvolutioncoding.Allsegmentedblocksmustbeofthesamesize.Ifthisisnotpossible,

    thenfillerbitswillbeaddedtothestartofthe1st

    block.Afterchannelcoding,iftherearemorethan1

    encodedblock(i.e,morethen1segmentationblock),theywillbeseriallyconcatenated.

    3.1.4.3 Radioframesizeequalisationand1

    st

    interleavingTheradioframesizeequalisationappendstheinputdatawith{0,1}sothat theoutputstreamcanbe

    segmentedintothesamesizeframeforratematching.Bitsaresplitintocolumn/sinthe1st

    interleaver

    dependingontheTTIlength.Incompressmodebypuncturing,radioframesaremarkedinpositions

    correspondingtothestartingbitsoftheradioframes.Bitsarereadintoamatrixinrows,column -wise

    interleavingisdonethroughpermutationpatternsdependingontheTTIlength.Theoutputsareread

    outincolumns.

    3.1.4.4 RadioframesegmentationandRatematching

    IftheTTIislong erthen10ms,theinputsequencewillbesegmentedandmappedontoconsecutive

    radioframes.Theratematchingblockrepeatsorpuncturesbitsonatransportchannelsothatthe

    channelbitratecanbemetaftertheTrCHmultiplexing.Bitseparationisdon eonlyonturboencodedTrCHinpuncturingcase.ForthecaseofturboencodedTrCHwithrepetitionandconvolutionally

    encodedTrCH,bitseparationfunctionistransparent.Thedecisionofbitpuncturingandrepetitionis

    controlledbyhigherlevelsignallingandisdoneattheratematchingalgorithmblock.Puncturingbits

    willberemovedatbitcollection.

    3.1.5 TransmitterPhysicalChannelProcessing

    Figure3-16showstheprocessingchainofthetransmitterPhysicalChannelProcessi ng,wherethe

    TrChRateMatchedBitsaremultiplexed,interleavedandmappedtothePhysicalChannelBits.

    TrCh

    Multiplex

    Phys.ChannelSegmentation

    2ndInterleaving

    Phys.ChannelMapping

    TrChRateMatchedBits

    PhysicalChannelBits

    Figure3-16:TransmitterPhysicalChannelProcessing,BlockDiagram

    InTrCHmultiplexing,each10msradioframefromindividualTrCHwillbeseriallymultiplexedinto

    acodedcompositetransportchannel(CCTrCH).TheCCTrCHarethenbeingdividedintodifferent

    PhCHsduringPhCHsegmentation,whenmorethenonePhCHareus ed.Bitsthataremarkedbefore

    the1st

    interleaver,willberemoved.Atthe2nd

    interleaver,inputisreadintoa30columnsmatrixin

    rowwise.Blockinterleavingisdoneherethroughaninter -columnpermutationpattern.Outputisread

    outcolumnwise.Duringphysicalchannelmapping,inputismappedontothephysicalchannel.Inthe

    uplink,eachtransmissionframeiseithercompletelyfilledornotusedatall,exceptforcompress

    modewheretransmissionisturnedoffduringTGL.However,thereisnosuc hrestrictioninthe

    downlink.

    3.1.6 ReceiverPhysicalChannelProcessing

    Figure3-17showstheprocessingchainofthereceiverPhysicalChannelProcessing,where:

    PhyCHde-

    mapper

    2ndDe-

    Interleaving

    PhyCHde-

    segmentation

    TrCHDe-

    multiplexer

    PhysicalCh

    SoftBitsTrCHDe-Mux

    SoftBits

    Figure3-17ReceiverPhysicalChannelProcessing,BlockDiagram

    ThedemappedPhCHisinputintothe2 nddeinterleavingblockwheretheinversionofthe2 ndinterleaverwillbedoneusingthesamepermutationpatternasthatinthetransmitter.

    With morethen1PhCH,eachPhCHwillbecombinedtoformoneCCTrCHinthePhCH

    desegmentationblock.

  • 8/4/2019 d31 Unis Dr Re 009 Final

    31/63

    ProjectMuMoR IST-34561 31

    TheTrCHwillbedemultiplexedformthecodedcompositetransportchannel(CCTrCH)intheTrCHdemultiplexingblockaccordinglyintorespective10msradioframe.

    3.1.7 ReceiverTransportChannelProcessing

    Figure3-18showstheprocessingchainofthereceiverTransportChannelProcessing,where:

    RadioFrameDe-

    Segmentation

    1stDe-

    Interleaving

    DTX

    Removal

    RateDe-

    Matching

    Channel

    Decoding

    TrBkDe-Concatenation

    CodeBlockDe-

    Segmentation

    CRC

    Check

    TrCHRate

    MatchedBits

    DL

    Data

    Figure3-18ReceiverTransportChannelProcessing,BlockDiagram

    Theradioframeisreconstructedfromthesegmentationdoneinthetransmissiontofitthe1 stdeinterleaverblocksize.

    Aninversionofthe1stinterleavingisdoneusingasamepermutationpattern.

    1stDTXRemovalisrequiredforfixedpositionsofTrCHs.

    WhenpuncturingisdoneintheNodeBtransmitter,bitsinsertionwillbedonehere.Inthecaseofsoftbits,bitswithneutralweightagewillbeinserted.Forbitrepetition,therepeated

    bitwillberemoved.

    ThedecodingfortheconvolutionalcodewillmostlikelybedonethroughViterbidecodingandturbocodewillmostlikelybeprocessedwithiterativedecoder.Afterchanneldecoding,

    thetransportblockwillbereconstructedforCRCcheck.

    TheCRCbitsa recheckedandwillbedetachedfromeachtransportblock.IferroroccursintheCRCcheck,retransmissionwillbenecessary.Aswiththetransmitter,CRCsizewillbe

    informedthroughhigherlayercontrol

    3.2 BasebandArchitectureforUMTS/TDD

    Ageneraldesc ription forthelinklevelUL/DLofUMTS/TDDwillbepresentedhere,and the

    functionalityoftheconstituentblockswillbedescribed.Thissectionshouldgiveaclear

    understandingofthereceiveralgorithmsintheUMTS/TDDmode.

    3.2.1 Transmitter

    Afirstorde rsubdivisionofthetransmittermoduleisshownin Figure 3-19.Manymodulesofthe

    transmitterareidenticaltothoseusedby UMTS/FDDmode(channelcoding,spreading,etc.),and

    havenotbeendescribedinthissectiontoavoidmultipledescriptions.

  • 8/4/2019 d31 Unis Dr Re 009 Final

    32/63

    ProjectMuMoR IST-34561 32

    TrCHCoding#1

    TrCHCoding#K

    TrChMultiplex

    CCTrCH

    PHYTX(Uplink)

    Modulation

    Spreading/Scrambling

    MidambleInsertion

    PHYCHFormation

    Figure3-19:BlockDiagramoftheTransmitter.

    3.2.1.1 TrCHCoding

    Functionalities:thisblockreceivesthebinarysequencegeneratedbythedatasource,andperform s

    processingtomakethetransmittedsequencemoreresistantagainstchannelimpairments.The

    processingoperationsperformedwithinthisblockare:

    Channelcoding

    Interleaving

    Datablocklength/sizemanagementoperations.Theseoperationsareintended torearrange

    thedatasothattheblocksinternallyprocessedfollow3GPPspecifications,andenablematchingof

    theinputsequencedatarateswithoneofthosespecifiedforUMTS.Amoredetailedblockdiagramof

    thisunitisgiveninFigure3-20.

    3.2.1.2 TrCHMultiplex

    Functionalities:thefunctionofthisblockistomultiplexdatafromseveralTrCHs.

    3.2.1.3 PhyChFormation

    Functionalities:thisblockcreatesthephysicalchannelsaccordingto3GPPspecifications.The

    operationsincludedwithinthisblockare:

    Datablockmanagement,specifically ,segmentationoftheinputdataintoblockswiththeappropriatesize.

    Secondlevelofinterleaving.

  • 8/4/2019 d31 Unis Dr Re 009 Final

    33/63

    ProjectMuMoR IST-34561 33

    Radioframesegmentation

    Channelcoding

    Ratematching

    TrBkconcatenation/

    Codeblocksegmentation

    CRCattachment

    Radioframe equalisation

    1st

    interleaving

    Figure3-20:BlockDiagramofTrCHModule.

    3.2.1.4 Spreading/Scrambling

    Functionalities:theoperationsperformedwithinthisblockare:

    MultiplicationofthecomplexalgebraicsequencesfromthePhyChFormationblockwitha

    Walsh-HadamardcodeoflengthQ( 161 Q )andbaudrate3.84Mchip/s.Thisoperation

    providesaspreadingfactorofQ.

    Multiplicationofspreadsequencesbyarandomisationcodeatthesamebaudrate.Therandomisationcodesaredefinedin[3GPP25223320].

    TheblockdiagramillustratingthesetwooperationsisshowninFigure3-21.

    ComplexMultiplier ComplexMultiplier

    Channelisation

    CodeScramblingCode

    Figure3-21:BlockDivisionofSpreading/ScramblingUnit.

  • 8/4/2019 d31 Unis Dr Re 009 Final

    34/63

    ProjectMuMoR IST-34561 34

    3.2.1.5 MidambleInsertion

    Functionalities: thisblockmultiplexesthe sequencefromthespreading/scramblingunit,witha

    deterministicsequenceknownasmidamblespecifiedby3GPP[RAN25.221].Twodifferenttypesof

    midambleshavebeendefined,onewith512chipsisoftype1andanotherwith256chipsisoftype2.

    Figure3-22andFigure3-23showhowtheyareinsertedinbursts1and2.Theyareusedtoestimate

    multiplechannelimpulseresponseintheUL.IntheDL,whennoTxdiversityschemeisused,thereis

    onlyonemidamblecommontoalltheburstsoftheslot.

    Datasymbols976chips

    Midamble512chips

    Datasymbols976chips

    GP96CP

    2560*Tc

    Figure3-22:StructureofBurstType1.

    Datasymbols1104chips Midamble256chips

    GP96CP

    2560*Tc

    Datasymbols1104chips

    Figure3-23:StructureofBurstType2.

    3.2.1.6 Modulation

    Functionalities:thepurposeofthisblockis toadequatelyshapethesignalstobetransmittedoverthe

    channel.3GPPspecifiesQPSKcarriermodulationwithrootraisecosinepulseformatting(roll -off

    factor=0.22).Since3GPPspecifiescoherentdemodulation,thesimulati onsarecarriedusingthe

    basebandcomplexenvelopesoftherealbandpasssignals.Consequentlynoblockinvolvingspecific

    QPSKcarriermodulationisneeded.TheModulationblockhasonlytoprovidetheRRCshapetothe4-aryunitaryamplitudecomplexsamplesprovidedbytheblockMidambleInsertionblock.

    3.2.2 Receiver

    Figure3-24showstheblockdiagramofthereceiver.Thesub -modulesthatcomposethereceiverare

    thefollowings:

    Pulseshaping:squarerootraisedcosinefilteridenticaltotheoneusedbyFDDmode.

    Channelestimation:eachuserschannelimpulseresponseh k=(h k[0],,h k[W-1])isestimatedwiththeaprioriknowledgeofthetransmittedmidamble.Thealgorithmexploitsthe

    midambleconstructionmethodandisthereforespecifictotheTDDmode.

    Rakereceiver:dependingonthechannelestimationstrategy,theRakereceiverfortheTDDmodecanhavethesamestructureastheoneusedforFDD.Ifthechannelestimation

    algorithmestimatesthetap -delaylinemultipathmodel ,theRakereceiverhasthesame

    structureasforFDD.Ontheotherhand,ifthechannelestimationalgorithmestimatesaTc/2

    receivedchannel,therakereceiverwillhaveaFIRstructure.Asanoption,Multi -user

    detectionalgorithmcanreplaceorbeaddedaftertheRakereceiver.AclassicalMUDreceiver

    isthejointdetection,whichisablockmulti-userequalizer.

    RxPhyCh:ThisblockperformstheinverseoftheoperationsdonebytheblockPhyChFormation,i.e.deinterleavingandunsegmentation.

    TrCHDemultiplexing:ThisblockisthedualoftheTrCHcodingblock.Itperformschannel

    decoding,deinterleavingandblockmanagementoperations.

    TrCHdecoding:ThisblockisthedualoftheTrCHcodingblock.Itperformschanneldecoding,deinterleavingandblockmanagementoperations.

  • 8/4/2019 d31 Unis Dr Re 009 Final

    35/63

    ProjectMuMoR IST-34561 35

    Pulseshaping

    Channel

    estimation:

    hk

    Rake RxPhyChTrCH

    Demux

    TrCH

    DecodingPulseshaping

    Channel

    estimation:

    hk

    Rake RxPhyChTrCH

    Demux

    TrCH

    Decoding

    Figure3-24:ModuleidentificationofRx

    3.2.2.1 Channelestimation

    Letebeingthevectorcorrespondingtotheusefulpartofthereceivedmidamble,andhthevectorof

    concatenatedchannelimpulseresponseoftheKuser:

    ])1[].......0[],1[],...,1[],0[],1[],...,1[],0[( 12111000 = WhhWhhhWhhhh K

    The2vectorsarelinkedwiththemidamblesmatrixG,accordingtothefollowinglinearsystem:nGhe +=

    ThematrixGisformedwiththecyclicshiftofalengthPsequences[0],,S[P-1]:

    =

    ]1[]0[...]3[]2[

    ]2[]1[]3[

    ...

    ...

    ]2[]1[][]1[

    ]1[]1[][

    ]0[]1[..]3[]2[]1[

    PssPsPs

    PsPsPs

    sPsoss

    sPsos

    ssPsPsPs

    G

    Toperformlowcostchannelestimation,weusedtheeigenvaluedecompositionofpropertiesof

    circulantmatrix:theeigenvectorofGarethecolumnoftheFFTmatrixW.

    WeWh

    WWG

    WWG

    11

    111

    1

    =

    =

    =

    isthediagonalmatrixcontain ingtheeigenvaluesofG,andiscomputedaccordingtothefollowing

    formula:

    ))(( 00 gDFTdiagQg ==

    whereg0isthefirstcolumnofG.

    3.3 BasebandArchitectureforHSDPA/FDD

    AgeneraldescriptionofthelinklevelforHSDPA/FDDwillbepresentedhere,andfu nctionalityof

    theconstituentblockswillbedescribed.

    High-speeddownlinkpacketaccesshasbeenaddedtothe3GPPUMTSstandardsinordertoincrease

    thedatathroughput,reducethedelayandtoachievehighpeakdatarates.Thereforetechniquessuch

    asadaptivemodulationandcoding(AMC),hybridARQandfastschedulinghavebeenaddedtothe

    standards.

    Thischapterwillfocusonthehigh -speeddownlinkpacketaccess(HSPDA)enhancementsofthe

    UMTS/FDDmode.ThereforeonlyHSPDAspecificadditionswil lbedescribed,inordertoavoidoverlappingwithChapter3.1

  • 8/4/2019 d31 Unis Dr Re 009 Final

    36/63

    ProjectMuMoR IST-34561 36

    3.3.1 HSDPAspecificUplinkChannelcodingandmodulation

    HSDPAdoesnotuseadivergentchannelcodingcomparedtoUMTS.Thedifferencesareonly:

    CQI(ChannelQualityIndicator)

    ACK-NACK(HARQProtocol)

    Additionaltimingvalues

    Additional16-QAMmodulation

    3.3.1.1 CQI-ChannelQualityIndicatordefinition

    TheCQIspecificationcanbefoundin3GPPTS25.214inchapter7.1.2and7.2.

    TheUEprocedureforreportingchannelqualityindication(CQI)isdefinedinthefollowingsteps:

    1) TheUEderivestheCQIvalueasdefinedin3GPPTS25.214chapter7.2.

    2) TheUE shalltransmitthe CQIvalueineachsubframethatstartsn 256chipsafterthestartofslotiontheassociateduplinkDPCCHwithisimultaneouslyfulfilling

    ( )

    ( ) 03modand0mod768025602565 ==++ ikchipchipichipnCFN ,

    whereCFNdenotestheconnectionframenumberfortheassociatedDPCHandnbeing

    thesmallestmfulfillingtherequirementdescribedinsubclause7.7in3GPP25.211.

    3) TheUEshallrepeatthe transmissionof theCQIvalue derivedin1) overthenext

    (N_cqi_transmit 1) consecutive HS-DPCCH subframes intheslotsrespectively

    allocatedtotheCQIasdefinedin3GPP25.211.

    4) TheUEshallnottransmittheCQIinothersubframesthanthosedescribedin2)and3).

    TheUEshallreportthehighesttabulatedCQIvaluesuchthat,forthecurrentradioconditions,thetransportblockerrorprobabilitydoesnotexceed0.1forasingletransmissionwithaTFRC

    correspondingtothereported,oralower,CQIv alue.DependingontheUEcategoryasdefinedin

    3GPP25.306,eitherTable8,9,10,or11shouldbeused.ForthepurposeofCQIreporting,theUE

    shallassumeatotalreceivedHS -PDSCHpowerof ++= CPICHHSPDSCH PP indB,wherethe

    measurementpowero ffset issignaledbyhigherlayersandthereferencepoweradjustment isgivenbyTable8,9,10,or11,dependingontheUEcategory.IfS-CPICHisusedasaphasereference

    forHS -PDSCHdemodulation, CPICHP isthereceivedpoweroftheS -CPICHusedbytheUE,

    otherwise CPICHP isthereceivedpoweroftheP-CPICH.

    3.3.1.2 ACK-NACK(HARQProtocol)

    TheHARQspecificationcanbefoundin3GPPTS25.214inchapter7.1.1.

    IftheUEdidnotdetectcontrolinformationintendedforthisUEonanyoftheHS -SCCHsintheHS-

    SCCHsetintheprevioussubframe,theUEshallmonitorallHS -SCCHsintheHS -SCCHset.Ifthe

    UEdiddetectcontrolinformationintendedforthisUEintheprev ioussubframe,itissufficientto

    onlymonitorthesameHS-SCCHusedintheprevioussubframe.

    IfaUEdetectsthatoneofthemonitoredHS-SCCHscarriescontrolinformationintendedforthisUE,

    theUEshallstartreceivingtheHS -PDSCHsindicatedbythiscontrolinformation.Afterdecodingthe

    HS-PDSCHdata,theUEshalltransmitahybridARQACKorNACKasdeterminedbytheMAC -hs

    basedontheCRCcheck.TheUEshallrepeatthetransmissionoftheACK/NACKinformationover

    N_acknack_transmitconsecutiveHS-DPCCHsub-frames,intheslotsallocatedtotheHARQ -ACKas

    definedinthefollowingchapter.WhenN_acknack_transmitisgreaterthanone,theUEshallnotattempttoreceivenordecodetransportblocksfromtheHS -PDSCHinHS-DSCHsub-framesn+1to

    n+(N_acknack_transmit -1)wherenisthenumberofthelastHS -DSCHsub -frameinwhicha

  • 8/4/2019 d31 Unis Dr Re 009 Final

    37/63

    ProjectMuMoR IST-34561 37

    transportblockhasbeenreceived.IfcontrolinformationisnotdetectedonanyoftheHS -SCCHsin

    theHS-SCCHset,neitherACK,norNACK,shallbetransmittedinthecorrespondingsubframe.

    FurtherinformationabouttheadditionalMAC_hsisavailableinthe3GPPTS25.321Specification.

    3.3.1.3 Additionaltimingvalues

    Thesetimingspecificationscanbefoundin3GPPTS25.211inchapter7.7.

    Figure3-25showsthetimingoffsetbetweenthe uplinkDPCCH,theHS-PDSCHandtheHS-DPCCH

    attheUE .Thecode -multiplexedHS -DPCCH sub-framestarts 256m chipsafterthestartof an

    uplinkDPCCHslotwithmselectedsuchtha ttheACK/NACKtransmissionstarts withinthefirst0 -

    255chipsafter7.5slotsfollowingtheendofthereceivedHS -PDSCHsub -frame.UEandNodeB

    shallonlyupdate m inconnectiontoUTRANreconfigurationofdownlinktiming. Notethatdueto

    autonomousadjustmentsofthe DPDCH/DPCCHtransmissiontimeinstant bytheUEdescribedin

    3GPP25.214 ,therelationshipsdescribedinthissectionmayceasetobevalid .Moreinformation

    abouttheuplinktimingadjustmentscanbefoundin3GPP25.214.

    UplinkDPCCH

    HS-PDSCHat

    UplinkHS-DPCCH

    3Tslot7680chips

    m256chips

    UEP(7.5Tslot=19200chips)0-255chips

    Tslot

    2560chips

    3Tslot7680chips Figure3-25:TimingstructureatUEforHS-DPCCHcontrolsignalling

    3.3.2 HSDPAspecificDownlinkChannelcodingandmodulation

    ThisChapterdescribestheHSDPAspecificsincontrasttothebasicUMTS algorithms.AfewUMTS

    descriptions(e.g.Rake-MMSE)areincludedtodescribepossibleimprovementoptionsforHSDPA.

    Inthedownlink,severalphysicalchannelsaremultiplexedsynchronouslytothetransmissionchannel

    byusingorthogonalspreadingcodes .Inamultipathchannel,inter -pathinterferencesdestroythe

    orthogonalityandcausemultiple-accessinterferences(MAI).Alongscramblingcodeoflength38400

    chipsissuperimposedonthespreadingcodesinordertoreducetheimpactofthemulti -pathsandthe

    MAI.

    Thepartofthereceiverdescribedinthissectionbasicallyhastoperformfivetasks.Thefirsttask

    consistsofthetimingsynchronizationwithrespecttothereceivedscramblingcode.Asasecondtask,thefrequencyerrorofthelocalclo ckoscillatorrelativetotheclockoscillatorofthetransmitteris

    estimatedandcorrected.ThethirdtaskistosuppresstheMAIofthemultipathchannel.Afirstoption

    isasimpleRakecombiner.TheproposedmorepowerfulsecondoptionisaMMSEchip -level

    equalizer.InthefourthstepthedataoftheI -andQ -componentsaredetectedbymeansofde -

    scramblingandde -spreading.HSDPAdatathatare16 -QAMmodulatedinordertoachievehighest

    dataratesarereconstructedbya16-QAMde-mapperinafifthstep.

    Figure3-26givesanoverviewofthispartofthereceiverthatisdividedintosynchronization,MAI

    suppressionanddemodulation.Amoredetaileddescriptionisgiveninthefollowingsubsections.

  • 8/4/2019 d31 Unis Dr Re 009 Final

    38/63

    ProjectMuMoR IST-34561 38

    Slotsync.

    Framesync.

    Scr.Codeidentify

    Metricgenerationphaseerrorest.

    CellSearch

    Channelest.&

    rakecombining

    1.Option

    MMSEchiplevelequalizer

    2.OptionDescramble Despread

    16QAMDe-Mapp

    CPICHdespread

    Synchronisation MAIcanceler Demodulation

    Figure3-26:SynchronizationandDemodulation

    3.3.2.1 Synchronization

    ThispartinHSDPAisidenticaltoUMTSsynchronization.Thusnoadditionshavetobereported

    here.

    3.3.2.2 MAIsuppression

    For3GPPoneimportantdistinctionfro mpreviousstandardsistherequirementofhighandvariable

    datarate.Itispossibletoincreasethedataratewithoutbandwidthexpansionbyreducingthe

    spreadingfactor.Alternatively,thespreadingfactormayremainfixedandallocatingseveralparal lel

    spreadingcodesforthesameserviceincreasesthedatarate.Thestandardsupportsbothtechniques.

    ThephysicallayerhasbeendefinedinsuchawaythataconventionalRAKEreceiver,formingthe

    simplestmulti -pathdiversityreceiverthatcanbeuse d,wouldgivesufficientperformanceinmostcases.

    Therefore,asafirstoptionaRakecombinercanbeused.Thisreceivertypesuffersfrommulti -user

    interferencecausedbyotherchannels.Thus,aRAKEcombinerwouldrequireverypowerfulchannel

    codingtoguaranteesufficientlowBERs.Advancedreceiveralgorithmscapableofsuppressingor

    cancellinginterferencescansignificantlyimprovesystemcapacitywithlesschannelcodingneeded.

    Thetargetrequirementof10Mbit/scouldbefulfilledwithaRake byalargeamountofpuncturing.In

    ordertobeabletohandlethischallengingrequirementinamorehostileenvironment,anMMSEchip

    levelequalizercanreplacetheRakecombinerinthemorepowerfuloption.

    Rakecombiner

    TheRakecombinercontainsach annelestimatorthatconsistsoftwoparts.The4strongestdelaysaredeterminedbyafullsearchwithrespecttotheCPICH.Thosepathsoutofthefourstrongestonesthat

    exceedacertainthreshold(20%ofthepowerinthestrongestpath)aretrackedin separatefingersin

    thesecondpart.Thetrackinginadistinctfingerisperformedusinganearlylateloopwithatiming

    resolutionof8samplesperchip.Eachfingerisabletoestimatedopplershiftsofupto800Hz.Afast

    estimationandcorrectionofthephaseerrorscausedbythedopplershiftsallowcorrelatingover4bits

    ontheCPICHcorrespondingto1024chips.Theestimatesoftherespectivecoefficientsofthechannel

    impulseresponse,buildfromtheactivefingers,aremaximumratiocombined.

    MMSEchiplevelequalizer

    ThepurposeoftheMMSEequalizeristoapproximatethesuperposedmulti -usersynchronoussignal

    attheoutputofthedownlinktransmitterbymeansofalinearoperation.Theapproximationisdonebyminimizingthemeansquarede rrorbetweenthemulti -usersynchronoussignalandtheestimateat

    theoutputoftheequalizer.Thisminimizationproblemcanbeformulatedasfollows:

  • 8/4/2019 d31 Unis Dr Re 009 Final

    39/63

  • 8/4/2019 d31 Unis Dr Re 009 Final

    40/63

    ProjectMuMoR IST-34561 40

    Subframe

    Buffer

    Symbolstosoft

    values(LLR)Calculations

    POWER

    EST.

    Const.re-

    arrangement

    De-

    Interleaving

    Physicalchannelde-Segmentation

    Postdeinter-

    leavingbuf.

    2ndRatede

    Matching

    1stRatede-

    Matching

    Channel

    Decoding

    CRCcheck

    LLR

    HARQ

    LLR

    combining

    HARQ

    Buffers

    HARQ

    memory

    manager

    BlockReorderinginSW(MAC)

    Figure3-27:ChannelDecodingchainsHSDPA/HS-DSCH

    3.3.3.1 HSDPA(HS-DSCH)

    TheHSDSCHconsistsofthefollowingblocks

    Subframebuffer(16-QAMonly)

    ThisbufferstoresthepartofthesubframeofHS -DSCH.Thebufferingisneededinordertoperformthepowerestimationforthe16 -QAMLLRcalculations.Thesizeofthebuffer

    dependsonthereliabilityofestimates.

    PowerEstimation(16-QAMonly)Usedtofindthedecisionvaluestobeusedin16-QAMLLRcalculations.Inawayitprovides

    thebiasformappingfromsymbolstobits.

    LLRCalculationsSymbolsaremappedtobitsbasedontheoutputsfromthepowerestimationblock.

    ConstellationRearrangementSpecificationreference:TS25.212subclause4.5.7.

    Itchangesthemappingfrombitstoconstellationpointstoachievebetterperformanceduringretransmissions.

    DeInterleaving

  • 8/4/2019 d31 Unis Dr Re 009 Final

    41/63

    ProjectMuMoR IST-34561 41

    Specificationreference25.212subclause4.5.6.

    ForQPSKtheInterleavingisperformedinthesamewayasinRel99.For16 -QAM2

    Interleaversareused.

    PhysicalchannelDeSegmentationSpecificationReference:25.212Subclause4.5.5Thebitsfromphysicalchanne lsareputtogether(concatenated)toformasingleHS -DSCH

    block.

    PostDeInterleavingBufferThenecessityofthisbufferdependsontheconstraintsindoinginverseHARQ.Itisneeded

    forthebitseparation.

    BitSeparationSpecificationreference25.212 Subclause4.5.5.Theincomingbitstreamisdividedintothree

    streams,thesystematicbits,thefirstparityandthesecondparity.Itstheinverseofthe

    transmitterBitcollectionfunction.

    2ndRateDematchingSpecificationreference25.212Subclause4.5.4.3.

    TheSecondRatedematchingmatchestheincomingbitstreamtoreciever'ssoftbuffering

    capacity.ThesecondRateMatchingalsomakesdifferentredundancyversionsfor

    Incrementalredundancy.

    LLRcombiningSpecificationreference:NA.

    TheLLRcombi ningcombinesdifferent(re)transmissionsofHSDSCHblockstoformone

    softbitvalueforuseinturbodecoder.ForthefirsttransmissiontheHARQbufferneedstobe

    nulledoutormadetransparent.

    HARQbuffersSpecificationreference:NA.

    HARQbuffersaredividedintoasetof8sub -buffers(tobeinvestigated)oneforeachHARQ

    processthatisactive.Theactualsizeofthesebuffersissignalledbyhigherlayers.

    1stRateDe-matchingSpecificationreference25.212Subclause4.5.4.2

    Worksinthesamewas astheRateMatchinginRel99withTTI

    IR

    TTI

    ilNNN = where

    IRN istheUE'ssoftbufferingcapacity.Thisblockbasicallyrearrangesthesoftbitsintotheir

    respectivecorrectpositionsbeforesending.

    ChannelDecoderSpecificationreference25.212Subclause4.5.3

    ThisblockconsistsofthecodeblocksegmentationandTurbodecoder.AHSDSCHblockcan

    containupto4codeblockseachof(5114+tail)bits,whichareseparatelydecodedbythe

    turbodecoder.

    CRCdecoderSpecificationreference25.212Subclause4.5.1

    24bitCRCisperformedtochecktheintegrityofthereceivedHSDSCHblock.Itsthesame

    blockasusedinRel99.

    3.3.3.2 HS-SCCHDecoding

    TheHS -SCCHcarriesthecontrolsignalingfortheHS -DSCHandhastobedecodedbeforet he

    HS.DSCHcanbedecoded.TheHS-SCCHcarriesthefollowinginformation

    Thechanalizationcodeset ...., 2,1, CCSCCS XX (7bits)

  • 8/4/2019 d31 Unis Dr Re 009 Final

    42/63

    ProjectMuMoR IST-34561 42

    ModulationschemeInformation msX (1bit)

    HybridARQprocessinformation(3bits)

    Redundancyandconstellationversion(3bits)

    Newdataindicator(1bit)

    UEidentity(16bits).TheUEidisnotexplicitlytransmittedonHS -SCCH,butitsusedinthecalculationofNE-specificmaskandCRC.

    depuncture2

    Viterbidecode2

    Mask

    depuncture1

    Viterbidecode1

    depuncture2

    Viterbi

    decode2

    Mask

    CRCdecode

    if(CRC)DecodeAllHS-SCCH'SintheUE'Sdomain

    DeMuxDeMux

    MAC-hs

    false

    true

    Xue

    Xue

    DeMUX

    Slot1 Slot2,3

    DeMux

    DecodethisHS-

    SCCHinNextslot

    DE-

    CodeEnXcss Xms Xnd Xhap

    XtbsXrv

    r s v

    Figure3-28:HS-SCCHDecoding

    ThedecodingprocessinvolvesthestepsasexplainedinTS25.211chapter4.6.44.6.7.Thetiming

    specificationcanbefoundin3GPPTS25.211chapter7.7.

    3.3.3.3 HS-SCCH/HS-PDSCHtiming

    Figure3-29showstherelativetimingbetweentheHS -SCCHandtheassociatedHS -PDSCHforone

    HS-DSCHsub-frame.TheHS-PDSCHstartsHS-PDSCH=2Tslot=5120chipsafterthestartoftheHS -SCCH.

  • 8/4/2019 d31 Unis Dr Re 009 Final

    43/63

    ProjectMuMoR IST-34561 43

    HS-SCCH

    HS-PDSCH

    3Tslot7680chips

    HS-PDSCH(2Tslot5120chips)

    3Tslot7680chips

    HS-DSCHsub-frame

    Figure3-29:TimingrelationbetweentheHS-SCCHandtheassociatedHS-PDSCH

  • 8/4/2019 d31 Unis Dr Re 009 Final

    44/63

    ProjectMuMoR IST-34561 44

    4 Multi-ModeSystemArchitecture

    Ageneralhigh-leveldescriptionofthemulti -modesystemarchitecturewillbepresentedhere.Itwill

    beinaformofm atrix-likeblockdiagram,withrowsrepresentativeofdifferentmodes,andcolumnscontainingafunctionalgroupacrossmodes.Amatrix -likeblockdiagramis providedforeach

    sublayer inthe UplinkTxandDownlinkRx.Possiblere -configurabilityineachc olumnwillbe

    discussedintheaspect ofwhethertheconstitutingfunctionsareidenticalortheyneedfurther

    inspectionforidentifyingtheirre -configurabilitylevel(SWre -configurable,HWre-configurable,and

    non-re-configurable).

    4.1 FunctionalityMatrixforUplinkTransmitter

    4.1.1 SampleProcessing

    ThefunctionalblocksoftheUplinkTransmitter SampleProcessingarevirtualfunctionalidentical

    forallmodes.

    " # % ' )

    1 2 3% 5 7

    8

    7 9

    )

    8

    )

    1 @

    1 ) 7 C % 9

    8

    )

    FDD

    TDD

    HSDPA-

    FDD

    " # % '

    )

    1 2 D 3

    % 5 7

    8

    7 9)

    8

    )

    1 @

    1 )

    7 C % 9

    8

    )

    " # % ' )

    1 2 D 3% 5 7

    8

    7 9

    )

    8

    )

    1 @

    1 ) 7 C % 9

    8

    )

    Figure4-1:BlockMatrixUplinkTransmitterSampleProcessing

    4.1.2 ChipProcessing

    ThetransmitterChipProcessingtopleveldescriptionshownin Figure4-2issimilarforbothFDD

    andTDD.Onlyoneblock,theMidambleInsertionisuniquetoTDD.

  • 8/4/2019 d31 Unis Dr Re 009 Final

    45/63

    ProjectMuMoR IST-34561 45

    G H P Q

    R Q T Q U V X H U

    Y ` U Q V P Q U

    V T P

    a

    H P b c V X H U

    G H P Q

    R Q T Q U V X H U

    Y ` U Q V P Q U

    V T P

    a

    H P b c V X H U

    G H P Q

    R Q T Q U V X H U

    Y ` U Q V P Q U

    V T P

    aH P b c V X H U

    a f

    P V g h c Q

    p

    T q Q U X

    f

    H T

    FDD

    TDD

    HSDPA-

    FDD

    Figure4-2:BlockMatrixUplinkTransmitterChipProcessing

    AnotherdifferencebetweentheFDDandTDDmodeisthegenerationofscramblingcodeandthe

    midambleforTDDasopposedtoDCPCHpilotbitsforFDD.

    4.1.3 TransportChannelProcessing

    Thefunctionality