39
Introduction Space Discretization of SPDE Numerical Simulations Controlled-Error Semi-discretization of Mesoscopic Stochastic Equations for Surface Diffusion Yannis Pantazis join work with M. Katsoulakis University of Massachusetts, Amherst, USA Partially supported by NSF: DMS and CMMI CDI-Type II June, 2011 Yannis Pantazis join work with M. Katsoulakis University of Massachusetts, Amherst, USA Controlled-Error Semi-discretization of Mesoscopic Stochastic E

Controlled-Error Semi-discretization of Mesoscopic Stochastic … · 2011-06-17 · Introduction Space Discretization of SPDE Numerical Simulations Manifest I Derive SDE systems ofLangevin-typewhere

  • Upload
    others

  • View
    3

  • Download
    0

Embed Size (px)

Citation preview

  • IntroductionSpace Discretization of SPDE

    Numerical Simulations

    Controlled-Error Semi-discretization ofMesoscopic Stochastic Equations for Surface

    Diffusion

    Yannis Pantazisjoin work with M. Katsoulakis

    University of Massachusetts, Amherst, USAPartially supported by NSF: DMS and CMMI CDI-Type II

    June, 2011

    Yannis Pantazis join work with M. Katsoulakis University of Massachusetts, Amherst, USA Partially supported by NSF: DMS and CMMI CDI-Type IIControlled-Error Semi-discretization of Mesoscopic Stochastic Equations for Surface Diffusion

  • IntroductionSpace Discretization of SPDE

    Numerical Simulations

    Outline

    Introduction

    Space Discretization of SPDE

    Numerical Simulations

    Yannis Pantazis join work with M. Katsoulakis University of Massachusetts, Amherst, USA Partially supported by NSF: DMS and CMMI CDI-Type IIControlled-Error Semi-discretization of Mesoscopic Stochastic Equations for Surface Diffusion

  • IntroductionSpace Discretization of SPDE

    Numerical Simulations

    Surface Diffusion - Motivation

    I Plass et al., Nature, 01’. Self-assembly of Pb on Cu(111)

    Yannis Pantazis join work with M. Katsoulakis University of Massachusetts, Amherst, USA Partially supported by NSF: DMS and CMMI CDI-Type IIControlled-Error Semi-discretization of Mesoscopic Stochastic Equations for Surface Diffusion

  • IntroductionSpace Discretization of SPDE

    Numerical Simulations

    Surface Diffusion - Motivation

    I Patterns in such systems have rich morphologies at mesoscalesthat change dramatically as control parameters vary.

    I Typically they form as a result of microscopic particledynamics in a complex energy landscape, in the presence ofstochastic fluctuations.

    I Applications:I Formation of nanopatterns in heteroepitaxy: templating,

    optical magnetic, and electronic devices.

    I Less than 5% difference in energy between stripes, diskpatterns.

    I Hence: sensitivity to entropic effects at finite temperatures anddynamics.

    Yannis Pantazis join work with M. Katsoulakis University of Massachusetts, Amherst, USA Partially supported by NSF: DMS and CMMI CDI-Type IIControlled-Error Semi-discretization of Mesoscopic Stochastic Equations for Surface Diffusion

  • IntroductionSpace Discretization of SPDE

    Numerical Simulations

    Surface Diffusion – Model Hierarchy

    Yannis Pantazis join work with M. Katsoulakis University of Massachusetts, Amherst, USA Partially supported by NSF: DMS and CMMI CDI-Type IIControlled-Error Semi-discretization of Mesoscopic Stochastic Equations for Surface Diffusion

  • IntroductionSpace Discretization of SPDE

    Numerical Simulations

    Surface Diffusion – Model Hierarchy

    Yannis Pantazis join work with M. Katsoulakis University of Massachusetts, Amherst, USA Partially supported by NSF: DMS and CMMI CDI-Type IIControlled-Error Semi-discretization of Mesoscopic Stochastic Equations for Surface Diffusion

  • IntroductionSpace Discretization of SPDE

    Numerical Simulations

    Microscopic Models - Visualization

    I Microscopic and Coarse-grained lattices

    Yannis Pantazis join work with M. Katsoulakis University of Massachusetts, Amherst, USA Partially supported by NSF: DMS and CMMI CDI-Type IIControlled-Error Semi-discretization of Mesoscopic Stochastic Equations for Surface Diffusion

  • IntroductionSpace Discretization of SPDE

    Numerical Simulations

    Microscopic Models - Definition

    I Lattice: LNI Configuration: σ = {σ(x) ∈ {0, 1} : x ∈ LN}I Hamiltonian:

    H(σ) := −12

    ∑x , y ∈ LNy 6= x

    J(x − y)σ(x)σ(y) +∑x∈LN

    h(x)σ(x)

    I Surface diffusion is modeled as exchanges of the spins betweentwo adjacent sites every time an exponential clock hits ⇒ Acontinuous-time jump Markov random process, σt , is defined

    I Generator:

    Lmf (σ) =∑

    x , y ∈ LNx 6= y

    c(x , y , σ)(f (σ(x,y))− f (σ)

    )

    Yannis Pantazis join work with M. Katsoulakis University of Massachusetts, Amherst, USA Partially supported by NSF: DMS and CMMI CDI-Type IIControlled-Error Semi-discretization of Mesoscopic Stochastic Equations for Surface Diffusion

  • IntroductionSpace Discretization of SPDE

    Numerical Simulations

    Microscopic Models - Definition

    I Diffusion rate for Metropolis dynamics:

    c(x , y , σ) := d0 exp(βmin{0, (σ(x)− σ(y))(U(x , σ)− U(y , σ)) + J(1)})

    I Diffusion rate for Arrhenius dynamics:

    c(x , y , σ) = d0(1−σ(x))σ(y)e−β(U0+U(x,σ))+d0σ(x)(1−σ(y))e−β(U0+U(y,σ))

    I Potential:

    U(x , σ) :=∑

    y ∈ LNx 6= y

    J(x − y)σ(y)− h(x)

    I Potential equals minus the discrete derivative of Hamiltonianat site x

    I Mid to long ranged interaction potential: J(x)

    Yannis Pantazis join work with M. Katsoulakis University of Massachusetts, Amherst, USA Partially supported by NSF: DMS and CMMI CDI-Type IIControlled-Error Semi-discretization of Mesoscopic Stochastic Equations for Surface Diffusion

  • IntroductionSpace Discretization of SPDE

    Numerical Simulations

    Microscopic Models - Coarse Graining

    I Coarsening factor: q

    I Group sites into cells, Ck , of size qd

    I Coarse lattice: Lm, m = N/qI Coarse-Grained (CG) variables:

    η̄t(k) :=1

    qd

    ∑x∈Ck

    σt(x), k ∈ Lm

    I CG Hamiltonian:

    H̄(η̄) := −qd

    2

    ∑k,l∈Lm

    J̄(k − l)η̄k η̄l +∑k∈Lm

    (h̄(k) +J̄(0)

    2)η̄k

    Yannis Pantazis join work with M. Katsoulakis University of Massachusetts, Amherst, USA Partially supported by NSF: DMS and CMMI CDI-Type IIControlled-Error Semi-discretization of Mesoscopic Stochastic Equations for Surface Diffusion

  • IntroductionSpace Discretization of SPDE

    Numerical Simulations

    Microscopic Models - Coarse Graining

    I CG Generator:

    Lcg f (η̄) =∑

    k,l∈Lm

    c̄k,l(η̄)[f (η̄ +1

    qd(δl(k)− δk(l)))− f (η̄)]

    I CG rate for Metropolis dynamics:

    c̄k,l(η̄) = d0qd η̄k(1− η̄l)×

    exp

    (βmin{0, Ū(l , η̄)− Ū(k, η̄) + qd J̄(0)(η̄l − η̄k +

    1

    qd)− J̄(1)}

    )I CG rate for Arrhenius dynamics:

    c̄k,l(η̄) = d0qd η̄k(1− η̄l)e−β(U0+Ū(k,η̄))

    Yannis Pantazis join work with M. Katsoulakis University of Massachusetts, Amherst, USA Partially supported by NSF: DMS and CMMI CDI-Type IIControlled-Error Semi-discretization of Mesoscopic Stochastic Equations for Surface Diffusion

  • IntroductionSpace Discretization of SPDE

    Numerical Simulations

    Microscopic Models - Coarse Graining

    I Invariant measure:

    µq,m,β(d η̄) =1

    Zq,m,βe−q

    dβH̄(η̄)Pq,m(d η̄)

    I Alternative formulation:

    µq,m,β(d η̄) =1

    Zq,m,βe−qd (Ē(η̄)+O( 1

    qd))

    I Discrete free energy functional:

    Ē (η̄) = βH̄(η̄) + R̄(η̄)

    I Entropy:

    R̄(η̄) :=∑k∈Lm

    {η̄k log(η̄k) + (1− η̄k) log(1− η̄k)}

    Yannis Pantazis join work with M. Katsoulakis University of Massachusetts, Amherst, USA Partially supported by NSF: DMS and CMMI CDI-Type IIControlled-Error Semi-discretization of Mesoscopic Stochastic Equations for Surface Diffusion

  • IntroductionSpace Discretization of SPDE

    Numerical Simulations

    Mesoscopic Models - Definition

    I Formal SPDE (Katsoulakis et al. [1], [2]):

    ∂tρ = ∇ ·{L[ρ]∇δE

    δρ

    }+

    1√N∇ ·{√

    2L[ρ]Ẇ}

    I ρ(x , t): particle densityI N: ”Size” of the system (number of particles)I E [ρ]: Free energy functionalI L[ρ]: MobilityI Ẇ (x , t): Space-time white noise

    I Formal Invariant measure (Sponh ’91, [3]):

    µN(dρ) =1

    ZNe−NE(ρ)dρ

    Yannis Pantazis join work with M. Katsoulakis University of Massachusetts, Amherst, USA Partially supported by NSF: DMS and CMMI CDI-Type IIControlled-Error Semi-discretization of Mesoscopic Stochastic Equations for Surface Diffusion

  • IntroductionSpace Discretization of SPDE

    Numerical Simulations

    Mesoscopic Models - Definition

    I Free energy functional:

    E [ρ] := βH(ρ) + R(ρ)

    I Hamiltonian:

    H(ρ) := −12

    ∫ ∫J(x − x ′)ρ(x)ρ(x ′)dxdx ′ +

    ∫h(x)ρ(x)dx

    I Entropy:

    R(ρ) :=

    ∫ρ(x) log(ρ(x)) + (1− ρ(x)) log(1− ρ(x))dx

    I Mobility for Metropolis dynamics:

    L[ρ] := d0ρ(1− ρ)I Mobility for Arrhenius dynamics:

    L[ρ] := d0ρ(1− ρ) exp(−β(U0 + J ∗ ρ))

    Yannis Pantazis join work with M. Katsoulakis University of Massachusetts, Amherst, USA Partially supported by NSF: DMS and CMMI CDI-Type IIControlled-Error Semi-discretization of Mesoscopic Stochastic Equations for Surface Diffusion

  • IntroductionSpace Discretization of SPDE

    Numerical Simulations

    Mesoscopic Models - Properties

    I Connection with Cahn-Hilliard equation:I Infinite number of particles (mean field) and constant mobility.

    I Connection with Cahn-Hilliard-Cook equation (stochasticversion of Cahn-Hilliard):

    I Constant mobility (L[ρ] = L).

    I Connection with Ginzburg-Landau equation:I Nearest neighborhood potential and constant mobility.

    I In order to simulate an SPDE, it is necessary to:I Approximate white noise, discretize space (i.e.

    semi-discretization), discretize timeI Numerical methods: finite difference, finite elements, spectral

    methods

    Yannis Pantazis join work with M. Katsoulakis University of Massachusetts, Amherst, USA Partially supported by NSF: DMS and CMMI CDI-Type IIControlled-Error Semi-discretization of Mesoscopic Stochastic Equations for Surface Diffusion

  • IntroductionSpace Discretization of SPDE

    Numerical Simulations

    Mesoscopic Models - Properties

    I Connection with Cahn-Hilliard equation:I Infinite number of particles (mean field) and constant mobility.

    I Connection with Cahn-Hilliard-Cook equation (stochasticversion of Cahn-Hilliard):

    I Constant mobility (L[ρ] = L).

    I Connection with Ginzburg-Landau equation:I Nearest neighborhood potential and constant mobility.

    I In order to simulate an SPDE, it is necessary to:I Approximate white noise, discretize space (i.e.

    semi-discretization), discretize timeI Numerical methods: finite difference, finite elements, spectral

    methods

    Yannis Pantazis join work with M. Katsoulakis University of Massachusetts, Amherst, USA Partially supported by NSF: DMS and CMMI CDI-Type IIControlled-Error Semi-discretization of Mesoscopic Stochastic Equations for Surface Diffusion

  • IntroductionSpace Discretization of SPDE

    Numerical Simulations

    Outline

    Introduction

    Space Discretization of SPDE

    Numerical Simulations

    Yannis Pantazis join work with M. Katsoulakis University of Massachusetts, Amherst, USA Partially supported by NSF: DMS and CMMI CDI-Type IIControlled-Error Semi-discretization of Mesoscopic Stochastic Equations for Surface Diffusion

  • IntroductionSpace Discretization of SPDE

    Numerical Simulations

    Manifest

    I Derive SDE systems of Langevin-type where both the finitetime and infinite time errors are controllable.

    1. Derive models where Detailed Balance Condition is satisfied.I Control equilibrium states and the knowledge of invariant

    measure is important for sensitivity analysis

    2. Weak error at finite time from GC model is controlled (by q).

    3. Large Deviations: Action functionals between microscopicprocess and the derived models be the same.

    I Transient and long time behavior is controlledI SPDE is embedded into the action functional

    Yannis Pantazis join work with M. Katsoulakis University of Massachusetts, Amherst, USA Partially supported by NSF: DMS and CMMI CDI-Type IIControlled-Error Semi-discretization of Mesoscopic Stochastic Equations for Surface Diffusion

  • IntroductionSpace Discretization of SPDE

    Numerical Simulations

    Manifest

    I Derive SDE systems of Langevin-type where both the finitetime and infinite time errors are controllable.

    1. Derive models where Detailed Balance Condition is satisfied.I Control equilibrium states and the knowledge of invariant

    measure is important for sensitivity analysis

    2. Weak error at finite time from GC model is controlled (by q).

    3. Large Deviations: Action functionals between microscopicprocess and the derived models be the same.

    I Transient and long time behavior is controlledI SPDE is embedded into the action functional

    Yannis Pantazis join work with M. Katsoulakis University of Massachusetts, Amherst, USA Partially supported by NSF: DMS and CMMI CDI-Type IIControlled-Error Semi-discretization of Mesoscopic Stochastic Equations for Surface Diffusion

  • IntroductionSpace Discretization of SPDE

    Numerical Simulations

    Direct Langevin Model - Definition

    I Recall:

    ∂tρ = ∇ ·{L[ρ]∇δE

    δρ

    }+

    1√N∇ ·{√

    2L[ρ]Ẇ}

    I Finite difference SPDE semi-discretization ⇒ system of SDEs:

    dρ(xk) = uk(ρ)dt +m∑l=1

    vk,l(ρ)dWl , k ∈ Lm

    I Now, ρ is a vector with kth element ρ(xk)I Connection with GC variables: η̄k ≈ ρ(xk)

    Yannis Pantazis join work with M. Katsoulakis University of Massachusetts, Amherst, USA Partially supported by NSF: DMS and CMMI CDI-Type IIControlled-Error Semi-discretization of Mesoscopic Stochastic Equations for Surface Diffusion

  • IntroductionSpace Discretization of SPDE

    Numerical Simulations

    Direct Langevin Model - Definition

    I Drift term:

    uk(ρ) =1

    2(Lk+1(ρ) + Lk(ρ))

    [∂Ē(ρ)

    ∂ρ(xk+1)− ∂Ē(ρ)∂ρ(xk)

    ]− 1

    2(Lk(ρ) + Lk−1(ρ))

    [∂Ē(ρ)

    ∂ρ(xk)− ∂Ē(ρ)∂ρ(xk−1)

    ]I Diffusion matrix elements:

    vk,k(ρ) =

    √1

    q(Lk+1(ρ) + Lk(ρ))

    vk+1,k(ρ) = −vk,k(ρ)v,k,l(ρ) = 0 otherwise

    I Ē (ρ) = βH̄(ρ) + R̄(ρ): discrete free energy functional

    I Lk(ρ): discrete version of the mobility

    Yannis Pantazis join work with M. Katsoulakis University of Massachusetts, Amherst, USA Partially supported by NSF: DMS and CMMI CDI-Type IIControlled-Error Semi-discretization of Mesoscopic Stochastic Equations for Surface Diffusion

  • IntroductionSpace Discretization of SPDE

    Numerical Simulations

    Direct Langevin Model - Properties - Weak Error

    I Theorem: (by Katoulakis and Szepessy, 06’ [4])∀T finite, ρt solution of Langevin SDE, η̄t CG jump processand g a “mesoscopic” observable quantity. Then,

    max0≤t≤T

    |Eg(ρt)− Eg(η̄t)| ≤ CToq(1)

    I Proof: (A sketch)I Define u(ξ, t) = E[g(ρt)|ρt = ξ]I Then, u satisfies backward Kolmogorov equation

    ∂tu + Leu = 0, t < T

    u(·,T ) = g

    Yannis Pantazis join work with M. Katsoulakis University of Massachusetts, Amherst, USA Partially supported by NSF: DMS and CMMI CDI-Type IIControlled-Error Semi-discretization of Mesoscopic Stochastic Equations for Surface Diffusion

  • IntroductionSpace Discretization of SPDE

    Numerical Simulations

    Direct Langevin Model - Properties - Weak Error

    I Then

    Eg(η̄T )− Eg(ρT ) = Eu(η̄T ,T )− Eu(η̄0, 0)

    = E∫ T

    0du(η̄t , t)

    =

    ∫ T0

    E[Lcgu − ∂tu]dt

    =

    ∫ T0

    E[E[Lcgu − Leu|η̄t ]]dt

    I Taylor expand Lcgu (as in Langevin approximation) and derivebounds for the derivatives u′, u′′, u′′′ using Bernsteinestimates for the parabolic PDE.

    Yannis Pantazis join work with M. Katsoulakis University of Massachusetts, Amherst, USA Partially supported by NSF: DMS and CMMI CDI-Type IIControlled-Error Semi-discretization of Mesoscopic Stochastic Equations for Surface Diffusion

  • IntroductionSpace Discretization of SPDE

    Numerical Simulations

    Direct Langevin Model - Properties - Large Deviations

    I Rate function of the SDE system when m→∞:

    S(Ψ) =

    ∫ T0

    ∫ 10

    L[Ψ](∂xH)2dxdt

    I where H(x , t) satisfies

    Ψt = ∂x

    {L[Ψ](

    ∂xΨ

    Ψ(1−Ψ)− β∂x(J ∗Ψ))

    }+ 2∂x{L[Ψ]∂xH}

    I This rate function is the same as the microscopic ratefunction for surface diffusion with long range interactionsderived in (Asselah et al. 98’, p. 1077, [5]).

    Yannis Pantazis join work with M. Katsoulakis University of Massachusetts, Amherst, USA Partially supported by NSF: DMS and CMMI CDI-Type IIControlled-Error Semi-discretization of Mesoscopic Stochastic Equations for Surface Diffusion

  • IntroductionSpace Discretization of SPDE

    Numerical Simulations

    Direct Langevin Model - Properties - DBC

    I We’d like to know the invariant measure of {ρ(xk)}k∈Lm .I Try a guess:

    µe(dρ) =1

    Zee−qĒ(ρ)

    ∏k∈Lm

    dρ(xk)

    I This is not true because the generator of the SDE process isnot adjoint (Le 6= L∗e). Indeed,

    < Le f , g >L2(µe ) =< f , Leg >L2(µe )

    − 12q

    ∫ ∑k∈Lm

    Ck(ρ)

    [∂g

    ∂ρ(xk)f − ∂f

    ∂ρ(xk)g

    ]µe(dρ)

    I SDE generator:

    Le f =∑k

    uk∂f

    ∂ρ(xk)+

    1

    2

    ∑k,l∈Lm

    (vvT )kl∂2f

    ∂ρ(xk)∂ρ(xl)

    Yannis Pantazis join work with M. Katsoulakis University of Massachusetts, Amherst, USA Partially supported by NSF: DMS and CMMI CDI-Type IIControlled-Error Semi-discretization of Mesoscopic Stochastic Equations for Surface Diffusion

  • IntroductionSpace Discretization of SPDE

    Numerical Simulations

    Direct Langevin Model - Properties - DBC

    I Interference term:

    Ck(ρ) =

    [∂Lk+1∂ρ(xk)

    +∂Lk−1∂ρ(xk)

    + 2∂Lk∂ρ(xk)

    − ∂Lk+1∂ρ(xk+1)

    − ∂Lk∂ρ(xk+1)

    − ∂Lk∂ρ(xk−1)

    − ∂Lk−1∂ρ(xk−1)

    ]

    I Depends only on the mobility functionI It is zero for additive noise (i.e. constant mobility) ⇒ Detailed

    balance is satisfied ⇒ Invariant measure is known

    Yannis Pantazis join work with M. Katsoulakis University of Massachusetts, Amherst, USA Partially supported by NSF: DMS and CMMI CDI-Type IIControlled-Error Semi-discretization of Mesoscopic Stochastic Equations for Surface Diffusion

  • IntroductionSpace Discretization of SPDE

    Numerical Simulations

    Perturbed Langevin Model 1 - Definition

    I Add the interference term as “correction” to the SDE system

    dρ(xk) =

    (uk(ρ) +

    1

    2qCk(ρ)

    )dt+

    m∑l=1

    vk,l(ρ)dWl , k ∈ Lm

    I DBC is satisfied with invariant measure µe(dρ)!I Cost to be paid

    I Drift is perturbed by a term of order O( 1q ) ⇒ finite-time weakerror becomes worse

    Yannis Pantazis join work with M. Katsoulakis University of Massachusetts, Amherst, USA Partially supported by NSF: DMS and CMMI CDI-Type IIControlled-Error Semi-discretization of Mesoscopic Stochastic Equations for Surface Diffusion

  • IntroductionSpace Discretization of SPDE

    Numerical Simulations

    Perturbed Langevin Model 1 - Properties

    I Asymptotics of the “correction” termI For Metropolis dynamics:

    Ck(ρ) = 2[ρ(xk+1) + ρ(xk−1)− 2ρ(xk)] =2

    m2∂xxρ(xk) + O(

    1

    m4)

    I Of diffusion type ⇒ It can be absorbed into the free energyfunctional

    I For Arrhenius dynamics:

    Ck (ρ) = 2

    (1− 2ρ(xk )

    ρ(xk )(1− ρ(xk ))− β(J̄(0) + J̄(1))

    )Lk (ρ)

    −(

    1− 2ρ(xk+1)ρ(xk+1)(1− ρ(xk+1))

    − β(J̄(0) + J̄(1)))Lk+1(ρ)

    −(

    1− 2ρ(xk−1)ρ(xk−1)(1− ρ(xk−1))

    − β(J̄(0) + J̄(1)))Lk−1(ρ)

    = −1

    m2∂xx

    {(1− 2ρ(xk )

    ρ(xk )(1− ρ(xk ))− β(J̄(0) + J̄(1))

    )Lk (ρ)

    }+ O(

    1

    m4)

    Yannis Pantazis join work with M. Katsoulakis University of Massachusetts, Amherst, USA Partially supported by NSF: DMS and CMMI CDI-Type IIControlled-Error Semi-discretization of Mesoscopic Stochastic Equations for Surface Diffusion

  • IntroductionSpace Discretization of SPDE

    Numerical Simulations

    Perturbed Langevin Model 1 - Properties

    I Asymptotics of the “correction” termI For Metropolis dynamics:

    Ck(ρ) = 2[ρ(xk+1) + ρ(xk−1)− 2ρ(xk)] =2

    m2∂xxρ(xk) + O(

    1

    m4)

    I Of diffusion type ⇒ It can be absorbed into the free energyfunctional

    I For Arrhenius dynamics:

    Ck (ρ) = 2

    (1− 2ρ(xk )

    ρ(xk )(1− ρ(xk ))− β(J̄(0) + J̄(1))

    )Lk (ρ)

    −(

    1− 2ρ(xk+1)ρ(xk+1)(1− ρ(xk+1))

    − β(J̄(0) + J̄(1)))Lk+1(ρ)

    −(

    1− 2ρ(xk−1)ρ(xk−1)(1− ρ(xk−1))

    − β(J̄(0) + J̄(1)))Lk−1(ρ)

    = −1

    m2∂xx

    {(1− 2ρ(xk )

    ρ(xk )(1− ρ(xk ))− β(J̄(0) + J̄(1))

    )Lk (ρ)

    }+ O(

    1

    m4)

    Yannis Pantazis join work with M. Katsoulakis University of Massachusetts, Amherst, USA Partially supported by NSF: DMS and CMMI CDI-Type IIControlled-Error Semi-discretization of Mesoscopic Stochastic Equations for Surface Diffusion

  • IntroductionSpace Discretization of SPDE

    Numerical Simulations

    Perturbed Langevin Model 2 - Preparation

    I Perturb the invariant measure:

    µp(dρ) =1

    Zpe−q(Ē(ρ)+

    1qP̄(ρ))

    ∏k∈Lm

    dρ(xk)

    I Compute if DBC is satisfied. Answer is again no.

    < Le f , g >L2(µp)=< f , Leg >L2(µp)

    +1

    2q

    ∫ ∑k∈Lm

    (Pk(ρ)− Ck(ρ))[

    ∂g

    ∂ρ(xk)f − ∂f

    ∂ρ(xk)g

    ]µp(dρ)

    I wherePk(ρ) = (Lk+1(ρ) + Lk(ρ))

    [∂P̄

    ∂ρ(xk+1)− ∂P̄∂ρ(xk)

    ]− (Lk(ρ) + Lk−1(ρ))

    [∂P̄

    ∂ρ(xk)− ∂P̄∂ρ(xk−1)

    ]=

    2

    m2∂x

    {∂x

    {∂P̄

    ∂ρ(xk)

    }Lk(ρ)

    }+ O(

    1

    m4)

    Yannis Pantazis join work with M. Katsoulakis University of Massachusetts, Amherst, USA Partially supported by NSF: DMS and CMMI CDI-Type IIControlled-Error Semi-discretization of Mesoscopic Stochastic Equations for Surface Diffusion

  • IntroductionSpace Discretization of SPDE

    Numerical Simulations

    Perturbed Langevin Model 2 - Definition

    I New SDE system:

    dρ(xk) =

    (uk(ρ) +

    1

    2qC̄k(ρ)

    )dt+

    m∑l=1

    vk,l(ρ)dWl , k ∈ Lm

    I where C̄k(ρ) = Ck(ρ)− Pk(ρ)I Remember for Metropolis dynamics, “correction” term, Ck(ρ),

    is the Laplacian of the density thus if we choose

    P̄(ρ) =∑k∈Lm

    [ρ(xk) log(ρ(xk)) + (1− ρ(xk)) log(1− ρ(xk))]

    I thenC̄k(ρ) = O(

    1

    m4)

    I Interpretation: Entropy is perturbed by a factor 1 + 1q ⇒temperature is perturbed by the same amount.

    Yannis Pantazis join work with M. Katsoulakis University of Massachusetts, Amherst, USA Partially supported by NSF: DMS and CMMI CDI-Type IIControlled-Error Semi-discretization of Mesoscopic Stochastic Equations for Surface Diffusion

  • IntroductionSpace Discretization of SPDE

    Numerical Simulations

    Perturbed Langevin Model 2 - Definition

    I Similar result but less accurate are obtained for Arrheniusdynamics. If we choose

    P̄(ρ) =∑k

    [ρ(xk) log(ρ(xk)) + (1− ρ(xk)) log(1− ρ(xk))]

    − β2(J̄(0) + J̄(1))

    2

    ∑k

    [ρ(xk) log(ρ(xk))− (1− ρ(xk)) log(1− ρ(xk))]

    − β2

    4(J̄(0) + J̄(1))H̄(ρ)

    I then

    C̄k(ρ) = O(L2

    q2m4)

    I Now, both entropy and Hamiltonian are perturbed.

    Yannis Pantazis join work with M. Katsoulakis University of Massachusetts, Amherst, USA Partially supported by NSF: DMS and CMMI CDI-Type IIControlled-Error Semi-discretization of Mesoscopic Stochastic Equations for Surface Diffusion

  • IntroductionSpace Discretization of SPDE

    Numerical Simulations

    Outline

    Introduction

    Space Discretization of SPDE

    Numerical Simulations

    Yannis Pantazis join work with M. Katsoulakis University of Massachusetts, Amherst, USA Partially supported by NSF: DMS and CMMI CDI-Type IIControlled-Error Semi-discretization of Mesoscopic Stochastic Equations for Surface Diffusion

  • IntroductionSpace Discretization of SPDE

    Numerical Simulations

    Implementation Details

    I Use the Predictor-Corrector Euler method for timediscretization

    I Fast, semi-implicit, 1st weak order method

    I Computational acceleration by exploiting the FFT-basedcomputation of convolution

    I Make the algorithm independent of interaction potential length

    I d-dimensional lattices are straightforward to be simulated

    Yannis Pantazis join work with M. Katsoulakis University of Massachusetts, Amherst, USA Partially supported by NSF: DMS and CMMI CDI-Type IIControlled-Error Semi-discretization of Mesoscopic Stochastic Equations for Surface Diffusion

  • IntroductionSpace Discretization of SPDE

    Numerical Simulations

    Benchmarking

    I Use attractive potential and Metropolis dynamics.I The expected behavior is small droplets to be merged into a

    large drop as time passes.I Minimize the free energy ⇔ minimize the interface of the

    droplets.

    VIDEO

    Yannis Pantazis join work with M. Katsoulakis University of Massachusetts, Amherst, USA Partially supported by NSF: DMS and CMMI CDI-Type IIControlled-Error Semi-discretization of Mesoscopic Stochastic Equations for Surface Diffusion

    Gaussian_perturbDB_q_4_Metro_stoch_longTime_1.aviMedia File (video/avi)

  • IntroductionSpace Discretization of SPDE

    Numerical Simulations

    Pattern formation

    I Stable pattern formation requires the interaction potential tohave both attractive and repulsive parts

    I Morse potential:

    J(x−y ;χ, ra, rr , J0) :=J0

    2πr 2aexp

    (−||x − y ||

    2

    2r 2a

    )− J0χ

    2πr 2rexp

    (−||x − y ||

    2

    2r 2r

    )I Arrhenius dynamics were used

    Yannis Pantazis join work with M. Katsoulakis University of Massachusetts, Amherst, USA Partially supported by NSF: DMS and CMMI CDI-Type IIControlled-Error Semi-discretization of Mesoscopic Stochastic Equations for Surface Diffusion

  • IntroductionSpace Discretization of SPDE

    Numerical Simulations

    Simulation over mean coverage c0 and χ

    10 20 30 40 50 60

    10

    20

    30

    40

    50

    60

    10 20 30 40 50 60

    10

    20

    30

    40

    50

    60

    10 20 30 40 50 60

    10

    20

    30

    40

    50

    60

    c0 = .2, χ = .4 c0 = .5, χ = .4 c0 = .8, χ = .4

    10 20 30 40 50 60

    10

    20

    30

    40

    50

    60

    10 20 30 40 50 60

    10

    20

    30

    40

    50

    60

    10 20 30 40 50 60

    10

    20

    30

    40

    50

    60

    c0 = .2, χ = .8 c0 = .5, χ = .8 c0 = .8, χ = .8

    Yannis Pantazis join work with M. Katsoulakis University of Massachusetts, Amherst, USA Partially supported by NSF: DMS and CMMI CDI-Type IIControlled-Error Semi-discretization of Mesoscopic Stochastic Equations for Surface Diffusion

  • IntroductionSpace Discretization of SPDE

    Numerical Simulations

    Simulation over inverse temperature β

    10 20 30 40 50 60

    10

    20

    30

    40

    50

    60

    10 20 30 40 50 60

    10

    20

    30

    40

    50

    60

    β = 8.0 β = 9.5

    10 20 30 40 50 60

    10

    20

    30

    40

    50

    60

    10 20 30 40 50 60

    10

    20

    30

    40

    50

    60

    β = 11.0 β = 12.5

    Yannis Pantazis join work with M. Katsoulakis University of Massachusetts, Amherst, USA Partially supported by NSF: DMS and CMMI CDI-Type IIControlled-Error Semi-discretization of Mesoscopic Stochastic Equations for Surface Diffusion

  • IntroductionSpace Discretization of SPDE

    Numerical Simulations

    References

    M. A. Katsoulakis and D. G. Vlachos.

    Coarse-grained stochastic processes and kinetic Monte Carlo simulators for the diffusion of interactingpatricles.Journal of Chemical Physics, 119(18):9412–9427, 2003.

    S. Are, M.A. Katsoulakis, and A. Szepessy.

    Coarse-grained Langevin approximations and spatiotemporal acceleration for kinetic Monte Carlosimulations of diffusion of interacting particles.Chinese annals of mathematics. Series B, 30:653–682, 2009.

    H. Spohn.

    Large scale dynamics of interacting particles.Texts and Monographs in Physics. Springer-Verlag, Heidelberg, 1991.

    M. A. Katsoulakis and A. Szepessy.

    Stochastic hydrodynamical limits of particle systems.Commun. Math. Sci., 4(3):513–549, 2006.

    A. Asselah and G. Giacomin.

    Metastability for the exclusion process with mean-field interaction.J. Stat. Phys., 93:1051–1110, 1998.

    Yannis Pantazis join work with M. Katsoulakis University of Massachusetts, Amherst, USA Partially supported by NSF: DMS and CMMI CDI-Type IIControlled-Error Semi-discretization of Mesoscopic Stochastic Equations for Surface Diffusion

    IntroductionSpace Discretization of SPDENumerical Simulations