107
Computer Vision Optical Flow Marc Pollefeys COMP 256 Some slides and illustrations from L. Van Gool, T. Darell, B. Horn, Y. Weiss, P. Anandan, M. Black, K. Toyama

Computer Vision Optical Flow Marc Pollefeys COMP 256 Some slides and illustrations from L. Van Gool, T. Darell, B. Horn, Y. Weiss, P. Anandan, M. Black,

  • View
    216

  • Download
    1

Embed Size (px)

Citation preview

Page 1: Computer Vision Optical Flow Marc Pollefeys COMP 256 Some slides and illustrations from L. Van Gool, T. Darell, B. Horn, Y. Weiss, P. Anandan, M. Black,

ComputerVision

Optical Flow

Marc PollefeysCOMP 256

Some slides and illustrations from L. Van Gool, T. Darell, B. Horn, Y. Weiss, P. Anandan, M. Black, K. Toyama

Page 2: Computer Vision Optical Flow Marc Pollefeys COMP 256 Some slides and illustrations from L. Van Gool, T. Darell, B. Horn, Y. Weiss, P. Anandan, M. Black,

ComputerVision

2

last week: polar rectification

Page 3: Computer Vision Optical Flow Marc Pollefeys COMP 256 Some slides and illustrations from L. Van Gool, T. Darell, B. Horn, Y. Weiss, P. Anandan, M. Black,

ComputerVision

3

Last week: polar rectification

Page 4: Computer Vision Optical Flow Marc Pollefeys COMP 256 Some slides and illustrations from L. Van Gool, T. Darell, B. Horn, Y. Weiss, P. Anandan, M. Black,

ComputerVision

4

Stereo matching

Optimal path(dynamic programming )

Similarity measure(SSD or NCC)

Constraints• epipolar

• ordering

• uniqueness

• disparity limit

• disparity gradient limit

Trade-off

• Matching cost (data)

• Discontinuities (prior)

(Cox et al. CVGIP’96; Koch’96; Falkenhagen´97; Van Meerbergen,Vergauwen,Pollefeys,VanGool IJCV‘02)

Page 5: Computer Vision Optical Flow Marc Pollefeys COMP 256 Some slides and illustrations from L. Van Gool, T. Darell, B. Horn, Y. Weiss, P. Anandan, M. Black,

ComputerVision

5

Hierarchical stereo matchingD

ow

nsam

plin

g

(Gau

ssia

n p

yra

mid

)

Dis

pari

ty p

rop

ag

ati

on

Allows faster computation

Deals with large disparity ranges

(Falkenhagen´97;Van Meerbergen,Vergauwen,Pollefeys,VanGool IJCV‘02)

Page 6: Computer Vision Optical Flow Marc Pollefeys COMP 256 Some slides and illustrations from L. Van Gool, T. Darell, B. Horn, Y. Weiss, P. Anandan, M. Black,

ComputerVision

6

Disparity map

image I(x,y) image I´(x´,y´)Disparity map D(x,y)

(x´,y´)=(x+D(x,y),y)

Page 7: Computer Vision Optical Flow Marc Pollefeys COMP 256 Some slides and illustrations from L. Van Gool, T. Darell, B. Horn, Y. Weiss, P. Anandan, M. Black,

ComputerVision

7

Example: reconstruct image from neighboring images

Page 8: Computer Vision Optical Flow Marc Pollefeys COMP 256 Some slides and illustrations from L. Van Gool, T. Darell, B. Horn, Y. Weiss, P. Anandan, M. Black,

ComputerVision

8

Multi-view depth fusion

• Compute depth for every pixel of reference image– Triangulation– Use multiple views– Up- and down sequence– Use Kalman filter

(Koch, Pollefeys and Van Gool. ECCV‘98)

Allows to compute robust texture

Page 9: Computer Vision Optical Flow Marc Pollefeys COMP 256 Some slides and illustrations from L. Van Gool, T. Darell, B. Horn, Y. Weiss, P. Anandan, M. Black,

ComputerVision

9

Real-time stereo on graphics hardware

• Computes Sum-of-Square-Differences• Hardware mip-map generation used to aggregate

results over support region• Trade-off between small and large support window

Yang and Pollefeys CVPR03

140M disparity hypothesis/sec on Radeon 9700pro140M disparity hypothesis/sec on Radeon 9700proe.g. 512x512x20disparities at 30Hze.g. 512x512x20disparities at 30Hz

Shape of a kernel for summing up 6 levels

Page 10: Computer Vision Optical Flow Marc Pollefeys COMP 256 Some slides and illustrations from L. Van Gool, T. Darell, B. Horn, Y. Weiss, P. Anandan, M. Black,

ComputerVision

10

Sample Re-Projections

near far

Page 11: Computer Vision Optical Flow Marc Pollefeys COMP 256 Some slides and illustrations from L. Van Gool, T. Darell, B. Horn, Y. Weiss, P. Anandan, M. Black,

ComputerVision

11

(1x1)

(1x1+2x2)

(1x1+2x2 +4x4+8x8)

(1x1+2x2 +4x4+8x8 +16x16)

Combine multiple aggregation windows using hardware mipmap and multiple texture units in single pass

video

Page 12: Computer Vision Optical Flow Marc Pollefeys COMP 256 Some slides and illustrations from L. Van Gool, T. Darell, B. Horn, Y. Weiss, P. Anandan, M. Black,

ComputerVision

12

Cool ideas

• Space-time stereo (varying illumination, not shape)

Page 13: Computer Vision Optical Flow Marc Pollefeys COMP 256 Some slides and illustrations from L. Van Gool, T. Darell, B. Horn, Y. Weiss, P. Anandan, M. Black,

ComputerVision

13

More on stereo …

The Middleburry Stereo Vision Research Pagehttp://cat.middlebury.edu/stereo/

Recommended reading

D. Scharstein and R. Szeliski. A Taxonomy and Evaluation of Dense Two-Frame Stereo Correspondence Algorithms.IJCV 47(1/2/3):7-42, April-June 2002. PDF file (1.15 MB) - includes current evaluation.Microsoft Research Technical Report MSR-TR-2001-81, November 2001. PDF file (1.27 MB).

Page 14: Computer Vision Optical Flow Marc Pollefeys COMP 256 Some slides and illustrations from L. Van Gool, T. Darell, B. Horn, Y. Weiss, P. Anandan, M. Black,

ComputerVision

14

Jan 16/18 - Introduction

Jan 23/25 Cameras Radiometry

Jan 30/Feb1 Sources & Shadows Color

Feb 6/8 Linear filters & edges Texture

Feb 13/15 Multi-View Geometry Stereo

Feb 20/22 Optical flow Project proposals

Feb27/Mar1 Affine SfM Projective SfM

Mar 6/8 Camera Calibration Silhouettes and Photoconsistency

Mar 13/15 Springbreak Springbreak

Mar 20/22 Segmentation Fitting

Mar 27/29 Prob. Segmentation Project Update

Apr 3/5 Tracking Tracking

Apr 10/12 Object Recognition Object Recognition

Apr 17/19 Range data Range data

Apr 24/26 Final project Final project

Tentative class schedule

Page 15: Computer Vision Optical Flow Marc Pollefeys COMP 256 Some slides and illustrations from L. Van Gool, T. Darell, B. Horn, Y. Weiss, P. Anandan, M. Black,

ComputerVision

15

Optical Flow

• Brightness Constancy• The Aperture problem• Regularization• Lucas-Kanade• Coarse-to-fine• Parametric motion models• Direct depth• SSD tracking• Robust flow• Bayesian flow

Page 16: Computer Vision Optical Flow Marc Pollefeys COMP 256 Some slides and illustrations from L. Van Gool, T. Darell, B. Horn, Y. Weiss, P. Anandan, M. Black,

ComputerVision

16

Optical Flow:Where do pixels move to?

Page 17: Computer Vision Optical Flow Marc Pollefeys COMP 256 Some slides and illustrations from L. Van Gool, T. Darell, B. Horn, Y. Weiss, P. Anandan, M. Black,

ComputerVision

17

Motion is a basic cue

Motion can be the only cue for segmentation

Page 18: Computer Vision Optical Flow Marc Pollefeys COMP 256 Some slides and illustrations from L. Van Gool, T. Darell, B. Horn, Y. Weiss, P. Anandan, M. Black,

ComputerVision

19

Motion is a basic cue

Even impoverished motion data can elicit a strong percept

Page 19: Computer Vision Optical Flow Marc Pollefeys COMP 256 Some slides and illustrations from L. Van Gool, T. Darell, B. Horn, Y. Weiss, P. Anandan, M. Black,

ComputerVision

20

Applications

• tracking• structure from motion• motion segmentation• stabilization• compression• Mosaicing• …

Page 20: Computer Vision Optical Flow Marc Pollefeys COMP 256 Some slides and illustrations from L. Van Gool, T. Darell, B. Horn, Y. Weiss, P. Anandan, M. Black,

ComputerVision

21

Optical Flow

• Brightness Constancy• The Aperture problem• Regularization• Lucas-Kanade• Coarse-to-fine• Parametric motion models• Direct depth• SSD tracking• Robust flow• Bayesian flow

Page 21: Computer Vision Optical Flow Marc Pollefeys COMP 256 Some slides and illustrations from L. Van Gool, T. Darell, B. Horn, Y. Weiss, P. Anandan, M. Black,

ComputerVision

22

Definition of optical flow

OPTICAL FLOW = apparent motion of brightness patterns

Ideally, the optical flow is the projection of the three-dimensional velocity vectors on the image

Page 22: Computer Vision Optical Flow Marc Pollefeys COMP 256 Some slides and illustrations from L. Van Gool, T. Darell, B. Horn, Y. Weiss, P. Anandan, M. Black,

ComputerVision

23

Caution required !

Two examples :

1. Uniform, rotating sphere

O.F. = 0

2. No motion, but changing lighting

O.F. 0

Page 23: Computer Vision Optical Flow Marc Pollefeys COMP 256 Some slides and illustrations from L. Van Gool, T. Darell, B. Horn, Y. Weiss, P. Anandan, M. Black,

ComputerVision

24

Caution required !

Page 24: Computer Vision Optical Flow Marc Pollefeys COMP 256 Some slides and illustrations from L. Van Gool, T. Darell, B. Horn, Y. Weiss, P. Anandan, M. Black,

ComputerVision

25

Mathematical formulation

I (x,y,t) = brightness at (x,y) at time t

Optical flow constraint equation :

0

t

I

dt

dy

y

I

dt

dx

x

I

dt

dI

),,(),,( tyxItttdt

dyyt

dt

dxxI

Brightness constancy assumption:

Page 25: Computer Vision Optical Flow Marc Pollefeys COMP 256 Some slides and illustrations from L. Van Gool, T. Darell, B. Horn, Y. Weiss, P. Anandan, M. Black,

ComputerVision

26

Optical Flow

• Brightness Constancy• The Aperture problem• Regularization• Lucas-Kanade• Coarse-to-fine• Parametric motion models• Direct depth• SSD tracking• Robust flow• Bayesian flow

Page 26: Computer Vision Optical Flow Marc Pollefeys COMP 256 Some slides and illustrations from L. Van Gool, T. Darell, B. Horn, Y. Weiss, P. Anandan, M. Black,

ComputerVision

27

The aperture problem

0 tyx IvIuI

1 equation in 2 unknowns

dt

dxu

dt

dyv

y

II x

y

II y

t

II t

Page 27: Computer Vision Optical Flow Marc Pollefeys COMP 256 Some slides and illustrations from L. Van Gool, T. Darell, B. Horn, Y. Weiss, P. Anandan, M. Black,

ComputerVision

28

The aperture problem

0

Page 28: Computer Vision Optical Flow Marc Pollefeys COMP 256 Some slides and illustrations from L. Van Gool, T. Darell, B. Horn, Y. Weiss, P. Anandan, M. Black,

ComputerVision

29

Page 29: Computer Vision Optical Flow Marc Pollefeys COMP 256 Some slides and illustrations from L. Van Gool, T. Darell, B. Horn, Y. Weiss, P. Anandan, M. Black,

ComputerVision

30

The aperture problem

Page 30: Computer Vision Optical Flow Marc Pollefeys COMP 256 Some slides and illustrations from L. Van Gool, T. Darell, B. Horn, Y. Weiss, P. Anandan, M. Black,

ComputerVision

31

Remarks

Page 31: Computer Vision Optical Flow Marc Pollefeys COMP 256 Some slides and illustrations from L. Van Gool, T. Darell, B. Horn, Y. Weiss, P. Anandan, M. Black,

ComputerVision

32

Apparently an aperture problem

Page 32: Computer Vision Optical Flow Marc Pollefeys COMP 256 Some slides and illustrations from L. Van Gool, T. Darell, B. Horn, Y. Weiss, P. Anandan, M. Black,

ComputerVision

33

What is Optic Flow, anyway?

• Estimate of observed projected motion field

• Not always well defined!• Compare:

– Motion Field (or Scene Flow)projection of 3-D motion field

– Normal Flowobserved tangent motion

– Optic Flowapparent motion of the brightness pattern(hopefully equal to motion field)

• Consider Barber pole illusion

Page 33: Computer Vision Optical Flow Marc Pollefeys COMP 256 Some slides and illustrations from L. Van Gool, T. Darell, B. Horn, Y. Weiss, P. Anandan, M. Black,

ComputerVision

34

Page 34: Computer Vision Optical Flow Marc Pollefeys COMP 256 Some slides and illustrations from L. Van Gool, T. Darell, B. Horn, Y. Weiss, P. Anandan, M. Black,

ComputerVision

35

Optical Flow

• Brightness Constancy• The Aperture problem• Regularization• Lucas-Kanade• Coarse-to-fine• Parametric motion models• Direct depth• SSD tracking• Robust flow• Bayesian flow

Page 35: Computer Vision Optical Flow Marc Pollefeys COMP 256 Some slides and illustrations from L. Van Gool, T. Darell, B. Horn, Y. Weiss, P. Anandan, M. Black,

ComputerVision

36

Horn & Schunck algorithm

Additional smoothness constraint :

,))()(( 2222 dxdyvvuue yxyxs besides OF constraint equation term

,)( 2 dxdyIvIuIe tyxc

minimize es+ec

Page 36: Computer Vision Optical Flow Marc Pollefeys COMP 256 Some slides and illustrations from L. Van Gool, T. Darell, B. Horn, Y. Weiss, P. Anandan, M. Black,

ComputerVision

37

Horn & Schunck

The Euler-Lagrange equations :

0

0

yx

yx

vvv

uuu

Fy

Fx

F

Fy

Fx

F

In our case ,

,)()()( 22222tyxyxyx IvIuIvvuuF

so the Euler-Lagrange equations are

,)(

,)(

ytyx

xtyx

IIvIuIv

IIvIuIu

2

2

2

2

yx

is the Laplacian operator

Page 37: Computer Vision Optical Flow Marc Pollefeys COMP 256 Some slides and illustrations from L. Van Gool, T. Darell, B. Horn, Y. Weiss, P. Anandan, M. Black,

ComputerVision

38

Horn & Schunck

Remarks :

1. Coupled PDEs solved using iterative methods and finite differences

2. More than two frames allow a better estimation of It

3. Information spreads from corner-type patterns

,)(

,)(

ytyx

xtyx

IIvIuIvt

v

IIvIuIut

u

Page 38: Computer Vision Optical Flow Marc Pollefeys COMP 256 Some slides and illustrations from L. Van Gool, T. Darell, B. Horn, Y. Weiss, P. Anandan, M. Black,

ComputerVision

39

Page 39: Computer Vision Optical Flow Marc Pollefeys COMP 256 Some slides and illustrations from L. Van Gool, T. Darell, B. Horn, Y. Weiss, P. Anandan, M. Black,

ComputerVision

40

Horn & Schunck, remarks

1. Errors at boundaries

2. Example of regularisation (selection principle for the solution of illposed problems)

Page 40: Computer Vision Optical Flow Marc Pollefeys COMP 256 Some slides and illustrations from L. Van Gool, T. Darell, B. Horn, Y. Weiss, P. Anandan, M. Black,

ComputerVision

41

Results of an enhanced system

Page 41: Computer Vision Optical Flow Marc Pollefeys COMP 256 Some slides and illustrations from L. Van Gool, T. Darell, B. Horn, Y. Weiss, P. Anandan, M. Black,

ComputerVision

42

Structure from motion with OF

Page 42: Computer Vision Optical Flow Marc Pollefeys COMP 256 Some slides and illustrations from L. Van Gool, T. Darell, B. Horn, Y. Weiss, P. Anandan, M. Black,

ComputerVision

43

Optical Flow

• Brightness Constancy• The Aperture problem• Regularization• Lucas-Kanade• Coarse-to-fine• Parametric motion models• Direct depth• SSD tracking• Robust flow• Bayesian flow

Page 43: Computer Vision Optical Flow Marc Pollefeys COMP 256 Some slides and illustrations from L. Van Gool, T. Darell, B. Horn, Y. Weiss, P. Anandan, M. Black,

ComputerVision

44

02),(

02),(

tyxy

tyxx

IvIuIIdv

vudE

IvIuIIdu

vudE

Page 44: Computer Vision Optical Flow Marc Pollefeys COMP 256 Some slides and illustrations from L. Van Gool, T. Darell, B. Horn, Y. Weiss, P. Anandan, M. Black,

ComputerVision

45

Page 45: Computer Vision Optical Flow Marc Pollefeys COMP 256 Some slides and illustrations from L. Van Gool, T. Darell, B. Horn, Y. Weiss, P. Anandan, M. Black,

ComputerVision

46

Page 46: Computer Vision Optical Flow Marc Pollefeys COMP 256 Some slides and illustrations from L. Van Gool, T. Darell, B. Horn, Y. Weiss, P. Anandan, M. Black,

ComputerVision

47

Page 47: Computer Vision Optical Flow Marc Pollefeys COMP 256 Some slides and illustrations from L. Van Gool, T. Darell, B. Horn, Y. Weiss, P. Anandan, M. Black,

ComputerVision

48

Page 48: Computer Vision Optical Flow Marc Pollefeys COMP 256 Some slides and illustrations from L. Van Gool, T. Darell, B. Horn, Y. Weiss, P. Anandan, M. Black,

ComputerVision

49

Optical Flow

• Brightness Constancy• The Aperture problem• Regularization• Lucas-Kanade• Coarse-to-fine• Parametric motion models• Direct depth• SSD tracking• Robust flow• Bayesian flow

Page 49: Computer Vision Optical Flow Marc Pollefeys COMP 256 Some slides and illustrations from L. Van Gool, T. Darell, B. Horn, Y. Weiss, P. Anandan, M. Black,

ComputerVision

50

Page 50: Computer Vision Optical Flow Marc Pollefeys COMP 256 Some slides and illustrations from L. Van Gool, T. Darell, B. Horn, Y. Weiss, P. Anandan, M. Black,

ComputerVision

51

Page 51: Computer Vision Optical Flow Marc Pollefeys COMP 256 Some slides and illustrations from L. Van Gool, T. Darell, B. Horn, Y. Weiss, P. Anandan, M. Black,

ComputerVision

52

Page 52: Computer Vision Optical Flow Marc Pollefeys COMP 256 Some slides and illustrations from L. Van Gool, T. Darell, B. Horn, Y. Weiss, P. Anandan, M. Black,

ComputerVision

53

Optical Flow

• Brightness Constancy• The Aperture problem• Regularization• Lucas-Kanade• Coarse-to-fine• Parametric motion models• Direct depth• SSD tracking• Robust flow• Bayesian flow

Page 53: Computer Vision Optical Flow Marc Pollefeys COMP 256 Some slides and illustrations from L. Van Gool, T. Darell, B. Horn, Y. Weiss, P. Anandan, M. Black,

ComputerVision

54

Page 54: Computer Vision Optical Flow Marc Pollefeys COMP 256 Some slides and illustrations from L. Van Gool, T. Darell, B. Horn, Y. Weiss, P. Anandan, M. Black,

ComputerVision

55

Page 55: Computer Vision Optical Flow Marc Pollefeys COMP 256 Some slides and illustrations from L. Van Gool, T. Darell, B. Horn, Y. Weiss, P. Anandan, M. Black,

ComputerVision

56

Page 56: Computer Vision Optical Flow Marc Pollefeys COMP 256 Some slides and illustrations from L. Van Gool, T. Darell, B. Horn, Y. Weiss, P. Anandan, M. Black,

ComputerVision

57

Page 57: Computer Vision Optical Flow Marc Pollefeys COMP 256 Some slides and illustrations from L. Van Gool, T. Darell, B. Horn, Y. Weiss, P. Anandan, M. Black,

ComputerVision

58

Page 58: Computer Vision Optical Flow Marc Pollefeys COMP 256 Some slides and illustrations from L. Van Gool, T. Darell, B. Horn, Y. Weiss, P. Anandan, M. Black,

ComputerVision

59

Page 59: Computer Vision Optical Flow Marc Pollefeys COMP 256 Some slides and illustrations from L. Van Gool, T. Darell, B. Horn, Y. Weiss, P. Anandan, M. Black,

ComputerVision

60

Page 60: Computer Vision Optical Flow Marc Pollefeys COMP 256 Some slides and illustrations from L. Van Gool, T. Darell, B. Horn, Y. Weiss, P. Anandan, M. Black,

ComputerVision

61

Page 61: Computer Vision Optical Flow Marc Pollefeys COMP 256 Some slides and illustrations from L. Van Gool, T. Darell, B. Horn, Y. Weiss, P. Anandan, M. Black,

ComputerVision

62

Page 62: Computer Vision Optical Flow Marc Pollefeys COMP 256 Some slides and illustrations from L. Van Gool, T. Darell, B. Horn, Y. Weiss, P. Anandan, M. Black,

ComputerVision

63

Page 63: Computer Vision Optical Flow Marc Pollefeys COMP 256 Some slides and illustrations from L. Van Gool, T. Darell, B. Horn, Y. Weiss, P. Anandan, M. Black,

ComputerVision

64

Page 64: Computer Vision Optical Flow Marc Pollefeys COMP 256 Some slides and illustrations from L. Van Gool, T. Darell, B. Horn, Y. Weiss, P. Anandan, M. Black,

ComputerVision

65

Page 65: Computer Vision Optical Flow Marc Pollefeys COMP 256 Some slides and illustrations from L. Van Gool, T. Darell, B. Horn, Y. Weiss, P. Anandan, M. Black,

ComputerVision

66

Page 66: Computer Vision Optical Flow Marc Pollefeys COMP 256 Some slides and illustrations from L. Van Gool, T. Darell, B. Horn, Y. Weiss, P. Anandan, M. Black,

ComputerVision

67

Page 67: Computer Vision Optical Flow Marc Pollefeys COMP 256 Some slides and illustrations from L. Van Gool, T. Darell, B. Horn, Y. Weiss, P. Anandan, M. Black,

ComputerVision

68

Page 68: Computer Vision Optical Flow Marc Pollefeys COMP 256 Some slides and illustrations from L. Van Gool, T. Darell, B. Horn, Y. Weiss, P. Anandan, M. Black,

ComputerVision

69

Page 69: Computer Vision Optical Flow Marc Pollefeys COMP 256 Some slides and illustrations from L. Van Gool, T. Darell, B. Horn, Y. Weiss, P. Anandan, M. Black,

ComputerVision

70

Page 70: Computer Vision Optical Flow Marc Pollefeys COMP 256 Some slides and illustrations from L. Van Gool, T. Darell, B. Horn, Y. Weiss, P. Anandan, M. Black,

ComputerVision

71

Page 71: Computer Vision Optical Flow Marc Pollefeys COMP 256 Some slides and illustrations from L. Van Gool, T. Darell, B. Horn, Y. Weiss, P. Anandan, M. Black,

ComputerVision

72

Page 72: Computer Vision Optical Flow Marc Pollefeys COMP 256 Some slides and illustrations from L. Van Gool, T. Darell, B. Horn, Y. Weiss, P. Anandan, M. Black,

ComputerVision

73

Page 73: Computer Vision Optical Flow Marc Pollefeys COMP 256 Some slides and illustrations from L. Van Gool, T. Darell, B. Horn, Y. Weiss, P. Anandan, M. Black,

ComputerVision

74

Page 74: Computer Vision Optical Flow Marc Pollefeys COMP 256 Some slides and illustrations from L. Van Gool, T. Darell, B. Horn, Y. Weiss, P. Anandan, M. Black,

ComputerVision

75

Page 75: Computer Vision Optical Flow Marc Pollefeys COMP 256 Some slides and illustrations from L. Van Gool, T. Darell, B. Horn, Y. Weiss, P. Anandan, M. Black,

ComputerVision

76

Page 76: Computer Vision Optical Flow Marc Pollefeys COMP 256 Some slides and illustrations from L. Van Gool, T. Darell, B. Horn, Y. Weiss, P. Anandan, M. Black,

ComputerVision

77

Page 77: Computer Vision Optical Flow Marc Pollefeys COMP 256 Some slides and illustrations from L. Van Gool, T. Darell, B. Horn, Y. Weiss, P. Anandan, M. Black,

ComputerVision

78

Page 78: Computer Vision Optical Flow Marc Pollefeys COMP 256 Some slides and illustrations from L. Van Gool, T. Darell, B. Horn, Y. Weiss, P. Anandan, M. Black,

ComputerVision

79

Page 79: Computer Vision Optical Flow Marc Pollefeys COMP 256 Some slides and illustrations from L. Van Gool, T. Darell, B. Horn, Y. Weiss, P. Anandan, M. Black,

ComputerVision

80

Page 80: Computer Vision Optical Flow Marc Pollefeys COMP 256 Some slides and illustrations from L. Van Gool, T. Darell, B. Horn, Y. Weiss, P. Anandan, M. Black,

ComputerVision

81

Page 81: Computer Vision Optical Flow Marc Pollefeys COMP 256 Some slides and illustrations from L. Van Gool, T. Darell, B. Horn, Y. Weiss, P. Anandan, M. Black,

ComputerVision

82

Page 82: Computer Vision Optical Flow Marc Pollefeys COMP 256 Some slides and illustrations from L. Van Gool, T. Darell, B. Horn, Y. Weiss, P. Anandan, M. Black,

ComputerVision

83

Optical Flow

• Brightness Constancy• The Aperture problem• Regularization• Lucas-Kanade• Coarse-to-fine• Parametric motion models• Direct depth• SSD tracking• Robust flow• Bayesian flow

Page 83: Computer Vision Optical Flow Marc Pollefeys COMP 256 Some slides and illustrations from L. Van Gool, T. Darell, B. Horn, Y. Weiss, P. Anandan, M. Black,

ComputerVision

84

Page 84: Computer Vision Optical Flow Marc Pollefeys COMP 256 Some slides and illustrations from L. Van Gool, T. Darell, B. Horn, Y. Weiss, P. Anandan, M. Black,

ComputerVision

85

Page 85: Computer Vision Optical Flow Marc Pollefeys COMP 256 Some slides and illustrations from L. Van Gool, T. Darell, B. Horn, Y. Weiss, P. Anandan, M. Black,

ComputerVision

86

Page 86: Computer Vision Optical Flow Marc Pollefeys COMP 256 Some slides and illustrations from L. Van Gool, T. Darell, B. Horn, Y. Weiss, P. Anandan, M. Black,

ComputerVision

87

Optical Flow

• Brightness Constancy• The Aperture problem• Regularization• Lucas-Kanade• Coarse-to-fine• Parametric motion models• Direct depth• SSD tracking• Robust flow• Bayesian flow

Page 87: Computer Vision Optical Flow Marc Pollefeys COMP 256 Some slides and illustrations from L. Van Gool, T. Darell, B. Horn, Y. Weiss, P. Anandan, M. Black,

ComputerVision

88

Page 88: Computer Vision Optical Flow Marc Pollefeys COMP 256 Some slides and illustrations from L. Van Gool, T. Darell, B. Horn, Y. Weiss, P. Anandan, M. Black,

ComputerVision

89

Page 89: Computer Vision Optical Flow Marc Pollefeys COMP 256 Some slides and illustrations from L. Van Gool, T. Darell, B. Horn, Y. Weiss, P. Anandan, M. Black,

ComputerVision

90

Page 90: Computer Vision Optical Flow Marc Pollefeys COMP 256 Some slides and illustrations from L. Van Gool, T. Darell, B. Horn, Y. Weiss, P. Anandan, M. Black,

ComputerVision

91

Page 91: Computer Vision Optical Flow Marc Pollefeys COMP 256 Some slides and illustrations from L. Van Gool, T. Darell, B. Horn, Y. Weiss, P. Anandan, M. Black,

ComputerVision

92

Page 92: Computer Vision Optical Flow Marc Pollefeys COMP 256 Some slides and illustrations from L. Van Gool, T. Darell, B. Horn, Y. Weiss, P. Anandan, M. Black,

ComputerVision

93

Optical Flow

• Brightness Constancy• The Aperture problem• Regularization• Lucas-Kanade• Coarse-to-fine• Parametric motion models• Direct depth• SSD tracking• Robust flow• Bayesian flow

Page 93: Computer Vision Optical Flow Marc Pollefeys COMP 256 Some slides and illustrations from L. Van Gool, T. Darell, B. Horn, Y. Weiss, P. Anandan, M. Black,

ComputerVision

94

Page 94: Computer Vision Optical Flow Marc Pollefeys COMP 256 Some slides and illustrations from L. Van Gool, T. Darell, B. Horn, Y. Weiss, P. Anandan, M. Black,

ComputerVision

95

Page 95: Computer Vision Optical Flow Marc Pollefeys COMP 256 Some slides and illustrations from L. Van Gool, T. Darell, B. Horn, Y. Weiss, P. Anandan, M. Black,

ComputerVision

96

Page 96: Computer Vision Optical Flow Marc Pollefeys COMP 256 Some slides and illustrations from L. Van Gool, T. Darell, B. Horn, Y. Weiss, P. Anandan, M. Black,

ComputerVision

97

Page 97: Computer Vision Optical Flow Marc Pollefeys COMP 256 Some slides and illustrations from L. Van Gool, T. Darell, B. Horn, Y. Weiss, P. Anandan, M. Black,

ComputerVision

98

Page 98: Computer Vision Optical Flow Marc Pollefeys COMP 256 Some slides and illustrations from L. Van Gool, T. Darell, B. Horn, Y. Weiss, P. Anandan, M. Black,

ComputerVision

99

Page 99: Computer Vision Optical Flow Marc Pollefeys COMP 256 Some slides and illustrations from L. Van Gool, T. Darell, B. Horn, Y. Weiss, P. Anandan, M. Black,

ComputerVision

100

Optical Flow

• Brightness Constancy• The Aperture problem• Regularization• Lucas-Kanade• Coarse-to-fine• Parametric motion models• Direct depth• SSD tracking• Robust flow• Bayesian flow

Page 100: Computer Vision Optical Flow Marc Pollefeys COMP 256 Some slides and illustrations from L. Van Gool, T. Darell, B. Horn, Y. Weiss, P. Anandan, M. Black,

ComputerVision

101

Page 101: Computer Vision Optical Flow Marc Pollefeys COMP 256 Some slides and illustrations from L. Van Gool, T. Darell, B. Horn, Y. Weiss, P. Anandan, M. Black,

ComputerVision

102

Rhombus Displays

http://www.cs.huji.ac.il/~yweiss/Rhombus/

Page 102: Computer Vision Optical Flow Marc Pollefeys COMP 256 Some slides and illustrations from L. Van Gool, T. Darell, B. Horn, Y. Weiss, P. Anandan, M. Black,

ComputerVision

103

Page 103: Computer Vision Optical Flow Marc Pollefeys COMP 256 Some slides and illustrations from L. Van Gool, T. Darell, B. Horn, Y. Weiss, P. Anandan, M. Black,

ComputerVision

104

Page 104: Computer Vision Optical Flow Marc Pollefeys COMP 256 Some slides and illustrations from L. Van Gool, T. Darell, B. Horn, Y. Weiss, P. Anandan, M. Black,

ComputerVision

105

Page 105: Computer Vision Optical Flow Marc Pollefeys COMP 256 Some slides and illustrations from L. Van Gool, T. Darell, B. Horn, Y. Weiss, P. Anandan, M. Black,

ComputerVision

106

Page 106: Computer Vision Optical Flow Marc Pollefeys COMP 256 Some slides and illustrations from L. Van Gool, T. Darell, B. Horn, Y. Weiss, P. Anandan, M. Black,

ComputerVision

107

Page 107: Computer Vision Optical Flow Marc Pollefeys COMP 256 Some slides and illustrations from L. Van Gool, T. Darell, B. Horn, Y. Weiss, P. Anandan, M. Black,

ComputerVision

108