35
1 ELECTRICAL AND ELECTRONIC ELECTRICAL AND ELECTRONIC TECHNOLOGY TECHNOLOGY ( ( BEX17003 BEX17003 ) )

Chapter 3b Soon

Embed Size (px)

DESCRIPTION

electrical technology free notes UTHM

Citation preview

Page 1: Chapter 3b Soon

1

ELECTRICAL AND ELECTRONIC ELECTRICAL AND ELECTRONIC TECHNOLOGYTECHNOLOGY

((BEX17003BEX17003) )

Page 2: Chapter 3b Soon

2

Chapter 3(b): Direct Current Circuit

Analysis (II)

Page 3: Chapter 3b Soon

3

Lecture Contents

Nodal Analysis Nodal Analysis

Mesh/Loop AnalysisMesh/Loop Analysis

Methods of AnalysisMethods of Analysis

Page 4: Chapter 3b Soon

4

Nodal and Mesh/Loop

Analysis

Page 5: Chapter 3b Soon

5

Nodal Analysis Nodal analysis – based on the systematic

application of KCL. [important technique – pay attention]

We can analyze any linear circuit by:obtaining a set of simultaneous equationssolved to obtain the required values (voltage or current)we can solve the simultaneous equation either using Cramer’s Rule or any other software such as MATLAB or MathCAD.

Page 6: Chapter 3b Soon

6

Cont… Nodal analysis provides a general procedure

for analyzing circuit using node voltages as a circuit variables.

Important key idea resistance is a passive element, by the passive sign convention, current must always flow from a higher potential to a lower potential

Rvv lowerhigheri …..( Eq. 3.21)

Page 7: Chapter 3b Soon

7

Example 3.12

I1

I2

R2

R1 R3v1v2

Consider the figure below using nodal analysis.

Page 8: Chapter 3b Soon

8

Solution 3.12 1. Label the nodes (including the reference node)

I1

R2

R1R3v1

v2

v = 0

I2

+ +

- -

1 2

i1

i2

i3

Page 9: Chapter 3b Soon

9

Cont…

Rvlowervhigheri

I1R2

R1 R3

v1 v2

v = 0

I21 2

i1

i2

i3

1

11

0Rvi

2

212 R

vvi

3

23

0Rvi

# Current flows from a higher potential to a lower potential in a resistor

Page 10: Chapter 3b Soon

10

2. Write the KCL equation for node 1 and 2.

KCL at node 1.I1 = I2 + i1 +i2

KCL at node 2.I2 +i2 = i3

2

21

1

121 R

vvRvII

3

2

2

212 R

vR

vvI

R2

R1 R3v1v2

v = 0

I2

+ +

- -

1

i1

i2

i3

2

I1

I2

Page 11: Chapter 3b Soon

11

Example 3.13 Find the node voltages for the following circuit.

10A

5 A

R1=2 Ω R3=6 Ωv1

v2

1 2R2=4 Ω

v=0V

v3

Page 12: Chapter 3b Soon

12

Solution 3.13

20v3vvv2v20:(x4)

4vv

20v5

ii5

21

211

211

21

KCL at node 1.

KCL at node 2.

v1

605v3v2v601203v3v:(x12)

60v5104

vvi510i

21

221

221

32

V1

5 A

10A

R1=2 Ω R3=6 Ωv2

V2R2=4 Ω

5A

i2

i1

10A

i3

5A

v=0V

v3(1)

(2)

Page 13: Chapter 3b Soon

13

Using the elimination technique

Substituting

20Vv804v :(2) (1)

22

20v2

13.33V340v20203v 11

Page 14: Chapter 3b Soon

14

To use Cramer’s rule, we put the equation in matrix form

Vv

Vv

baba

abab

aaaa

vv

vvvv

2012240

33.1312

160

24060180)20)(3(603603203

16060100)1)(60(520560120

12315)1)(3(535313

6020

5313

6053203

22

11

221

1112

222

2111

2221

1211

2

1

21

21

Page 15: Chapter 3b Soon

15

Consider the following circuit with current and voltage source. Look for Vb.

[2].................R

0-VbIR

VbVaIII

b, Node[1]................VVa

a, Node

3B

2

3B2

B

∑I entering the node = ∑I leaving the node

I1

I2

I3

IB

VB IB

2R1

R3R

a b

c

Va Vb

Vc=0

Example 3.14

Page 16: Chapter 3b Soon

1632

2

BB

b

2

BB

32b

2

BB

3

b

2

b

B3

b

2

b

2

B

B3

b

2

b

2

B

3

bB

2

bB

R1

R1

RVI

V

RVI

R1

R1V

RVI

RV

RV

IRV

RV

RV-

IRV

RV

RV

RVI

RVV

[2] into [1] substitute

Page 17: Chapter 3b Soon

17

Example 3.15Determine the voltages for the nodes in the following figure.

4

2 8

43A 2ix

1 2 3

ix

0

Page 18: Chapter 3b Soon

18

Solution 3.15

-(3)------------- 032:)3/8(2

)(284

v-v 2

3, nodeAt -(2)--------------- 0v-7v-4v:8)(

40-v

8v-v

2v-v

2, nodeAt (1)------------- 1223:)4(

243 3

1, nodeAt

321

21323121

321

2322132

321

21311

vvv

vvvviii

iii

vvv

vvvvii

x

x

x

4

843A

2ixV1 V2 V3

1

i1

I=3A

ix 2 i2

i3

3i1

Page 19: Chapter 3b Soon

19

(5)-------2vv 04v2v-

(3) and Eq.(2) Adding(4)2.45

12v-v

or125v-5v

2121

21

21

:Eq(3) and (1) Eq Addingtechnique, neliminatio the Using

Page 20: Chapter 3b Soon

20

-2.4Vv 2.4V,v 4.8V, vThus,

-2.4V-v4v-3v2v-3vvget, we (3) Eq. From

4.8V2vv 2.4,v 2.4v-2vyield (4) into Eq.(5) ngSubstituti

321

222123

21222

Page 21: Chapter 3b Soon

21

Nodal Analysis with Voltage Sources

Important Supernode – formed by enclosing a

(dependent or independent) voltage source connected between two non-reference nodes and any elements connected in parallel with it.

Page 22: Chapter 3b Soon

22

Mesh/Loop Analysis

Page 23: Chapter 3b Soon

23

Mesh/Loop Analysis Mesh analysis provides another general

procedure for analyzing circuits. Recall that a loop is a closed path with

no node passed more than once. A mesh is a loop that does not contain

any other loop within it. Mesh analysis apply KVL to find

unknown currents

Page 24: Chapter 3b Soon

24

Cont… Mesh analysis is not quite as general as

nodal analysis, because it is only applicable for a circuit that is planar.

A planar circuit is one that can be drawn in a plane with no branches crossing one another; otherwise it is nonplanar.

For better understanding, refer to Sadiku and Alexander, 2nd Edition page 90-91.

Page 25: Chapter 3b Soon

25

Example 3.17

Write the mesh equation for the following circuit.

1VB

2R1R

5R 2VB4R

3R

Page 26: Chapter 3b Soon

26

Solution 3.17

)1(V)(-RI)R(RI

0)RI-(IRIV-0VVV-

: 1 loopfor KVL0 clockwise V

loop, allFor

B142411

42111B1

R4R1B1

1VB

R31R

R42VB

R2

R5

1I

2I 3I

Page 27: Chapter 3b Soon

27

1VB

R31R

R42VB

R2

R5

1I

2I 3I

-(2)---------0)(-RI)RR(RI)(-RI0)RI-(IRI)RI-(I

0VVV: 2 loopfor KVL

53542241

53222412

R5R2R4

Page 28: Chapter 3b Soon

28

1VB

R31

R

R42

VB

R2

R5

1I

2I 3

I

)3(V)R(RI)(-RIVRI)RI-(I

0VVV: 3 loopfor KVL

B253352

B233523

B2R3R5

Page 29: Chapter 3b Soon

29

2

1

3

2

1

535

55424

441

B253352

53542241

B142411

00

0matrix,In

)3(V)R(RI)(-RI-(2)---------0)(-RI)RR(RI)(-RI

)1(V)(-RI)R(RI

B

B

V

V

III

RRRRRRRR

RRR

Page 30: Chapter 3b Soon

30

Example 3.18Find Vo for the following circuit.

4A

2 6 5V

873A Vo

Page 31: Chapter 3b Soon

313.04V(8)IV I

8 (21)I 0 8I4)-6(I5-3)7(I08I)I-6(I5-)I-7(I

0 VV5-V 0 clockwise V

:3 Loop forKVL 3AI

:Loop2 For4A I

:Loop1 For

38

3

3

3 33

31323

867

2

1

A38.0

4A

2 6 5V

873A Vo

I1

I2 I3

Solution 3.18

Page 32: Chapter 3b Soon

32

Mesh Analysis with Current SourcesCase 1: When a current source exists only in one mesh

Loop 2: I2= -5A

10V

4Ω 3Ω

6ΩI1 I2 5AI1= -2A

-10+4i1+6(i1-i2) = 0

Loop 1:

Page 33: Chapter 3b Soon

33

Nodal vs. Mesh AnalysisHow do we know which method is

better or more efficient?

Nodal analysis is normally used when a circuit has fewer node equations than mesh equations.

Mesh analysis is normally used when a circuit has fewer mesh equations than node equations.

Page 34: Chapter 3b Soon

34

Nodal vs. Mesh Analysis(Nature of network)

Nodal AnalysisNetworks that contain many :series-connected elementsvoltage sourcessupernodes

Mesh AnalysisNetworks that contain

many : parallel-connected elements current sources supermeshes

Page 35: Chapter 3b Soon

35

Nodal vs. Mesh Analysis(Information required)

If node voltages are required, it maybe expedient to apply nodal analysis

If branch or mesh currents are required, it maybe expedient to apply mesh analysis