58
1 By: DR SOON CHIN FHONG Department of Electronic Engineering Faculty of Electrical and Electronic Engineering Universiti Tun Hussein Onn Malaysia ELECTRICAL AND ELECTRONIC TECHNOLOGY (BEX17003)

Chapter 3a Soon

Embed Size (px)

Citation preview

8/11/2019 Chapter 3a Soon

http://slidepdf.com/reader/full/chapter-3a-soon 1/58

1

By:

DR SOON CHIN FHONG

Department of Electronic Engineering

Faculty of Electrical and Electronic Engineering

Universiti Tun Hussein Onn Malaysia

ELECTRICAL AND ELECTRONIC

TECHNOLOGY

(BEX17003)

8/11/2019 Chapter 3a Soon

http://slidepdf.com/reader/full/chapter-3a-soon 2/58

2

Chapter 3(a):

Direct Current CircuitsAnalysis

8/11/2019 Chapter 3a Soon

http://slidepdf.com/reader/full/chapter-3a-soon 3/58

3

Lecture Contents

Basic Law

3.1 Nodes, Branches, and Loops

3.2 Kirchoff’s Laws

3.3 Series Resistors and Voltage Division

3.4 Parallel Resistors and Current Division

3.5 Series and

Parallel Resistors

3.6 Wye

-

Delta Transformations

8/11/2019 Chapter 3a Soon

http://slidepdf.com/reader/full/chapter-3a-soon 4/58

4

3.1 Nodes, Branches,

And Loops

8/11/2019 Chapter 3a Soon

http://slidepdf.com/reader/full/chapter-3a-soon 5/58

5

Nodes, Branches and Loops

A branch:

a single element such as a voltage

source or a resistor

represents any two-terminal element

8/11/2019 Chapter 3a Soon

http://slidepdf.com/reader/full/chapter-3a-soon 6/58

6

A: 5 branches

How many branches exist in this circuit?

8/11/2019 Chapter 3a Soon

http://slidepdf.com/reader/full/chapter-3a-soon 7/58

7

Cont…

A node:

the point of connection between two or

more branches. usually indicated by a dot in a circuit.

8/11/2019 Chapter 3a Soon

http://slidepdf.com/reader/full/chapter-3a-soon 8/58

8

A: 3 nodes

How many nodes exist in this circuit?

8/11/2019 Chapter 3a Soon

http://slidepdf.com/reader/full/chapter-3a-soon 9/58

9

Cont… A loop:

any closed path in circuit

8/11/2019 Chapter 3a Soon

http://slidepdf.com/reader/full/chapter-3a-soon 10/58

10

3.2 Kirchoff’s

Laws

8/11/2019 Chapter 3a Soon

http://slidepdf.com/reader/full/chapter-3a-soon 11/58

11

Kirchoff’s Laws

Kirchoff’s Current Law (KCL) states that the algebraicsum of currents entering a node (or a closed loop

boundary) is zero.

The sum of the currents entering a node is equal to the

sum of the currents leaving the node. Mathematically, KCL implies that

0i N

1nn

where,in= nth current entering (or leaving) the node

N= number of branches connected to the node

*Hukum Arus Kirchoff

……..( Eq. 3.1)

8/11/2019 Chapter 3a Soon

http://slidepdf.com/reader/full/chapter-3a-soon 12/58

12

I6I1

I2

I3

I4

I5

I1 - I2 - I3 + I4 - I5 + 16=0 @ I1 + I4 + 16 = I2 + I3 +I5

current entering current leaving

leavingentering II ……..( Eq. 3.2 )

Kirchoff’s Current Law (KCL)

8/11/2019 Chapter 3a Soon

http://slidepdf.com/reader/full/chapter-3a-soon 13/58

13

Cont… Kirchoff’s Voltage Law (KVL) states that the

algebraic sum of all voltages around a closedpath (or loop) is zero.

N

1n

n 0V

Where,

Vn= the nth voltageN= number of voltages in the loop

Sum of voltage across active element

= Sum of voltage across passive element

……..( Eq. 3.3 )

8/11/2019 Chapter 3a Soon

http://slidepdf.com/reader/full/chapter-3a-soon 14/58

14

+ V1 -

- V3 +

V2

+

-E2

E1

R1

R2

R3

E1 – V1 – V2 – E2 – V3 = 0 @ E1 – E2 = V1 + V2 + V3

Kirchoff’s Voltage Law (KVL)

8/11/2019 Chapter 3a Soon

http://slidepdf.com/reader/full/chapter-3a-soon 15/58

15

Example 3.1a

Write the KVL equation for the following circuit.

8/11/2019 Chapter 3a Soon

http://slidepdf.com/reader/full/chapter-3a-soon 16/58

8/11/2019 Chapter 3a Soon

http://slidepdf.com/reader/full/chapter-3a-soon 17/58

17

Example 3.1b

Write the KVL equation for the following circuit.

8/11/2019 Chapter 3a Soon

http://slidepdf.com/reader/full/chapter-3a-soon 18/58

18

Solution 3.1b

-V5 + V4 – V3 – V2 + V1 = 0

v1 + v4 = v2 + v3 + v5

8/11/2019 Chapter 3a Soon

http://slidepdf.com/reader/full/chapter-3a-soon 19/58

19

Example 3.2

For the following circuit, find voltages v1 and v2.

i

+

-

- + 1 v

2 v

W 2

W 3 V 20

8/11/2019 Chapter 3a Soon

http://slidepdf.com/reader/full/chapter-3a-soon 20/58

20

Solution 3.2

From Ohm’s Law, v1 = iR = i x 2 = 2iv2 = iR = i x 3 = 3i

From KVL , 20 = v1 +v2

20 = 2i +3i

20 = 5i

i = 4 A

So, v1 = iR = 4 x 2 = 8 V

v2 = iR = 4 x 3 =12 V

Check! KVL: 20 = 8+12 =20

i

+

-

- +

1 v

2 v

W 2

W 3 V 20

8/11/2019 Chapter 3a Soon

http://slidepdf.com/reader/full/chapter-3a-soon 21/58

21

Example 3.3

Find the power consumed by resistor Rx.

8/11/2019 Chapter 3a Soon

http://slidepdf.com/reader/full/chapter-3a-soon 22/58

22

Solution 3.3

8/11/2019 Chapter 3a Soon

http://slidepdf.com/reader/full/chapter-3a-soon 23/58

23

Example 3.4

Given that the power dissipated byResistor R1 is 4W. Find the value of Rx.

8/11/2019 Chapter 3a Soon

http://slidepdf.com/reader/full/chapter-3a-soon 24/58

24

Solution 3.4

8/11/2019 Chapter 3a Soon

http://slidepdf.com/reader/full/chapter-3a-soon 25/58

25

3.3 Series Resistors

andVoltage Division

8/11/2019 Chapter 3a Soon

http://slidepdf.com/reader/full/chapter-3a-soon 26/58

26

Series circuit

A series circuit is a circuit which provides onlyone path for current to flow between two points

in a circuit so that the current is the same

through each series component.

Total Resistance

The total resistance of a series circuit

= the sum of the resistances of each

individual resistor .

8/11/2019 Chapter 3a Soon

http://slidepdf.com/reader/full/chapter-3a-soon 27/58

27

Series Resistors and Voltage Division

8/11/2019 Chapter 3a Soon

http://slidepdf.com/reader/full/chapter-3a-soon 28/58

28

Figure (a) Series circuit (b) Equivalent circuit

+ V -

Vs

R series

+ V1 - + V2 -

Vs

R 1 R 2

+ V3 - + VN -

R 3 R N

(a) (b)

)( R ...R R R R R N 32 1equivalent T W++++

(A)R

V(I)Current,

T

S

Voltage, v1 = iR1, v2 = iR2

…..( Eq. 3.4)

……..( Eq. 3.5)

……..( Eq. 3.6)

8/11/2019 Chapter 3a Soon

http://slidepdf.com/reader/full/chapter-3a-soon 29/58

29

Voltage Divider Rules Voltage drop across any of the

resistors can be written as follows:

V2

IVs

+

-

V1

V4

V3

+

-

+

-

+

-

+

-

R 1

R 4

R 2

R 3

Substituting V S /R T for I results in

Rearranging terms yields

Voltage – divider formula

4,3,2,1

x

IR xx

V

x

T

S R

R

V )(x V

S

T

xV

R

R )(x

V

……..( Eq. 3.7)

……..( Eq. 3.8)

……..( Eq. 3.9)

8/11/2019 Chapter 3a Soon

http://slidepdf.com/reader/full/chapter-3a-soon 30/58

30

Example 3.5

3 kΩ

V=24V

+ V1 -

+ V2

-

9kΩ

Find v1 and v2 in the circuit below.

8/11/2019 Chapter 3a Soon

http://slidepdf.com/reader/full/chapter-3a-soon 31/58

31

Solution 3.5

Based on KVL,v = v1 +v2

= i(R1 +R2)

24 = i ((3 + 9)k)

= (12k) iSo, i = 24/(12k) = 2 (mA)

By using i value,

v1 = iR1 =2m x 3k = 6 V

v2 = iR2 =2m x 9k = 18 VCheck! KVL: 24V =( 6+18 )V =24 V

V=24V

+ V1 -

3 kΩ

+ V2

-

9kΩ

i

8/11/2019 Chapter 3a Soon

http://slidepdf.com/reader/full/chapter-3a-soon 32/58

32

Example 3.6

Calculate the voltage drop across each resistor in thevoltage divider in figure below .

IVs

100V

+

-

V2

V1

V3

+

-

+

-

+

-

R 1=100Ω

R 2=220Ω

R 3=680Ω

8/11/2019 Chapter 3a Soon

http://slidepdf.com/reader/full/chapter-3a-soon 33/58

33

Solution 3.6

IVs

100V

+

-

V2

V1

V3

+-+

-+

-

R 1=100Ω

R 2=220Ω

R 3=680Ω

V V R

RV

V V

R

RV

V V R

RV

S

T

S

T

S

T

68100)1000

680(

22100)1000

220(

10100)1000

100(

33

22

11

Check! KVL: 100V =( 10+22+68 )V =100V

8/11/2019 Chapter 3a Soon

http://slidepdf.com/reader/full/chapter-3a-soon 34/58

34

3.4 Parallel

Resistorsand Current Division

8/11/2019 Chapter 3a Soon

http://slidepdf.com/reader/full/chapter-3a-soon 35/58

35

Parallel Resistors and Current Division

Figure (a) Parallel Circuit (b) Equivalent Circuit

Vs

+ V -

Vs

R parallel

(a) (b)

I

+ V1

-

R 1+

V2

-

R 2+

VN

-

R N

I

I1 I2 IN

8/11/2019 Chapter 3a Soon

http://slidepdf.com/reader/full/chapter-3a-soon 36/58

36

(V)V,...,VVVV N321

(A)I ...I I I (I)Current, N 32 1 ++++

(Ω)R

1...

R

1

R

1

R

1R

(Ω)R

1...

R

1

R

1

R

1

R

1

R

1

1

N321

T

N321equivalentT

-

++++

++++

…..( Eq. 3.10)

…..( Eq. 3.11)

…..( Eq. 3.13)

…..( Eq. 3.12)

8/11/2019 Chapter 3a Soon

http://slidepdf.com/reader/full/chapter-3a-soon 37/58

37

Example 3.7

For the following circuit, find;

(a) Equivalent resistance

(b) Total current

(c) Currents through

each resistor

(d) Power for each element

and total circuit power(e) Power supplied by the source

30 V 10 Ω

+

V1-

5 Ω

+

V2-

I1 I2

IT

8/11/2019 Chapter 3a Soon

http://slidepdf.com/reader/full/chapter-3a-soon 38/58

38

Solution 3.7

A I

I

R I V

R

R

T

T

T T

T

T

9)10

3(30

)3

10

(30

current b)T otal

33.3

3

10

10

3

10

12

10

1

5

11

resistancenta)Equivale

W

++

30 V

+

V1

- 5 Ω

+

V2

- 10 Ω

I1 I2

IT

8/11/2019 Chapter 3a Soon

http://slidepdf.com/reader/full/chapter-3a-soon 39/58

39

Solution 3.7(cont.)

30 V 10 Ω

+

V1

- 5 Ω

+

V2

-

I1 I2

IT

A A A

I I I CHECK

A R

V I

A

R

V I

R

V I IRV

T

9)36(9

:

310

30

6

5

30

21

2

2

1

1

+

+

resistor each through c)Currents

8/11/2019 Chapter 3a Soon

http://slidepdf.com/reader/full/chapter-3a-soon 40/58

40

Solution 3.7(cont.)

W W W

P P T

P

CHECK

W V T

I T

P

W V I P

W V I P

IV P

270)90180(270

21

:

270309

source by thesuppliede)Power

9030322

18030611

power circuittotalandelementeachford)Power

+

+

30 V

+

V1

- 5 Ω

+

V2

- 10 Ω

I1 I2

IT

8/11/2019 Chapter 3a Soon

http://slidepdf.com/reader/full/chapter-3a-soon 41/58

41

Current Divider Rules

The formula for total resistanceof 2 parallel branches,

21

21

R R

R R RT

+

I

VS

+ V1

-

R 1

+ V2

-

R 2

I1 I2

Current Divider formula for 2 branches

From Ohm’s Law,

T T T T

T T T T

T T

I R

R

R

R I

R

V I

I R R

R R I

RV I

R I R I R I V

222

2

111

1

2211

,

…..( Eq. 3.14)

…..( Eq. 3.15)

8/11/2019 Chapter 3a Soon

http://slidepdf.com/reader/full/chapter-3a-soon 42/58

42

Current Divider Rules

Substituting R1R2/(R1+R2) for RT and canceling result in

TI

T

R

yieldstermsgRearrangin

T

R T

I

inresultsX

Iforexpressionin theS

VforT

R T

IngSubstituti

T

R T

I

X R

x I

X R

x I

S V

X R

S V

x I

Current Divider formula for 2 branches

Current – divider formula for 2 branches

…..( Eq. 3.16)

…..( Eq. 3.17)

8/11/2019 Chapter 3a Soon

http://slidepdf.com/reader/full/chapter-3a-soon 43/58

43

Current Divider Rules

Substituting R1R2/(R1+R2) forRT and canceling result in

General Current Divider formula for any number of branches

Therefore, current divider formula for 2 branches are :

T T I R

R R

R R

I I R

R R

R R

I

+

+

2

21

21

2

1

21

21

1 ,

T T I

R R

R I I

R R

R I

+

+

21

1

2

21

2

1 ,

Current – divider formula

…..( Eq. 3.18)

I

VS +

V1

-

R 1

+ V2

-

R 2

I1 I2

8/11/2019 Chapter 3a Soon

http://slidepdf.com/reader/full/chapter-3a-soon 44/58

44

Example 3.8

For the following circuit, find current foreach element using current divider rules.

12 V

+ V1

- 15 Ω

+ V2

- 30 Ω

I1 I2

I

8/11/2019 Chapter 3a Soon

http://slidepdf.com/reader/full/chapter-3a-soon 45/58

45

Solution 3.8

12 V

1/Rall

= 1/R1

+1/R2= (R1 + R2)/(R1R2)

Rall = (R1R2)/(R1+R2)

= (15 x 30)/ (15 +30)= 450/45 = 10 Ω

Vall = V1 =V2 = 12V

I1 = V1/R1 = 12/15 = 0.8 A

I2 = V2/R2 = 12/30 = 0.4 A

+ V1

-

15 Ω

+ V2

- 30 Ω

I1 I2

I

Check!

Vall=IR allI=Vall/R all

I=12/10=1.2 A

KCL:

I = I1 + I2

1.2 A= (0.8 +0.4)A =1.2 A

leaving entering I I

8/11/2019 Chapter 3a Soon

http://slidepdf.com/reader/full/chapter-3a-soon 46/58

46

3.5 Series and

Parallel Resistors

8/11/2019 Chapter 3a Soon

http://slidepdf.com/reader/full/chapter-3a-soon 47/58

47

Combinational Series and Parallel Circuits

Define as a circuit that consist of a combinationseries and parallel circuit.

We can get the equivalent resistance by

looking the total resistance from the voltage orcurrent source.

Lets consider the following example for better

understanding.

8/11/2019 Chapter 3a Soon

http://slidepdf.com/reader/full/chapter-3a-soon 48/58

S

8/11/2019 Chapter 3a Soon

http://slidepdf.com/reader/full/chapter-3a-soon 49/58

49

Solution 3.9

Vs

R 1

R 2 R 3 R 6

R 4 R 5 R 7

(i)Rx(ii)Ry

(iii)Rz

(i) Series resistors, Rx =R1+R2 +R3

(ii)Series resistors Ry = R6 + R7

(i) Parallel resistors Rz = R4 //R5

1/Rz = 1/R4 +1/R5 + 1/RV

= ( R5RV +R4RV + R4R5 ) / ( R4R5RV )

So, Rz = ( R4R5RV ) / ( R5RV +R4RV + R4R5 )

Equivalent resistance = (i) + (iii) = RX +RZ

=(R1+R2 +R3) + ( R4R5RV ) / ( R5RV +R4RV + R4R5 )

=( R1+R2 +R3) + ( R4R5 (R6 + R7) ) /

( R5 (R6 + R7) +R4 (R6 + R7) + R4R5 )

E i 3 1

8/11/2019 Chapter 3a Soon

http://slidepdf.com/reader/full/chapter-3a-soon 50/58

50

Exercise 3.1

Calculate the equivalent resistance Rab at terminals a-b.

a

b

W10

W80W60 W20 W30

A: R ab = 16 Ω

8/11/2019 Chapter 3a Soon

http://slidepdf.com/reader/full/chapter-3a-soon 51/58

51

3.6 Wye-Delta

Transformations

8/11/2019 Chapter 3a Soon

http://slidepdf.com/reader/full/chapter-3a-soon 52/58

52

DELTA – WYE transformation

R 1 R 2

R 3

R a

R bR c

a

b

c 321

31

c

321

32

b

321

21

a

RRR

RRR

RRR

RR

R

RRR

RRR

++

++

++

( Eq. 3.19)

8/11/2019 Chapter 3a Soon

http://slidepdf.com/reader/full/chapter-3a-soon 53/58

53

WYE - DELTA transformation

a

cb

cb3

c

ba

ba2

b

ca

ca1

R

RRRRR

R

RRRRR

R

RRRRR

++

++

++R 1 R 2

R 3

R a

R bR c

a

b

c

( Eq. 3.20)

8/11/2019 Chapter 3a Soon

http://slidepdf.com/reader/full/chapter-3a-soon 54/58

54

WYE - DELTA transformation

a

acc b ba3

c

acc b ba2

b

acc b ba1

R

R R R R R R R

R

R R R R R R R

R

R R R R R R R

++

++

++

R 1 R 2

R 3

R a

R bR c

a

b

c( Eq. 3.21)

8/11/2019 Chapter 3a Soon

http://slidepdf.com/reader/full/chapter-3a-soon 55/58

55

20kΩ a

b c

d

12kΩ

18kΩ 6kΩ

12kΩ 12kΩ

Find the equivalent resistance.

Example 3.11

8/11/2019 Chapter 3a Soon

http://slidepdf.com/reader/full/chapter-3a-soon 56/58

56

20kΩ a

b c

d

12kΩ

18kΩ 6kΩ

12kΩ 12kΩ

20kΩ a

b c

d

RcRb

12kΩ 12kΩ

Ra

Solution 3.11

8/11/2019 Chapter 3a Soon

http://slidepdf.com/reader/full/chapter-3a-soon 57/58

57

W++W++

W++

W

++

W++-

k ) R Rak R

k k Rck Rb R

k

k

k

parallel all

parallel

875.3020(

875.7)12//()12(

612k 18k 6k

(12k)(18k) Rc

2

12k 18k 6k

(6k)(12k) Rb

312k 18k 6k

(6k)(18k) Ra :

Solution 3.11 (cont.)

8/11/2019 Chapter 3a Soon

http://slidepdf.com/reader/full/chapter-3a-soon 58/58

Exercise 3.2Obtain the equivalent resistance at the terminals a-b

for the circuit below.

a

b

W30

W20

W20

W10

W10W10

Answer: R ab = 9.23 Ω