30
The Islamic University of Gaza Faculty of Engineering Civil Engineering Department Numerical Analysis ECIV 3306 Chapter 31: Finite-Element Method

Chapter 31: Finite-Element Method - Islamic University of Gazasite.iugaza.edu.ps/wp-content/uploads/Chap_31 finite... · 2012-05-13 · Finite-Element Method • Finite elementmethod

  • Upload
    others

  • View
    16

  • Download
    0

Embed Size (px)

Citation preview

The Islamic University of GazaFaculty of Engineering

Civil Engineering Department

Numerical AnalysisECIV 3306

Chapter 31: Finite-Element Method

Finite-Element Method

• Finite element method provides an alternative tofinite-difference methods, especially for systems withirregular geometry, unusual boundary conditions, orheterogeneous composition.

• Advantages:

• Flexibility with respect to boundary conditions andgeometries.

2Chapter 31

Finite-Element Method

• This method divides the solution domain into simplyshaped regions or elements. An approximate solutionfor the PDE can be developed for each element.

• The total solution is generated by linking together, or“assembling,” the individual solutions taking care toensure continuity at the inter-element boundaries.

3Chapter 31

Figure 31.1

Chapter 31 4

Finite-Element Method

• A comprehensive description of finite elementmethod is beyond the scope of this course.

• This chapter provides a general introduction to themethod. Our primary objective is to make youcomfortable with the approach and cognizant of itscapabilities.

5Chapter 31

The General Approach

1. Discretization• First step is

dividing thesolution domaininto finiteelements.

Chapter 31 6

2. Element Equations• Next step is develop equations to approximate the

solution for each element.– Must choose an appropriate function with unknown

coefficients that will be used to approximate the solution.– Evaluation of the coefficients so that the function

approximates the solution in an optimal fashion.Choice of Approximation Functions:

For one dimensional case the simplest case is a first-order polynomial;

xaaxu 10)( +=Chapter 31 7

The General Approach

Eq. (1)

12

12

12

21

2211

12

121

12

12210

222102

111101)(

)(

xxxxN

xxxxN

uNuNu

-xx-uua

-xxx-uxua

xuuxaauxuuxaau

--

=--

=

+=

==

=+==+=

8

Approximation orshape function

Interpolation functions

Solve for a0 and a1

Substitute in u(x)

The General Approach

Eq. (2)

Chapter 31

• The fact that we are dealing with linear equations facilitatesoperations such as differentiation and integration:

Obtaining an Optimal Fit of the Function to the Solution:• Most common approaches are the direct approach, the method

of weighted residuals, and the variational approach.

( ) )(2

)(12

212211

12

122

21

1

2

1

2

1

xxuudxuNuNdxu

andxxuuu

dxdNu

dxdN

dxdu

x

x

x

x

-+

=+=

--

=+=

òò

Chapter 31 9

The General Approach

Eq. (3)

Eq. (4)

• Mathematically, the resulting element equations willoften consists of a set of linear algebraic equationsthat can be expressed in matrix form:

[k]=an element property or stiffness matrix{u}=a column vector of unknowns at the nodes{F}=a column vector reflecting the effect of anyexternal influences applied at the nodes.

[ ]{ } { }Fuk =

Chapter 31 10

The General Approach

Eq. (5)

Chapter 31 11

3.Assembly• The assembly process is governed by the concept of continuity.• The solutions for contiguous elements are matched so that the

unknown values (and sometimes the derivatives) at theircommon nodes are equivalent.

• When all the individual versions of the matrix equation arefinally assembled:

[K] = assemblage property matrix{u ´} and {F ´}= assemblage of the vectors {u } and {F }

[ ]{ } { }FuK ¢=¢

The General Approach

Eq. (6)

4. Boundary Conditions/• Matrix equation when modified to account for

system’s boundary conditions:

5. Solution/• In many cases the elements can be configured so that

the resulting equations are banded. Highly efficientsolution schemes are available for such systems (PartThree).

[ ]{ } { }Fuk ¢=¢

Chapter 31 12

The General Approach

Eq. (7)

6.Post-processing/• Upon obtaining solution, it can be displayed in

tabular form or graphically.

Chapter 31 13

The General Approach

Finite Element Application in onedimension

T=40 T=200=10

)(2

2xf

dxTd

-==10

Chapter 31 14

Step 2. Element EquationFor an individual element,the distribution oftemperature can berepresented by

Chapter 31 15

Finite Element Application in onedimension

2211~

TNTNT +=

Using The method of weighted residuals (MWR)to obtain an optimal fit of the function to thesolution.

Chapter 31 16

Finite Element Application in onedimension

òò +-=2

1

2

1

11

~1

~

)()(x

x

x

x

dxNxfdx

xTddxdx

dNdxTd

)(.

1).(

2112

212

211~

2

1

2

1

TTxx

dxxxTTdx

dxdN

dxTd

x

x

x

x

--

=-

-= òò

and

)(1).(

211.2

212

212~

2

1

2

1

TTxx

dxxxTTdx

dxdN

dxTd

x

x

x

x

+--

=-

+-= òò

But from Eq. (3)

and

òò +-=2

1

2

1

22

~2

~

)()(x

x

x

x

dxNxfdx

xTddxdx

dNdxTd Eq. (8)

….Eq. (9)

Representing Eq. (9) in matrix form;

Substituting this result into Eq. (8) and expressing theresult in matrix form gives the final version of theelement equations

17

Finite Element Application in onedimension

þýü

îíì

·úû

ùêë

é-

--

=

ïïï

þ

ïïï

ý

ü

ïïï

î

ïïï

í

ì

ò

ò

2

1

122

~

1~

11111

2

1

2

1

TT

xxdx

dxdN

dxTd

dxdx

dNdx

Td

x

x

x

x

ïïï

þ

ïïï

ý

ü

ïïï

î

ïïï

í

ì

+

ïïþ

ïïý

ü

ïïî

ïïí

ì-

=þýü

îíì

·úû

ùêë

é-

--

ò

ò2

1

2

1

2

1

2

1

2

1

12)(

)(

)(

)(

11111

x

x

x

x

dxNxf

dxNxf

dxxdT

dxxdT

TT

xx

Element stiffnessmatrix

Boundaryconditions

Externaleffects

Eq. (10)

Finite Element Application in onedimension Example

(10)

10(2)

10

þýü

îíì

+

ïïþ

ïïý

ü

ïïî

ïïí

ì-

=þýü

îíì

·úû

ùêë

é-

-5.125.12

)(

)(

4.04.04.04.0

2

1

2

1

dxxdT

dxxdT

TT

10

Step 3. Assembly• Before the element equations are assembled, a

global numbering scheme must be established.

Chapter 31 19

One dimension – Example- cont.

Element

Node number

Local Global

1 1 1

2 2

2 1 2

2 3

3 1 3

2 4

4 1 4

2 5

• For each element theelement equation can bewritten using the globalcoordinates. Then they canbe added one at a time toassemble the total systemmatrix.

Chapter 31 20

One dimension – Example- cont.

ïïï

þ

ïïï

ý

ü

ïïï

î

ïïï

í

ì++-

=

ïïï

þ

ïïï

ý

ü

ïïï

î

ïïï

í

ì

·

úúúúúú

û

ù

êêêêêê

ë

é-

-

000

5.12/)(5.12/)(

000

0000000000000000004.04.00004.04.0

)2

1

2

1dxxdTdxxdT

TT

a

ïïï

þ

ïïï

ý

ü

ïïï

î

ïïï

í

ì

++

+-

=

ïïï

þ

ïïï

ý

ü

ïïï

î

ïïï

í

ì

·

úúúúúú

û

ù

êêêêêê

ë

é

--+-

-

00

5.12/)(5.125.12

5.12/)(

00

0000000000004.04.000004.04.04.04.00004.04.0

) 3

1

3

2

1

dxxdT

dxxdT

TTT

b

ïïï

þ

ïïï

ý

ü

ïïï

î

ïïï

í

ì

++

+-

=

ïïï

þ

ïïï

ý

ü

ïïï

î

ïïï

í

ì

·

úúúúúú

û

ù

êêêêêê

ë

é

---

---

05.12/)(

5.125.1225

5.12/)(

00000004.04.000004.04.04.04.00004.08.04.00004.04.0

)

4

1

4

3

2

1

dxxdT

dxxdT

TTTT

c

ïïï

þ

ïïï

ý

ü

ïïï

î

ïïï

í

ì

++

+-

=

ïïï

þ

ïïï

ý

ü

ïïï

î

ïïï

í

ì

·

úúúúúú

û

ù

êêêêêê

ë

é

--+-

----

-

5.12/)(5.125.12

2525

5.12/)(

04.04.000004.04.04.04.000

04.08.04.00004.08.04.00004.04.0

)

4

1

4

3

2

1

dxxdT

dxxdT

TTTT

d

ïïï

þ

ïïï

ý

ü

ïïï

î

ïïï

í

ì

+

+-

=

ïïï

þ

ïïï

ý

ü

ïïï

î

ïïï

í

ì

·

úúúúúú

û

ù

êêêêêê

ë

é

---

----

-

5.12/)(252525

5.12/)(

4.04.00004.08.04.000

04.08.04.00004.08.04.00004.04.0

)

5

1

5

4

3

2

1

dxxdT

dxxdT

TTTTT

e

Final resultfor

[ ]{ } { }FuK ¢=¢

Step 4. Boundary ConditionsThe final result for [F] has boundary conditions for onlythe first and the last nodes: T1=40 and T5=200

and represent unknowns, The equationcan be re-expressed as

Chapter 31 21

One dimension – Example- cont.

ïïï

þ

ïïï

ý

ü

ïïï

î

ïïï

í

ì

+

+-

=

ïïï

þ

ïïï

ý

ü

ïïï

î

ïïï

í

ì

·

úúúúúú

û

ù

êêêêêê

ë

é

---

----

-

5.12/)(252525

5.12/)(

200

40

4.04.00004.08.04.000

04.08.04.00004.08.04.00004.04.0

5

1

4

3

2

dxxdT

dxxdT

TTT

dxxdT /)( 1 dxxdT /)( 5

ïïï

þ

ïïï

ý

ü

ïïï

î

ïïï

í

ì

-=-=+

=+-=-

=

ïïï

þ

ïïï

ý

ü

ïïï

î

ïïï

í

ì

-

·

úúúúúú

û

ù

êêêêêê

ë

é

--

---

-

5.67805.121058025

25411625

5.3165.12

/)(

/)(

14.000008.04.00004.08.04.00004.08.000004.01

5

4

3

2

1

dxxdTTTT

dxxdT

Step 5. SolutionSolve five unknowns

Chapter 31 22

One dimension – Example- cont.

ïïï

þ

ïïï

ý

ü

ïïï

î

ïïï

í

ì

-

=

ïïï

þ

ïïï

ý

ü

ïïï

î

ïïï

í

ì

3475.253

24575.173

66

/)(

/)(

5

4

3

2

1

dxxdTTTT

dxxdT

Step 6. Post-processing

Chapter 31 23

One dimension – Example- cont.

Step - 1;Discretization

Finite-element Solution of A Seriesof Springs Example 2

Using the step-by-step procedure a finite-elementapproach to determine the displacements of the springs.

Step 2. Element EquationThe relationship between force F and displacement xcan be represented mathematically by Hooke's law:

Chapter 31 25

Solution of A Series of SpringsExample 2 – cont.

kxF =For the shown spring

or

For a stationary system, F1 = -F2

)( 211 xxkF -=

211 kxkxF -=

212 kxkxF +-=

Step 2. Element EquationThese two simultaneous equations specify thebehavior of the element (spring). They can bewritten in matrix form as;

or

Chapter 31 26

Solution of A Series of SpringsExample 2 – cont.

þýü

îíì

=þýü

îíì

·úû

ùêë

é-

-

2

1

2

1FF

xx

kkkk

[ ]{ } { }Fuk = Eq. (5)

Step 3. Assembly• Established a global numbering

scheme.

Chapter 31 27

Solution of A Series of SpringsExample 2 – cont.

Element

Node numberLocal Global

1 1 12 2

2 1 22 3

3 1 32 4

4 1 42 5

ïþ

ïýü

ïî

ïíì

=þýü

îíì

·úúû

ù

êêë

é

-

-)(

2

)(1

2

1)(

22)(

21

)(12

)(11

e

e

ee

ee

FF

xx

kkkk

ïïï

þ

ïïï

ý

ü

ïïï

î

ïïï

í

ì

=

ïïï

þ

ïïï

ý

ü

ïïï

î

ïïï

í

ì

·

úúúúúúú

û

ù

êêêêêêê

ë

é

-

-+-

-+-

-+-

-

)4(2

)1(1

5

4

3

2

1

)4(22

)4(21

)4(12

)4(11

)3(22

)3(21

)3(12

)3(11

)2(22

)2(21

)2(11

)2(11

)1(22

)1(11

)2(12

)1(11

000

F

F

xxxxx

kkkkkk

kkkkkkkk

kk

Step 4. Boundary ConditionsThe present system is subject to a single boundarycondition x1= 0 this will reduce the system to;

Step 5. SolutionSolve five unknowns,for k’s =1 and F = 1

Chapter 31 28

Solution of A Series of SpringsExample 2 – cont.

ïïþ

ïïý

ü

ïïî

ïïí

ì

=

ïïþ

ïïý

ü

ïïî

ïïí

ì

·

úúúúú

û

ù

êêêêê

ë

é

---

---

Fxxxx

kkkkk

kkkk

000

0020

0121002

5

4

3

2

ïïþ

ïïý

ü

ïïî

ïïí

ì

=

ïïþ

ïïý

ü

ïïî

ïïí

ì

4321

5

4

3

2

xxxx

Step 6. Post-processing

Chapter 31 29

Solution of A Series of SpringsExample 2 – cont.

Perform the same computation for the series ofsprings example, but change the force F to 1.5and the spring constant to

Chapter 31 30

H.W

Spring 1 2 3 4

k 0.75 1.5 0.5 2