15
ๅ€‹ ้ซ” ็ถ“ ๆฟŸ ๅญธ ไธ€ M i c r o e c o n o m i c s (I) ๏ผŠUntility function Total utility of consuming (x, y), denoted as u(x, y), is the total level of total satisfaction of consuming(x, y). ๏ฟฝ Cardinal utility analysis (number itself is meaningful) Ordinal utility analysis (number is used to rank bundles) In Ordinal utility analysis, higher value of TU is associated with higher level of satisfaction. utility function is a function from bundles to a real number such that ๏ฟฝ (1, 1) > (2, 2) (1, 1) > (2, 2) (1, 1) = (2, 2) (1, 1) ~ (2, 2) u : (x, y) โ†’ โ„ EX: (2, 3) ๏ผ 100 u(x, y) total utility (3, 7) ๏ผ 130 (5, 10) ๏ผ 200 ๏ผŠMarginal utility (of X, of Y) u = u(x, y) MU x = โˆ†(,) โˆ† ( (,) ) MU y = โˆ†(,) โˆ† ( (,) ) The law of Diminishing marginal utility x โ†‘ MU X โ†“ ( 2 (,) 2 <0 ) y โ†‘ MU Y โ†“ ( 2 (,) 2 <0 ) CH2 The analysis of consumer behavior

CH2 The analysis of consumer behavior

  • Upload
    others

  • View
    4

  • Download
    0

Embed Size (px)

Citation preview

ๅ€‹ ้ซ” ็ถ“ ๆฟŸ ๅญธ ไธ€ M i c r o e c o n o m i c s (I) ๏ผŠUntility function Total utility of consuming (x, y), denoted as u(x, y), is the total level of total satisfaction of consuming(x, y).

๏ฟฝCardinal utility analysis (number itself is meaningful)

Ordinal utility analysis (number is used to rank bundles)๏ฟฝ

In Ordinal utility analysis, higher value of TU is associated with higher level of satisfaction.

utility function is a function from bundles to a real number

such that ๏ฟฝ ๐‘ข(๐‘ฅ1,๐‘ฆ1) > ๐‘ข(๐‘ฅ2,๐‘ฆ2) (๐‘ฅ1,๐‘ฆ1) > (๐‘ฅ2,๐‘ฆ2)๐‘ข(๐‘ฅ1,๐‘ฆ1) = ๐‘ข(๐‘ฅ2,๐‘ฆ2) (๐‘ฅ1,๐‘ฆ1) ~ (๐‘ฅ2,๐‘ฆ2)

๏ฟฝ

u : (x, y) โ†’ โ„

EX: (2, 3) ๏ผ 100 u(x, y) total utility (3, 7) ๏ผ 130 (5, 10) ๏ผ 200

๏ผŠMarginal utility (of X, of Y) u = u(x, y)

MUx = โˆ†๐‘ข(๐‘ฅ,๐‘ฆ)โˆ†๐‘ฅ

(๐œ•๐‘ข(๐‘ฅ,๐‘ฆ)๐œ•๐‘ฅ

)

MUy = โˆ†๐‘ข(๐‘ฅ,๐‘ฆ)โˆ†๐‘ฆ

(๐œ•๐‘ข(๐‘ฅ,๐‘ฆ)๐œ•๐‘ฆ

)

The law of Diminishing marginal utility

x โ†‘ MUXโ†“ ( ๐œ•2๐‘ข(๐‘ฅ,๐‘ฆ)๐œ•๐‘ฅ2

< 0 )

y โ†‘ MUYโ†“ ( ๐œ•2๐‘ข(๐‘ฅ,๐‘ฆ)๐œ•๐‘ฆ2

< 0 )

CH2 The analysis of consumer behavior

Any positively monotonic transformation of a utility function is also a utility function representing the same preference. ๏ผŠCardinal v.s. Ordinal utility analysis

EX: x : # of toast y: # of ham

u(x, y) = min ๏ฟฝx3

, y2๏ฟฝ positively monotonic

transformationโ†’ min{x

3, y2}2 + 100

=> same preference. ๏ผŠMarginal utility

MUx = โˆ†u(x,y)โˆ†x

MUy = โˆ†u(x,y)โˆ†y

or โˆ‚u(x,y)โˆ‚x

or โˆ‚u(x,y)โˆ‚y

or Ux(x, y) or Uy(x, y) (or simple Ux) (or simple Uy) ๏ผŠMarginal utility is the slope of the utility function

If more is better (assumption of nonsatiation) MUx > 0 , MUy > 0

But โ€œLaw of Diminishing marginal utilityโ€ xโ†‘, MUx โ†“ yโ†‘, MUy โ†“

๏ผฆigure1 8:

{(x, y)|(x, y)~ (x1, y1)for all (x, y) โˆˆ S} Given (x1, y1) โˆˆ S, we have total utility

u(x1, y1) : {(x, y)|u(x, y) = u(x1, y1)for all (x, y) โˆˆ S}

๏ผฆigure19 : Indifference curve

MRSxy= โˆ’๐›ฅ๐‘ฆ๐›ฅ๐‘ฅ

(given an indifference curve)

MRSxy depends on (x, y)

note that โˆ†๐‘ข(๐‘ฅ, ๐‘ฆ) = โˆ†๐‘ข(๐‘ฅ,๐‘ฆ)โˆ†๐‘ฅ

โˆ™ โˆ†๐‘ฅ + โˆ†๐‘ข(๐‘ฅ,๐‘ฆ)โˆ†๐‘ฆ

โˆ™ โˆ†๐‘ฆ

(๐‘‘๐‘ข(๐‘ฅ,๐‘ฆ) = ๐œ•๐‘ข(๐‘ฅ,๐‘ฆ)๐œ•๐‘ฅ

โˆ™ ๐‘‘๐‘ฅ + ๐œ•๐‘ข(๐‘ฅ,๐‘ฆ)๐œ•๐‘ฆ

โˆ™ ๐‘‘๐‘ฆ)

๐‘‘๐‘ข(๐‘ฅ,๐‘ฆ) = ๐‘€๐‘ข๐‘ฅ โˆ™ ๐‘‘๐‘ฅ + ๐‘€๐‘ข๐‘ฆ โˆ™ ๐‘‘๐‘ฆ On an indifference curve, a change in X and Y must satisfy

๐‘€๐‘ข๐‘ฅ โˆ™ ๐‘‘๐‘ฅ + ๐‘€๐‘ข๐‘ฆ โˆ™ ๐‘‘๐‘ฆ = 0

โˆ’๐‘‘๐‘ฆ๐‘‘๐‘ฅ

= ๐‘€๐‘ข๐‘ฅ๐‘€๐‘ข๐‘ฆ

๏ผฆigure20 :

(note: MRSxy= โˆ’๐›ฅ๐‘ฆ๐›ฅ๐‘ฅ

of an indifference curve)

MRSxy(x, y) = ๐‘€๐‘ข๐‘ฅ(๐‘ฅ,๐‘ฆ)๐‘€๐‘ข๐‘ฆ(๐‘ฅ,๐‘ฆ)

suppose๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ ๐‘€๐‘ข๐‘ฅ(๐‘ฅ,๐‘ฆ) is diminishing on ๐‘‹

๐‘€๐‘ข๐‘ฆ(๐‘ฅ,๐‘ฆ) is diminishing on ๐‘ฆ } Diminishing marginal utility.

Can we have diminishing MRSxy? (MRSxyโ†“ as xโ†‘ or yโ†“)

xโ†‘ => ๐‘€๐‘ข๐‘ฅโ†“(Diminishing ๐‘€๐‘ข๐‘ฅ) yโ†“=> ๐‘€๐‘ข๐‘ฆโ†‘(stays on the same IC)

Since MRSxyโ†“=๐‘€๐‘ข๐‘ฅโ†“๐‘€๐‘ข๐‘ฆโ†‘

โ†“ as xโ†‘

๏ผฆigure21:Diminishing MRSxy

๐‘‘๐‘€๐‘…๐‘†๐‘ฅ๐‘ฆ๐‘‘๐‘ฅ

>< 0 ?

We hope ๐‘‘๐‘€๐‘…๐‘†๐‘ฅ๐‘ฆ๐‘‘๐‘ฅ

< 0.

Mux= ux Muy= uy

โˆ†Mux(x,y)โˆ†x

or โˆ‚uxโˆ‚x

= uxx

โˆ†Mux(x,y)โˆ†y

or โˆ‚uxโˆ‚y

= uxy

โˆ†Muy(x,y)โˆ†x

or โˆ‚uyโˆ‚x

= uyx = uxy

โˆ†Muy(x,y)โˆ†y

or โˆ‚uyโˆ‚y

= uyy

๐‘‘MRSxy๐‘‘x

=๐‘‘(Mux

Muy)

๐‘‘x=๐‘‘(ux

uy)

๐‘‘x=

uy๐‘‘๐‘ข๐‘ฅ๐‘‘x โˆ’ ux

๐‘‘๐‘ข๐‘ฆ๐‘‘x

uy2

๏ฟฝnote that duxdx

โ‰  โˆ‚uxโˆ‚x๏ฟฝ =

uy๏ฟฝโˆ‚uxโˆ‚x +

โˆ‚uxโˆ‚y โˆ™

dydx๏ฟฝโˆ’ux๏ฟฝ

โˆ‚uyโˆ‚y +

โˆ‚uxโˆ‚y โˆ™

dydx๏ฟฝ

uy2

aโ†’c

โˆ‚uxโˆ‚x

(given y)

cโ†’b โˆ‚uxโˆ‚x

and dxdy

๏ผฆigure22 :Diminishing MRSxy

(note that โˆ’dydx

= uxuy

(= MuxMuy

))

uy๏ฟฝuxxโˆ’uxyโˆ™

uxuy๏ฟฝโˆ’ux๏ฟฝuyxโˆ’uyyโˆ™

uxuy๏ฟฝ

uy2

uy2๏ฟฝuxxโˆ’uxyโˆ™

uxuy๏ฟฝโˆ’uxuy๏ฟฝuyxโˆ’uyyโˆ™

uxuy๏ฟฝ

uy3

uy2uxxโˆ’2uxuyuxy +ux2uyy

uy3< 0

none satisfaction ux๏ผŒuy > 0 uxx<0uyy<0

} Diminishing Mux, Muy

Diminishing marginal utility is not sufficient to imply diminishing MRSxy, we need to know uxy >0<0

๏ผŠBudget Constraint X, Y Quantity:x, y price: Px, Py income: m Expenditure of(x, y) = ๐‘ƒ๐‘ฅ โˆ™ ๐‘ฅ + ๐‘ƒ๐‘ฆ โˆ™ ๐‘ฆ Budget constraint: ๏ฟฝ(๐‘ฅ, ๐‘ฆ)๏ฟฝ๐‘ƒ๐‘ฅ โˆ™ ๐‘ฅ + ๐‘ƒ๐‘ฆ โˆ™ ๐‘ฆ โ‰ค ๐‘š๏ฟฝ Budget line: ๏ฟฝ(๐‘ฅ,๐‘ฆ)๏ฟฝ๐‘ƒ๐‘ฅ โˆ™ ๐‘ฅ + ๐‘ƒ๐‘ฆ โˆ™ ๐‘ฆ = ๐‘š๏ฟฝ

๐‘ƒ๐‘ฅ โˆ™ ๐‘ฅ + ๐‘ƒ๐‘ฆ โˆ™ ๐‘ฆ = ๐‘š ๐‘ƒ๐‘ฆ โˆ™ ๐‘ฆ = ๐‘š โˆ’ ๐‘ƒ๐‘ฅ โˆ™ ๐‘ฅ

๐‘ฆ =๐‘š๐‘ƒ๐‘ฆโˆ’๐‘ƒ๐‘ฅ โˆ™ ๐‘ฅ๐‘ƒ๐‘ฆ

๏ผฆigure23 :Budget constraint

๐‘€๐‘…๐‘†๐‘ฅ๐‘ฆ = โˆ’๐›ฅ๐‘ฆ๐›ฅ๐‘ฅ

|on an indifference curve = subject exchange rate.

๐‘ƒ๐‘ฅ๐‘ƒ๐‘ฆ

= โˆ’๐›ฅ๐‘ฆ๐›ฅ๐‘ฅ

|on an budget line = object exchange rate.

1. ๆ‰€ๅพ—(m)ๆ”น่ฎŠ, mโ†‘

๏ผฆigure24 :Budget constraint when income change

2. Px, Py chang

Pxโ†‘, Py fixed, m fixed

๏ผฆigure25 :Budget constraint when price of X change(increase)

*Special case 1.Quantity Discount on X

๏ฟฝ๐‘‹ โ‰ค ๐‘‹0 ,๐‘ƒ๐‘ฅ

๐‘‹ > ๐‘‹0 ,๐‘ƒ๐‘ฅ2๏ฟฝ

m: incomePy:Price of gppd Y} as usual

๏ผฆigure26 :Budget constraint with special case

๐‘ฆ0 =๐‘š โˆ’ ๐‘ƒ๐‘ฅ๐‘‹0

๐‘ƒ๐‘ฆ

(x0, y0) is on D, B

Price of ๐‘‹ =0.5 ๐‘ƒ๐‘ฅ =๐‘ƒ๐‘ฆ

}on D, B

income = mโ€™

0.5๐‘ƒ๐‘ฅ๐‘‹0 + ๐‘ƒ๐‘ฆ๐‘š โˆ’ ๐‘ƒ๐‘ฅ๐‘‹0

๐‘ƒ๐‘ฆ= ๐‘šโ€ฒ

0.5๐‘ƒ๐‘ฅ๐‘‹0 + ๐‘š โˆ’ ๐‘ƒ๐‘ฅ๐‘‹0 = ๐‘šโ€ฒ ๐‘š โˆ’ 0.5๐‘ƒ๐‘ฅ๐‘‹0 = ๐‘šโ€ฒ ๐‘š โˆ’๐‘šโ€ฒ = 0.5๐‘ƒ๐‘ฅ๐‘‹0

Distance between A.D=๐‘šโˆ’0.5๐‘ƒ๐‘ฅ๐‘‹0๐‘ƒ๐‘ฆ

D.B budget line = ๏ฟฝ(๐‘ฅ,๐‘ฆ)๏ฟฝ0.5๐‘ƒ๐‘ฅ๐‘‹ + ๐‘ƒ๐‘ฆ๐‘Œ = ๐‘š โˆ’ 0.5๐‘ƒ๐‘ฅ๐‘‹0๏ฟฝ X > X0

2.Quota on X

๏ผฆigure27 :Budget constraint with quota

3. WIC(Woman.infant.children) Food coupon X0:good X of food coupon

๏ผฆigure28 : Budget constraint with food coupon

4. Endowment ็จŸ่ณฆ (x0, y0)~m= Pxx0+Pyy0

Pxโ†‘, Pxโ†’Pxโ€™, Pxโ€™>Px mโ€™ = Pxโ€™X0+PyY0

๏ผฆigure29 :Budget constraint with endowment

๏ผฆigure30 :Interior solution of consumer equilibrium

๏ผŠConsumer equilibrium A consumer maximizes his or her utility subjected to his/her budget constraint. (X*, Y*) is a consumer equilibrium where indifference curve is tangent to the budget line(indifference curve touches the budget line at e) or slope of the indifference curve at e = slope of the budget line.

orโ‡’MRSxy(X*, Y*) = ๐‘ƒ๐‘ฅ

๐‘ƒ๐‘ฆ

โ—Žone more condition: Pxx*+Pyy* = m

corner solution ่ง’่งฃ e: x*>0, y*=0

or x* = 0, y* = 0 Pxx*+Pyy* = m

Pxx*= m, x*=๐‘š๐‘ƒ๐‘ฅ

x*= ๐‘š๐‘ƒ๐‘ฅ

, y* = 0, corner solution at e.

MRSxy โ‰ฅ๐‘ƒ๐‘ฅ๐‘ƒ๐‘ฆ

๏ผฆigure31 :Corner solution of consumer equilibrium

another corner solution:

x*= 0, y* = ๐‘š๐‘ƒ๐‘ฆ

, MRSxy โ‰ค๐‘ƒ๐‘ฅ๐‘ƒ๐‘ฆ

๏ผŠIn the interior solution case:

if MRSxy > ๐‘ƒ๐‘ฅ๐‘ƒ๐‘ฆ

subject change object exchange rate (ไธป่ง€)ๅ€‹ไบบๅๅฅฝ (ๅฎข่ง€)ๅƒน้Œขๆฏ”

xโ†‘, yโ†“

๏ผฆigure32 :

aโ†’c c has more X => c is better than a. cโ†’e

MRSxy = ๐‘ƒ๐‘ฅ๐‘ƒ๐‘ฆ

ๅŒ็†, MRSxy < ๐‘ƒ๐‘ฅ๐‘ƒ๐‘ฆ

=> xโ†“, yโ†‘

๏ผŠWIC case

๏ผฆigure33 :Consumer equilibrium with food couponโ€™s type budget constraint

๏ผŠX and Y are perfect complements

๏ผฆigure34 :Interior solution under the preference is perfect complements

๏ผŠTo max u(x, y) s.t ๐‘ท๐’™ โˆ™ ๐’™ + ๐‘ท๐’š โˆ™ ๐’š = ๐’Ž u(x, y) is some continuously differentiable function How to solve the consumerโ€™s problem? General problem: max f(x. y) s.t. g(x, y) = 0

(min) โ„’(๐‘ฅ,๐‘ฆ, ๐œ†) = ๐‘ข(๐‘ฅ,๐‘ฆ) + ๐œ†(๐‘šโˆ’ ๐‘ƒ๐‘ฅ๐‘‹ โˆ’ ๐‘ƒ๐‘ฆ๐‘Œ) โ€ฆLagrange multiplier method = ๐‘“(๐‘ฅ,๐‘ฆ) + ๐œ†๐‘”(๐‘ฅ,๐‘ฆ) constrained problem โ†’non-constrained problem and apply FOC to the

non- constrained problem.

โ—‹1 ๐œ•โ„’(๐‘ฅ,๐‘ฆ,๐œ†)๐œ•๐‘ฅ

=๐œ•๏ฟฝ๐‘ข(๐‘ฅ,๐‘ฆ)+๐œ†๏ฟฝ๐‘šโˆ’๐‘ƒ๐‘ฅ๐‘‹โˆ’๐‘ƒ๐‘ฆ๐‘Œ๏ฟฝ๏ฟฝ

๐œ•๐‘ฅ= ๐œ•๐‘ข(๐‘ฅ,๐‘ฆ)

๐œ•๐‘ฅโˆ’ ๐œ†๐‘ƒ๐‘ฅ = 0

๐œ•๐‘ข(๐‘ฅ,๐‘ฆ)๐œ•๐‘ฅ

= ๐œ†๐‘ƒ๐‘ฅ --โ—‹1 โ€™

โ—‹2 ๐œ•โ„’(๐‘ฅ,๐‘ฆ,๐œ†)๐œ•๐‘ฆ

=๐œ•๏ฟฝ๐‘ข(๐‘ฅ,๐‘ฆ)+๐œ†๏ฟฝ๐‘šโˆ’๐‘ƒ๐‘ฅ๐‘‹โˆ’๐‘ƒ๐‘ฆ๐‘Œ๏ฟฝ๏ฟฝ

๐œ•๐‘ฆ= ๐œ•๐‘ข(๐‘ฅ,๐‘ฆ)

๐œ•๐‘ฆโˆ’ ๐œ†๐‘ƒ๐‘ฆ = 0

๐œ•๐‘ข(๐‘ฅ,๐‘ฆ)๐œ•๐‘ฆ

= ๐œ†๐‘ƒ๐‘ฅ --โ—‹2 โ€™

โ—‹3 ๐œ•โ„’(๐‘ฅ,๐‘ฆ,๐œ†)๐œ•๐œ†

=๐œ•๏ฟฝ๐‘ข(๐‘ฅ,๐‘ฆ)+๐œ†๏ฟฝ๐‘šโˆ’๐‘ƒ๐‘ฅ๐‘‹โˆ’๐‘ƒ๐‘ฆ๐‘Œ๏ฟฝ๏ฟฝ

๐œ•๐œ†= ๐‘šโˆ’ ๐‘ƒ๐‘ฅ๐‘ฅ โˆ’ ๐‘ƒ๐‘ฆ๐‘ฆ = 0 --โ—‹3 โ€™

budget constraint

โ—‹1 '/โ—‹2 '=๐‘€๐‘ข๐‘ฅ๐‘€๐‘ข๐‘ฆ

= ๐‘ƒ๐‘ฅ๐‘ƒ๐‘ฆ

--โ—‹4

MRSxy = ๐‘€๐‘ข๐‘ฅ๐‘€๐‘ข๐‘ฆ

โ—‹4 MRSxy = ๐‘€๐‘ข๐‘ฅ๐‘€๐‘ข๐‘ฆ

=๐‘ƒ๐‘ฅ๐‘ƒ๐‘ฆ

ๅœจๅŒๆจฃ็š„$1 ไธŠๆฏ”่ผƒ

๐‘€๐‘ข๐‘ฅ๐‘ƒ๐‘ฅ

= ๐‘€๐‘ข๐‘ฆ๐‘ƒ๐‘ฆ

โ‡’ ๐‘€๐‘ข๐‘ฅ๐‘ƒ๐‘ฅ

= โˆ†๐‘ข(๐‘ฅ,๐‘ฆ)โˆ†๐‘ฅ

โˆ†๐‘’๐‘ฅ๐‘๐‘’๐‘›๐‘‘๐‘–๐‘ก๐‘ข๐‘Ÿ๐‘’โˆ†๐‘ฅ

๏ผŠSpecial case 1. X and Y are perfect complement. 3 units of X is always consumed with 2

units of Y in fixed proportion. Px=$2, Py=$5, m=$80.

๐‘ข(๐‘ฅ,๐‘ฆ) = ๐‘š๐‘–๐‘› ๏ฟฝ๐‘ฅ3

,๐‘ฆ2๏ฟฝ

Optimal combination of X&Y: ๐‘ฅ3

= ๐‘ฆ2โ‡’ ๐‘ฆ

๐‘ฅ= 2

3

2๐‘ฅ +103๐‘ฅ = 80

163๐‘ฅ = 80

๐‘ฅโˆ— = 15,๐‘ฆโˆ— = 10

Generalized to min ๏ฟฝ๐‘ฅ๐‘Ž

, ๐‘ฆ๐‘๏ฟฝ โ†’ๆœ€ไธๆตช่ฒป็š„ๆฏ”ไพ‹

s.t. Pxx+Pyy=m Ex. X and Y are perfect complements. A consumer always uses 3 units of X

with 2 units of Y in the fixed proportion.

u(๐‘ฅ,๐‘ฆ) = min ๏ฟฝ๐‘ฅ3

,๐‘ฆ2๏ฟฝ โ‡’ u(๐‘ฅ,๐‘ฆ) = min ๏ฟฝ

๐‘ฅa

,๐‘ฆb๏ฟฝ

max u(๐‘ฅ,๐‘ฆ) = min ๏ฟฝ๐‘ฅ3

,๐‘ฆ2๏ฟฝ

s.t. Pxx+Pyy=m ๐‘ฅa

=๐‘ฆbโ‡’ ๐‘ฆ =

ba๐‘ฅ

budget constraint: Pxx+Pyy=m

๐‘ƒ๐‘ฅ๐‘ฅ + ๐‘ƒ๐‘ฆba๐‘ฅ = ๐‘š

๏ฟฝ๐‘ƒ๐‘ฅ + ๐‘ƒ๐‘ฆba๏ฟฝ ๐‘ฅ = ๐‘š

๐‘ฅ =๐‘š

๐‘ƒ๐‘ฅ + ๐‘ƒ๐‘ฆba

Px=$2, Py=$5 a=3, b=2, m=80

๐‘ฅโˆ— =a๐‘š

a๐‘ƒ๐‘ฅ + b๐‘ƒ๐‘ฆ= 15

๐‘ฆโˆ— =ba

a๐‘ša๐‘ƒ๐‘ฅ + b๐‘ƒ๐‘ฆ

=b๐‘š

a๐‘ƒ๐‘ฅ + b๐‘ƒ๐‘ฆ= 10

Ex. Cobb-Douglas utility function ๐‘ข(๐‘ฅ,๐‘ฆ)total utility = ๐‘ฅฮฑ๐‘ฆฮฒ, ฮฑ, ฮฒ > 0

๐‘€๐‘ข๐‘ฅ = โˆ‚๐‘ข(๐‘ฅ,๐‘ฆ)โˆ‚๐‘ฅ

= โˆ‚๐‘ฅฮฑ๐‘ฆฮฒ

โˆ‚๐‘ฅ= ฮฑ๐‘ฅฮฑโˆ’1๐‘ฆฮฒ > 0 no satiation point (no bliss point)

Muy = โˆ‚u(x,y)โˆ‚y

= โˆ‚xฮฑyฮฒ

โˆ‚y= ฮฒxฮฑyฮฒโˆ’1 > 0

โˆ‚๐‘€๐‘ข๐‘ฅโˆ‚๐‘ฅ

= ฮฑ(ฮฑโˆ’ 1)๐‘ฅฮฑโˆ’2๐‘ฆฮฒ โ‡’ ฮฑ < 1

๐œ•๐‘€๐‘ข๐‘ฆ๐œ•๐‘ฆ

= ๐›ฝ(๐›ฝ โˆ’ 1)๐‘ฅ๐›ผ๐‘ฆ๐›ฝโˆ’2 โ‡’ ๐›ฝ < 1 โ†’ ๐ท๐‘–๐‘š๐‘–๐‘›๐‘–๐‘ โ„Ž๐‘–๐‘›๐‘” ๐‘€๐‘Ž๐‘Ÿ๐‘”๐‘–๐‘›๐‘Ž๐‘™ ๐‘ข๐‘ก๐‘–๐‘™๐‘–๐‘ก๐‘ฆ

๐‘€๐‘…๐‘†๐‘ฅ๐‘ฆ =๐‘€๐‘ข๐‘ฅ๐‘€๐‘ข๐‘ฆ

=๐›ผ๐‘ฅ๐›ผโˆ’1๐‘ฆ๐›ฝ

๐›ฝ๐‘ฅ๐›ผ๐‘ฆ๐›ฝโˆ’1=๐›ผ๐›ฝ๐‘ฆ๐‘ฅโ†’ ๏ฟฝ๐‘ฅ่ถŠๅคง,๐‘ฆ่ถŠๅฐ๏ฟฝ โ‡’

๐‘‘๐‘€๐‘…๐‘†๐‘ฅ๐‘ฆ๐‘‘๐‘ฅ

< 0

For any ฮฑ, ฮฒ>0 and for all x and y ๐‘‘๐‘€๐‘…๐‘†๐‘ฅ๐‘ฆ๐‘‘๐‘ฅ

< 0

i.e. MRSxy is diminishing (with x) i.e. indifference curve is always convex

In equilibrium, ๐‘€๐‘…๐‘†๐‘ฅ๐‘ฆ = ๐‘ƒ๐‘ฅ๐‘ƒ๐‘ฆ

๐›ผ๐›ฝ๐‘ฆ๐‘ฅ

=๐‘ƒ๐‘ฅ๐‘ƒ๐‘ฆ

๐‘ƒ๐‘ฆ๐‘ฆ(expenditure on Y) =๐›ฝ ๐›ผ๐‘ƒ๐‘ฅ๐‘ฅ(expenditure on ๐‘‹)

๐‘ƒ๐‘ฅ๐‘ฅ + ๐‘ƒ๐‘ฆ๐‘ฆ = ๐‘š

๐‘ƒ๐‘ฅ๐‘ฅ +๐›ฝ ๐›ผ๐‘ƒ๐‘ฅ๐‘ฅ = ๐‘š

๐›ผ + ๐›ฝ ๐›ผ

๐‘ƒ๐‘ฅ๐‘ฅ = ๐‘šโŸน ๐‘’๐‘ฅ(expenditure of x) = ๐‘ƒ๐‘ฅ๐‘ฅ =๐›ผ

๐›ผ + ๐›ฝ ๐‘š(short of ๐‘’๐‘ฅ)

๐‘’๐‘ฆ(expenditure of y) = ๐‘ƒ๐‘ฆ๐‘ฆ =๐›ฝ

๐›ผ + ๐›ฝ ๐‘š(short of ๐‘’๐‘ฆ)

๐‘ฅโˆ— =๐›ผ

๐›ผ + ๐›ฝ๐‘š๐‘ƒ๐‘ฅ

๐‘ฆโˆ— =๐›ฝ

๐›ผ + ๐›ฝ๐‘š๐‘ƒ๐‘ฆ