26
CFD Application for Added Resistance Computation CFD Application for Added Resistance Computation 2012 International Research Exchange Meeting of Ship and Ocean Engineering (SOE) in Osaka Kyung-Kyu Yang 1 , Jae-Hoon Lee(2) 1 , Bo-Woo Nam 1,2 and Yonghwan Kim 1 1 Seoul National University Department of Naval Architecture & Ocean Engineering 2 Korea Institute of Ocean Science and Technology Ocean Plant Research Division 21 December, 2010 Osaka, Japan

CFD Application for Added Resistance Computation · THINC (VOF) CLSVOF CLSVOF VOF VOF Density Function (QUICK) THINC (VOF) Reference 2008 ONR 2010 I 2007 NSH 2008 ONR 2010 ONR 2008

  • Upload
    others

  • View
    22

  • Download
    0

Embed Size (px)

Citation preview

  • CFD Application for Added Resistance Computation

    CFD Application for Added Resistance Computation

    2012 International Research Exchange Meeting of Ship and Ocean Engineering (SOE) in Osaka

    Kyung-Kyu Yang1, Jae-Hoon Lee(2)1, Bo-Woo Nam1,2 and Yonghwan Kim1

    1Seoul National UniversityDepartment of Naval Architecture & Ocean Engineering

    2Korea Institute of Ocean Science and TechnologyOcean Plant Research Division

    21 December, 2010Osaka, Japan

  • Background

    21Jameson (2008)

    < Airplane Design1 > < Resistance > < Seakeeping >

    Inertia Dominant

    Large-AmplitudeShip Motion withBreaking WaveLocal ImpactWake…

  • State of the Art

    C. Hu et al.

    (Kyushu Univ.)

    D.G.Dommermuthet al.

    (SAIC)

    J. Yang et al.

    (Univ. of Iowa)

    P. Queutey et al.(ECN)

    R. Löhner et al.

    (George Mason Univ.)

    H. Miyata et al.

    (Univ. of Tokyo)

    Y. Kim et al.(SNU)

    Discretization(Convective term)

    CIP 3rd QUICK 3rd QUICK / WENO

    Improved Gamma Galerkin QUICK MC Limiter

    Body Motion

    IBMParticle

    IBMTriangle panel

    IBMTriangle

    panel

    Mesh Deformation ALE

    Overlapping Grid

    IBMTriangle

    panel

    Free Surface

    THINC (VOF) CLSVOF CLSVOF VOF VOF

    Density Function(QUICK)

    THINC (VOF)

    Reference

    2008 ONR2010 IWWWFB

    2007 NSH2008 ONR2010 ONR

    2008 ONR2009 JCP

    2007 Computer & Fluids2010 ONR

    2007 Int. J. Numer. Meth. Fluids2007 NSH

    2003 JMST2005 JMST 2011 IWSH

    Remark LESLESGhost Fluid Method

    RANSCompressive face reconstruction

    RANS

    3

    Moving complex body Highly distorted free-surface High-Reynolds number (turbulence) Multi-scale problem (large aspect ratio) Huge computational cost

  • Numerical Methods

    Fluid Flow SolverFVM + Fractional stepMC limiterCartesian gridFree surface capturing

    (THINC / WLIC)Solid Body TreatmentTriangular surface mesh → Volume fractionLevel-set + Angle weighted pseudo-normal Immersed boundary method

    4

    1.0solid

    1.0air

    1.0water

  • Flow Chart

    5

    - THINC/WLIC2

    - Fractional Step Method

    *

    ** *

    1

    1 **1

    1

    1 **1

    0

    1

    1

    1 1

    nn n

    bn

    nn

    n

    nn

    u u u u n dSt

    u u f dVt

    u u p ndSt

    p ndS u ndSt

    11

    1/2

    0

    1 tanh2

    ii

    i

    ut

    x xF x

    x

    1van Leer (1977); 2Xiao (2005), Yokoi (2007)

    - Monotonized Cetral Limiter1

    1/2 1/2

    1max 0, min 2 , , 22

    / / /i i

    rr r

    r q x q x

  • Flow Chart (cont.)

    6

    Level-set

    H

    (Smoothed Heaviside function)

    ,s tT

    2, ,Q s t s t T P

    , 0,0Q s t Minimum value of Q(s,t) is occurred at…

    Eberly (2008)

  • Example – S175 Containership

    7< Triangular surface mesh (upper) and calculated density function (lower) of S175 containership >

    3

    3 3ˆ 1 bodyu u U

    bodyU3

    ,i ju1,i ju

    , 1i jv

    ,i jv

  • 3 ,i ju1,i ju

    , 1i jv

    ,i jv

    Improvement of Body Representation

    8

    3 3 3 3 3u u v wa b c d

    3u

    3v

    A

    B

    A B

    3 1.0 3 0.95

  • Linear Restoring Coefficients

    9

    33 3, ,

    255 3

    , ,

    3, ,

    calculated target

    target

    % 100

    i ji j k ksurf

    i j ii j k ksurf

    displacement i j ki j k ksurf

    C g x y

    C g x y xc

    V x y z

    C CError

    C

    Grid Index

    Err

    or(%

    )

    0 1 2 3 4 5 6-1

    0

    1

    2

    3

    4

    5

    6

    7

    8

    C33C55Displacement

    Index Nx * Ny * Nz △xmin/L △ymin/L △zmin/L

    1 153*113*107 0.040 0.0060 0.0040

    2 202*117*118 0.030 0.0055 0.0030

    3 264*121*122 0.020 0.0050 0.0020

    4 264*121*131 0.020 0.0050 0.0015

    5 284*121*131 0.018 0.0050 0.0015

  • Incident Wave Simulation

    10

    λ/Δx = 10 λ/Δx = 20 λ/Δx = 40

    A/Δz = 2

    A/Δz = 4

    A/Δz = 8

    A/Δz = 16

    10; 40; 10 ~ 20A xz x z

  • Grid Generation

    11L: ship length, B: ship breadth, T: ship draught, λ: wave length, A: wave amplitude, h: tank depth

    / 40/ 20

    / 10

    xx z

    A z

    1 / 1.04 ~ 1.08i ix x (expansion ratio)

    / 75L x

    20By

    Incident Wave Region

  • Exciting Force and Hydrodynamic Coefficients

    12

    (L/g)1/2A

    33/

    B33

    (L/g

    )1/2 /

    1 2 3 4 5 60

    0.5

    1

    1.5

    2

    2.5

    3

    0

    0.5

    1

    1.5

    2

    2.5

    3

    A33,Exp.(Journee,1992)A33,PresentB33,Exp.(Journee,1992)B33,Present

    /L

    X5

    /k a

    C55

    0 0.5 1 1.5 2 2.50

    0.2

    0.4

    0.6

    0.8

    1

    Exp.(Journee,1992)Present

  • time(sec)

    3/A

    5/k

    A

    5 10 15-1.5

    -1

    -0.5

    0

    0.5

    1

    1.5

    -1.5

    -1

    -0.5

    0

    0.5

    1

    1.5

    HeavePitch

    time(sec)

    Fx,F

    z(N

    )

    My

    (Nm

    )

    5 10 15-60

    -40

    -20

    0

    20

    40

    60

    -60

    -40

    -20

    0

    20

    40

    60

    HeavePitchSurge

    Wigley III Motion

    13

  • /L 5

    L/2A

    0 0.5 1 1.5 2 2.50

    0.5

    1

    1.5

    2

    2.5

    3

    Exp. (Journee, 1992)w/o averagew/ average

    Wigley III Motion (cont.)

    14

    /L

    3/A

    0 0.5 1 1.5 2 2.50

    0.5

    1

    1.5

    2

    2.5

    3

    Exp. (Journee, 1992)w/o averagew/ average

  • S175 Containership

    15

  • /L 5

    /kA

    0 0.5 1 1.5 2 2.50

    0.4

    0.8

    1.2

    1.6

    2

    Exp. (Fonseca, 2004)w/o average, H/=1/40w/ average, H/=1/40

    midfinecoarse

    S175 Containership (cont.)

    16

    /L

    3/A

    0 0.5 1 1.5 2 2.50

    0.4

    0.8

    1.2

    1.6

    2

    Exp. (Fonseca, 2004)w/o average, H/=1/40w/ average, H/=1/40

    midfinecoarse

  • kA 5

    /kA

    0 0.045 0.09 0.135 0.180

    0.4

    0.8

    1.2

    1.6

    Exp.(O'Dea et al.,1992)WISH 2.1(Kim et al.,2008)Present

    Nonlinear Response (λ/L = 1.0)

    17

    kA

    3/A

    0 0.045 0.09 0.135 0.180

    0.4

    0.8

    1.2

    1.6

    Exp.(O'Dea et al.,1992)WISH 2.1(Kim et al.,2008)Present

  • kA

    3/A

    0 0.045 0.09 0.135 0.180

    0.4

    0.8

    1.2

    1.6

    Exp.(O'Dea et al.,1992)WISH 2.1(Kim et al.,2008)Present

    kA 5

    /kA

    0 0.045 0.09 0.135 0.180

    0.4

    0.8

    1.2

    1.6

    Exp.(O'Dea et al.,1992)WISH 2.1(Kim et al.,2008)Present

    Nonlinear Response (λ/L = 1.2)

    18

  • Added Resistance

    19

    Time (sec)

    Fx(N

    )

    5 10 15-2

    0

    2

    4

    6

    8

    10

    12

    Time (sec)

    Fx(N

    )

    5 10 15 20 25 30 350

    1

    2

    3

    4

    5

    6

    R_steady

    R_wave

    R_addedR_wave R_steady

  • time(sec)

    Fx

    30 35 40 45 50 55 60-4E+06

    -2E+06

    0

    2E+06

    4E+06

    6E+06

    8E+06

    1E+07

    CoarseMidFineFine_dyFine_dxFine_dxdz

    Grid Convergence Test (S175)

    20

    Half Body L/∆x B/∆y A/∆z ∆x/∆z Nx Ny Nz Total

    Coarse 37.5 14.5 5.9 10.0 180 55 102 1,009,800

    Mid 50.0 19.4 7.8 10.0 209 59 110 1,356,410

    Fine 75.0 29.0 11.7 10.0 266 64 121 2,059,904

    Fine_dy 75.0 40.0 11.7 10.0 266 76 121 2,446,136

    Fine_dx 100 29.0 11.7 7.5 291 64 121 2,253,504

    Fine_dxdz 100 29.0 16.7 10.7 291 64 170 3,166,080

  • S175 – Fixed vs. Free

    21

    < λ/L = 0.5 >

    < λ/L = 1.0 >

  • Wigley III – Surge Force Signal

    22

    time(sec)

    Fx

    2 4 6 8 10 12 14 16 18-2

    0

    2

    4

    6

    8

    10

    12

    14

    16

    18

    w/o averagew/ averagew/o average (steady)w/ average (steady)

  • Added Resistance (Wigley III)

    23

    /LR

    /gA

    2 B2 /L

    0 0.5 1 1.5 2 2.5

    0

    15

    30

    45

    60

    Exp. (Journee, 1992)w/o averagew/ average

    /L

    R/

    gA2 B

    2 /L

    0 0.5 1 1.5 2 2.5

    0

    15

    30

    45

    60

    Exp. (Journee, 1992)w/o averagew/ average

  • /LR

    /gA

    2 B2 /L

    0 0.5 1 1.5 2 2.5

    0

    5

    10

    15

    20

    Exp. (Fujii, 1975)Exp. (Nakamura, 1977)w/o averageFree Motion

    midfinecoarse

    fine2finemidcoarse

    Added Resistance (S175)

    24

    /L

    R/

    gA2 B

    2 /L

    0 0.5 1 1.5 2 2.5

    0

    5

    10

    15

    20

    Exp. (Fujii, 1975)Exp. (Nakamura, 1977)w/o averageFree MotionFixed

    mid_dxmid_dzmid_dycoarse

  • Conclusions In order to consider a three-dimensional complex body in a

    Cartesian-grid, a level-set-based algorithm was successfullyimplemented.

    Numerical results of wave excitation force, hydrodynamiccoefficients, and ship motion responses show that reasonablepredictions can be obtained by using the newly developed code.

    In order to increase the order of accuracy of body representation,cell face values are taken into account when calculating the volumefraction of a solid body. This small modification affected theprediction of added resistance, especially if a ship has very thinplate-like bow shape.

    The added resistance is more sensitive to the grid spacing than theship motion response and it is found that at least 10 grid pointsshould be used within the wave amplitude while the ratio ∆x to ∆z ismaintained less than 20 in the incident wave region.

    25

  • Q & A

    26