Calculus for Engineers: Chapter 16 - Laplace Transforms - Solutions

  • Upload
    scream

  • View
    225

  • Download
    0

Embed Size (px)

Citation preview

  • 8/10/2019 Calculus for Engineers: Chapter 16 - Laplace Transforms - Solutions

    1/23

  • 8/10/2019 Calculus for Engineers: Chapter 16 - Laplace Transforms - Solutions

    2/23

  • 8/10/2019 Calculus for Engineers: Chapter 16 - Laplace Transforms - Solutions

    3/23

  • 8/10/2019 Calculus for Engineers: Chapter 16 - Laplace Transforms - Solutions

    4/23

  • 8/10/2019 Calculus for Engineers: Chapter 16 - Laplace Transforms - Solutions

    5/23

  • 8/10/2019 Calculus for Engineers: Chapter 16 - Laplace Transforms - Solutions

    6/23

  • 8/10/2019 Calculus for Engineers: Chapter 16 - Laplace Transforms - Solutions

    7/23

  • 8/10/2019 Calculus for Engineers: Chapter 16 - Laplace Transforms - Solutions

    8/23

  • 8/10/2019 Calculus for Engineers: Chapter 16 - Laplace Transforms - Solutions

    9/23

  • 8/10/2019 Calculus for Engineers: Chapter 16 - Laplace Transforms - Solutions

    10/23

  • 8/10/2019 Calculus for Engineers: Chapter 16 - Laplace Transforms - Solutions

    11/23

    EXERCISES 16.3 11

    y(t) =L1

    As+ B

    s2 + 9 +

    1

    (s i)2(s2 + 9)

    =L1

    As+ B

    s2 + 9 i/32

    s

    i

    + 1/8

    (s

    i)2

    +is/32 5/32

    s2 + 9 =L1

    Cs + Ds2 + 9

    i/32s i+

    1/8(s i)2

    = Ccos 3t +

    D3

    sin3t i32

    eti + t8

    eti.

    If we take imaginary parts, we get y(t) =Ccos 3t + Esin 3t 132

    cos t + t

    8sin t.

    36. Assuming that the solution satisfies the conditions of Corollary 16.5.1, we take Laplace transforms ofboth sides of the differential equation and use the initial conditions,

    [s3Y s2(1) + 2] 3[s2Y s(1)] + 3[sY 1] Y = 2(s 1)3 .

    We solve this for the transform Y(s),

    Y(s) =

    s2

    3s + 1

    s3 3s2 + 3s 1+ 2

    (s 1)3(s3 3s2 + 3s 1)=s2

    3s + 1

    (s 1)3 + 2

    (s 1)6 .The inverse transform of this function is the solution of the initial-value problem

    y(t) =L1

    s2 3s + 1(s 1)3 +

    2

    (s 1)6

    = L1

    1

    s 1 1

    (s 1)2 1

    (s 1)3 + 2

    (s 1)6

    =etL1

    1

    s 1

    s2 1

    s3+

    2

    s6

    = et

    1 t t

    2

    2 +

    t5

    60

    .

    38. The initial-value problem is

    1

    5

    d2x

    dt2 + 10x= 0 = x+ 50x= 0, x(0) = 0.03, x(0) = 0.

    Assuming that the solution satisfies the conditions of Corollary 16.5.1, we take Laplace transforms ofboth sides of the differential equation and use the initial conditions,

    [s2X+ 0.03s] + 50X= 0.

    We solve this for the transform X(s),

    X(s) = 0.03ss2 + 50

    .

    The inverse transform of this function is the solution of the initial-value problem

    x(t) = L1 0.03s

    s2 + 50

    =0.03cos5

    2t m.

    40. The initial-value problem is

    1

    5

    d2x

    dt2 +

    3

    2

    dx

    dt + 10x= 4sin10t = 2x+ 15x+ 100x= 40sin10t, x(0) = 0, x(0) = 0.

    Assuming that the solution satisfies the conditions of Corollary 16.5.1, we take Laplace transforms ofboth sides of the differential equation and use the initial conditions,

    2[s2X] + 15[sX] + 100X= 400

    s2 + 100.

    We solve this for the transform X(s),

  • 8/10/2019 Calculus for Engineers: Chapter 16 - Laplace Transforms - Solutions

    12/23

  • 8/10/2019 Calculus for Engineers: Chapter 16 - Laplace Transforms - Solutions

    13/23

  • 8/10/2019 Calculus for Engineers: Chapter 16 - Laplace Transforms - Solutions

    14/23

    14 EXERCISES 16.4

    The inverse transform of this function is the solution of the initial-value problem

    y(t) =L1

    s + 6

    (s+ 1)(s + 3)+

    1 + es

    (s2 + 1)(s + 1)(s+ 3)

    =L1

    5/2

    s+ 1 3/2

    s + 3+

    1/4

    s + 1 1/20

    s+ 3+s/5 + 1/10

    s2 + 1

    (1 + es)

    =52

    et 32

    e3t + 120

    5et e3t 4cos t+ 2 sin t

    + 1

    20

    5e(t) e3(t) 4cos(t ) + 2 sin (t )

    h(t )

    =11

    4et 31

    20e3t 1

    5cos t +

    1

    10sin t +

    1

    20

    5et e3(t) + 4 cos t 2sin t

    h(t ).

    8. When we take Laplace transforms of both sides of the differential equation and use the initial conditions,

    [s2Y] + 2[sY] + 5Y = L{4[h(t) h(t 1)] 4[h(t 1) h(t 2)]}= L{4 8h(t 1) + 4h(t 2)}=

    4

    s 8e

    s

    s +

    4e2s

    s .

    We solve this for the transform Y(s),

    Y(s) = 4

    s(s2 + 2s + 5)(1 2es + e2s).

    The inverse transform of this function is the solution of the initial-value problem

    y(t) = L1

    4

    s(s2 + 2s + 5)(1 2es + e2s)

    = 4L1

    1/5

    s s/5 + 2/5

    s2 + 2s + 5

    (1 2es + e2s)

    =4

    5L1

    1

    s (s+ 1) + 1

    (s + 1)2 + 4

    (1 2es + e2s)

    =4

    5

    1 et

    cos2t +

    1

    2sin 2t

    8

    5

    1 e(t1)

    cos2(t 1) +1

    2sin 2(t 1)

    h(t 1)

    +

    4

    5

    1 e(t

    2)

    cos2(t 2) +1

    2sin2(t 2)h(t 2)=

    2

    5

    2 et (2cos2t + sin 2t) +4

    5

    2 + e1t [2cos2(t 1) + sin 2(t 1)]h(t 1)+

    2

    5

    2 e2t [2cos2(t 2) + sin 2(t 2)]h(t 2).

    10. When we take Laplace transforms of both sides of the differential equation and use the initial conditions,

    [s2Y s(2)] + 16Y = 11 e2sL{t[h(t) h(t 1)] + (2 t)[h(t 1) h(t 2)]}

    = 1

    1 e2sL{t + (2 2t)h(t 1) + (t 2)h(t 2)}

    = 1

    1 e2s 1

    s2+ es

    L{2

    2(t+ 1)}

    + e2s

    L{t}

    = 1

    1 e2s

    1

    s2 2e

    s

    s2 +

    e2s

    s2

    =

    (1 es)2s2(1 es)(1 + es) =

    1 ess2(1 + es)

    .

    We solve this for the transform Y(s),

    Y(s) = 2s

    s2 + 16+

    1 ess2(s2 + 16)(1 + es)

    .

    The inverse transform of this function is the solution of the initial-value problem

  • 8/10/2019 Calculus for Engineers: Chapter 16 - Laplace Transforms - Solutions

    15/23

    EXERCISES 16.4 15

    y(t) =L1

    2s

    s2 + 16+

    1 ess2(s2 + 16)(1 + es)

    =L1 2s

    s2 + 16+

    1/16

    s2 1/16

    s2 + 16 (1 es)

    n=0

    (1)nens=L1

    2s

    s2 + 16+

    1

    16

    1

    s2 1

    s2 + 16

    n=0

    (1)nens +n=0

    (1)n+1e(n+1)s

    = 2cos 4t + 1

    16

    n=0

    (1)n

    (t n) 14

    sin 4(t n)

    h(t n)

    + 1

    16

    n=0

    (1)n+1

    (t n 1) 14

    sin 4(t n 1)

    h(t n 1)

    = 2cos 4t + 1

    64

    n=0

    (1)n [4(t n) sin4(t n)] h(t n)

    +

    1

    64

    n=0

    (1)n+1

    [4(t n 1) sin4(t n 1)] h(t n 1).

    12. The initial-value problem for displacement of the mass from its equilibrium position is

    1

    10

    d2x

    dt2 + 40x= 100h(t 4), x(0) = 1

    10, x(0) =2.

    We write the differential equation in the form

    d2x

    dt2+ 400x= 1000h(t 4),

    and take Laplace transforms,

    s2

    X s

    10+ 2

    + 400X=

    1000e4s

    s .

    We solve this for the transform X(s),

    X(s) =s/10 2s2 + 400

    + 1000e4s

    s(s2 + 400).

    The inverse transform of this function is the solution of the initial-value problem

    x(t) =L1

    s/10 2s2 + 400

    + 1000e4s

    s(s2 + 400)

    =L1

    s/10 2s2 + 400

    +5

    2

    1

    s s

    s2 + 400

    e4s

    =

    1

    10cos20t 1

    10sin20t +

    5

    2 [1 cos20(t 4)]h(t 4) m.14. The initial-value problem for displacement of the mass from its equilibrium position is

    1

    10

    d2x

    dt2 + 5

    dx

    dt + 40x= 100h(t 4), x(0) = 1

    10, x(0) =2.

    We write the differential equation in the form

    d2x

    dt2 + 50

    dx

    dt+ 400x= 1000h(t 4),

  • 8/10/2019 Calculus for Engineers: Chapter 16 - Laplace Transforms - Solutions

    16/23

  • 8/10/2019 Calculus for Engineers: Chapter 16 - Laplace Transforms - Solutions

    17/23

    EXERCISES 16.4 17

    18. The initial-value problem for displacement of the mass from its equilibrium position is

    2d2x

    dt2 + 80

    dx

    dt+ 512x= (t), x(0) = 0, x(0) = 0.

    When we take Laplace transforms,

    2[s2X] + 80[sX] + 512X= 1.

    We solve this for the transform X(s),

    X(s) = 1

    2s2 + 80s + 512=

    1

    2(s2 + 40s + 256).

    The inverse transform of this function is the solution of the initial-value problem

    x(t) =L1

    1

    2(s2 + 40s + 256)

    =

    1

    2L1

    1

    (s + 20)2 144

    =e20t

    2 L1

    1

    s2 144

    =e20t

    2 L1

    1/24s + 12

    + 1/24

    s 12

    =

    e20t

    48e12t + e12t=

    1

    48

    e8t

    e32t

    m.

    20. The initial-value problem for displacement of the mass from its equilibrium position is

    2d2x

    dt2+ 512x=(t t0), x(0) =x0, x(0) = 0.

    When we take Laplace transforms,

    2[s2X x0s] + 512X= et0s.We solve this for the transform X(s),

    X(s) = 2x0s

    2s2 + 512+

    et0s

    2s2 + 512=

    x0s

    s2 + 256+

    et0s

    2(s2 + 256).

    The inverse transform of this function is the solution of the initial-value problem

    x(t) =L1

    x0s

    s2 + 256+

    et0s

    2(s2 + 256)

    = x0cos 16t +

    1

    32sin 16(t t0) h(t t0) m.

    22. The initial-value problem for displacement of the mass from its equilibrium position is

    2d2x

    dt2+ 512x=(t t0), x(0) =x0, x(0) =v0.

    When we take Laplace transforms,

    2[s2Xx0s v0] + 512X= et0s.

    We solve this for the transform X(s),

    X(s) =2x0s + 2v0

    2s2 + 512 +

    et0s

    2s2 + 512=

    x0s+ v0s2 + 256

    + et0s

    2(s2 + 256).

    The inverse transform of this function is the solution of the initial-value problem

    x(t) = L1

    x0s+ v0s2 + 256

    + et0s

    2(s2 + 256)

    = x0cos 16t +

    v016

    sin16t + 1

    32sin16(t t0) h(t t0) m.

    24. The initial-value problem for displacement of the mass from its equilibrium position is

  • 8/10/2019 Calculus for Engineers: Chapter 16 - Laplace Transforms - Solutions

    18/23

    18 EXERCISES 16.4

    d2x

    dt2+ 100x=

    n=0

    (t n), x(0) = 0, x(0) = 0.

    When we take Laplace transforms,

    [s2X] + 100X=

    n=0

    ens.

    We solve this for the transform X(s),

    X(s) =

    n=0

    ens

    s2 + 100.

    The inverse transform of this function is the solution of the initial-value problem

    x(t) =L1n=0

    ens

    s2 + 100

    =

    1

    10

    n=0

    sin10(t n) h(t n) m.

  • 8/10/2019 Calculus for Engineers: Chapter 16 - Laplace Transforms - Solutions

    19/23

  • 8/10/2019 Calculus for Engineers: Chapter 16 - Laplace Transforms - Solutions

    20/23

  • 8/10/2019 Calculus for Engineers: Chapter 16 - Laplace Transforms - Solutions

    21/23

    EXERCISES 16.5 21

    Heaviside function have continuous derivatives of all orders. Consider then, the Heaviside term, less theleading constant, f(x) = (x L/3)3h(x L/3). Clearly,

    limxL/3+

    f(x) = limxL/3

    f(x).

    Sincef(x) = 3(x L/3)2h(x L/3) andf(x) = 6(x L/3)h(x L/3), we also see thatlim

    xL/3+ f(x) = lim

    xL/3 f(x) and lim

    xL/3+ f(x) = lim

    xL/3 f(x).

    On the other hand, since f(x) = 6h(x L/3),lim

    xL/3+f(x) = 6 and lim

    xL/3f(x) = 0.

    8. The boundary-value problem for deflections of the beam is

    d4y

    dx4 =P

    EI(x L/2), y(0) =y(0) = 0, y(L) = y(L) = 0.

    If we set y (0) =A and y (0) =B, and take Laplace transforms, we obtain

    s4Y

    As

    B=

    P

    EIeLs/2.

    We solve this for the transform Y(s),

    Y(s) = A

    s3+

    B

    s4 P e

    Ls/2

    EI s4 .

    The inverse transform of this function is the solution of the initial-value problem

    y(x) =Ax2

    2 +

    B x3

    6 P

    6EI(x L/2)3h(x L/2).

    The boundary conditions atx = L require

    0 = y(L) =A+ BL PEI

    L

    2 , 0 = y(L) =B P

    EI.

    The solution of these equations is A = P L2EI

    andB = P

    EI.

    Thus,

    y(x) =P Lx2

    4EI +

    P x3

    6EI P

    6EI(x L/2)3h(x L/2).

    10. The boundary-value problem for deflections of the beam is

    d4y

    dx4 =P

    EI(x L/2), y(0) =y(0) = 0, y(L) =y(L) = 0.

    If we set y (0) =A and y (0) =B, and take Laplace transforms, we obtain

    s4

    Y As2

    B = P

    EIeLs/2

    .

    We solve this for the transform Y(s),

    Y(s) = A

    s2+

    B

    s4 P e

    Ls/2

    EI s4 .

    The inverse transform of this function is the solution of the initial-value problem

    y(x) =Ax+B x3

    6 P

    6EI(x L/2)3h(x L/2).

  • 8/10/2019 Calculus for Engineers: Chapter 16 - Laplace Transforms - Solutions

    22/23

    22 EXERCISES 16.5

    The boundary conditions atx = L require

    0 = y(L) = AL +B L3

    6 P

    6EI

    L

    2

    3, 0 =y(L) =BL P

    EI

    L

    2

    .

    The solution of these equations is A = P L2

    16EI and B =

    P

    2EI.

    Thus,

    y(x) =P L2x

    16EI +

    P x3

    12EI P

    6EI(x L/2)3h(x L/2).

    12. In this situation, the beam will rotate until it is vertical, hanging from the pin atx = 0. The boundary-value problem for deflections of the beam is

    d4y

    dx4 = mg

    EI L[h(x) h(x L)], y(0) =y (0) = 0, y(L) =y(L) = 0.

    If we set y (0) =A and y (0) =B, and take Laplace transforms, we obtain

    s4Y As2 B=mgEI L

    1

    s e

    Ls

    s = mg

    EI L 1 eLs

    s .We solve this for the transform Y(s),

    Y(s) = A

    s2+

    B

    s4 mg

    EI L

    1 eLs

    s5

    .

    The inverse transform of this function is the solution of the initial-value problem

    y(x) =Ax+B x3

    6 mgx

    4

    24EI L+

    mg (x L)424EI L

    h(x L).

    Since the last term contributes nothing to the solution, we drop it from further consideration. Theboundary conditions at x = L require

    0 = y(L) =BL

    mgL

    2EI

    , 0 = y(L) =B

    mg

    EI

    .

    These equations give conflicting values for B. Hence, the boundary-value problem does not give thephysical solution.

    14. The boundary-value problem for deflections of the beam is

    d4y

    dx4 = mg

    EI L[h(x) h(x L)], y(0) =y(0) = 0, y(L) =y(L) = 0.

    If we set y (0) =A and y (0) =B, and take Laplace transforms, we obtain

    s4Y As2 B=mgEI L

    1

    s e

    Ls

    s

    = mg

    EI L

    1 eLs

    s

    .

    We solve this for the transform Y(s),

    Y(s) = A

    s2+

    B

    s4 mg

    EI L

    1 eLs

    s5

    .

    The inverse transform of this function is the solution of the initial-value problem

    y(x) =Ax+B x3

    6 mgx

    4

    24EI L+

    mg (x L)424EI L

    h(x L).

    Since the last term contributes nothing to the solution, we drop it from further consideration. Theboundary conditions at x = L require

  • 8/10/2019 Calculus for Engineers: Chapter 16 - Laplace Transforms - Solutions

    23/23

    EXERCISES 16.5 23

    0 = y(L) =AL+B L3

    6 mgL

    3

    24EI, 0 = y(L) =BLmg L

    2EI.

    The solution of these equations is A = mgL2

    24EI andB =

    mg

    2EI. Thus,

    y(x) =

    mgL2x

    24EI

    +mgx3

    12EI mgx4

    24EI L

    =

    mg

    24EI L

    (x4

    2Lx3 +L3x).

    Maximum deflection occurs at x = L/2,

    y(L/2) = mg24EI L

    L

    2

    4 2L

    L

    2

    3+ L3

    L

    2

    =5mgL

    3

    384EI.

    For this to be less than L/100,

    5mgL3

    384EI