BM College Ppt

Embed Size (px)

Citation preview

  • 8/2/2019 BM College Ppt

    1/30

    Click to edit Master subtitle style

    5/8/12

    AnExtension

    of SIRS

    Model

  • 8/2/2019 BM College Ppt

    2/30

    Model

    Click to edit Master subtitle style

    5/8/12

    Gajendra UjjainkarB. Singh

    V. K. GuptaR. Khandelwal &

    Neetu Trivedi

  • 8/2/2019 BM College Ppt

    3/30

    Click to edit Master subtitle style

    5/8/12

    Abstract

  • 8/2/2019 BM College Ppt

    4/30

    Click to edit Master subtitle style

    5/8/12

    Pathak et.al. [11] discussedrich dynamics of an SIRS modelwith an asymptotichomogeneous transmission

    function. We have extendedthis model for a more realisticsituation. Stability criteria for

    disease free as well as endemicsituation are also discussed.Numerical simulations are alsoerformed for critical

  • 8/2/2019 BM College Ppt

    5/30

    Click to edit Master subtitle style

    5/8/12

    Introduc

    tion

  • 8/2/2019 BM College Ppt

    6/30

    Click to edit Master subtitle style

    5/8/12

    History of mathematical epidemiology and basics ofSIR epidemic models may be found in Bailey [8],Murray [6], and Anderson and May [10]. The study of

    the disease transmission in epidemiology is mainlyconcern with the rate of the transmission of thedisease and the stability. The rate of transmission orthe incidence rate has been widely used and studiedin many different kinds of models. Rate of incidence

    is the rate at which the susceptible populationbecomes infectious. It is always possible that afterbeing infected, only a part of that population isinfectious and responsible for the spread of further

    infection. The model we are studying here is the SIRSepidemic model. The transmission functionconsidered by Diekmann and Kretzschmar [9], andZegeling and Kooij [1] has been generalized in Pathaket al. [11]. We have considered the same saturation

    effect with a reduction in infectious part. Numerical

  • 8/2/2019 BM College Ppt

    7/30

    Click to edit Master subtitle style

    5/8/12

    The MathematicalModel

  • 8/2/2019 BM College Ppt

    8/30

    Click to edit Master subtitle style

    5/8/12

    th ep ro p o s e d m o d e li sd S k S I

    b d S Rd t 1 S I

    = + + +

    (1)

    d I k S I( d ) I

    d t 1 S I

    = +

    + +

    (2)

    d RI (d ) R

    d t= + (3)

  • 8/2/2019 BM College Ppt

    9/30

    Click to edit Master subtitle style

    5/8/12

    Equilibrium

    pointsand

    stability

  • 8/2/2019 BM College Ppt

    10/30

    Click to edit Master subtitle style

    5/8/12

    k S Ib d S R 0

    1 S I + =

    + + (4)

    k S I( d ) I 0

    1 S I

    + =

    + + (5)

    I ( d ) R 0 + = (6)

  • 8/2/2019 BM College Ppt

    11/30

    5/8/12

    By equation (6) we have IR(d )

    =+

    and by (5)

    kS(d )

    (1 S I)

    = +

    + +

    or

    (d )(1 I)S

    [ k (d )]

    + + =

    + ,

    Adding (5) and (6) we get

    (d )b dS I R 0+ + =

  • 8/2/2019 BM College Ppt

    12/30

    5/8/12

    P u t th e v a l u e s o f S a n d R i n ( 4 )t o g e t

    ( d )(1 I ) ( d ) Ib d I 0[ k ( d )] ( d )

    + + + + = + +

    A f te r si m p l i fi c a ti o n w e ge t ,

    [ b k ( d )( b d )]I

    d (d )( d ) { k ( d )} {d ( d ) (1 )}

    + +=

    + + + + + + +

    D e f in e t h e b a s ic re p r o d u c t io n n u m b e r a s

    0

    b k b (d )R

    d ( d )

    + =

    +

  • 8/2/2019 BM College Ppt

    13/30

    5/8/12

    T h e o r e m 1 .(i)if R0 1, then there is no po si t ive eq ui l ibrium ;

    (ii)if R0 > 1, then the re is a u niqu e p osi t ive eq ui l ibriumE*(S* , I*, R*) o f th e sy st em

    which is theendemic equi l ibr iumgiven by

    .

    (d )(1 I*)S*

    [ k (d )]

    + + =

    +

    [ b k (d )(b d )]I*d (d )(d ) { k (d )}{d (d ) (1 )}

    + += + + + + + + +

    A n d

    I *R *

    (d )

    =

    +

  • 8/2/2019 BM College Ppt

    14/30

    5/8/12

    N o w to c h e c k th e s ta b il i ty o f th e e q u il ib r iu m p in ts we f ind theJ a c o b i a n m a t rix

    2 2

    2 2

    (1 I ) k I (1 S ) k Sd

    (1 S I ) (1 S I )

    (1 I ) k I (1 S ) k SJ (d ) 0

    (1 S I ) (1 S I )

    0 ( d )

    + + + + + + + + = +

    + + + + +

    .

  • 8/2/2019 BM College Ppt

    15/30

    5/8/12

    A t the disease free equilibrium point, the jacobian is

    0

    k b / dd

    (1 b / d )

    k b / dJ 0 (d ) 0

    (1 b / d )

    0 (d )

    +

    = + +

    +

    H ence the point (b/d,0, 0) is stableif

    k b / d(d )

    (1 b / d )

    +

    +

  • 8/2/2019 BM College Ppt

    16/30

    5/8/12

    Now the jacobian at the endemic point E*(S*, I*, R*) is

    2 2

    2 2

    (1 I*)kI* (1 S*)kS*d

    (1 S* I*) (1 S* I*)

    (1 I*) kI* (1 S*) kS*J* (d ) 0

    (1 S* I*) (1 S* I*)

    0 (d )

    + + + + + + + +

    = + + + + +

    +

  • 8/2/2019 BM College Ppt

    17/30

    5/8/12

    W e n o t e th a t loo k i n g t o th e v a l u e o f th e t r a c e a n d d e t e r m i n a n t o f th e j a c o b i a n, t h e f o l lo w i n gc a s e s

    a r e o b t a in e d :

    1 . If th e T r a c e ( J * ) < 0 a n d D e t (J* ) > 0 , t h e n t h e p o i n t is a s t a b l e n o d e o r a s t a b l e s p i ra l .

    2 . If th e T r a c e (J* ) > 0 a n d D e t (J* ) > 0 , th e n t h e p o i n t is a n u n st a b le n o d e o r u n s t a b l e s p i ra l .

    3 . I f t h e D e t (J* ) < 0 , th e n t h e p o i n t is a s a d d l e p o i n t.

    4 . I f t h e T r a c e(J* ) = 0 , th en the re a r e s om e l im i t cyc le s .

    T h u sw iths u i ta b l e v a l u e so f th e p a r a m e t e rs w h e r e w e g e t e q u i li b r iu m p o i n t , t h e v a l u e

    d e t e r m i n an t g i v e t h e i d e a o f t h e s t a b i li ty c o n d i t io n s .

  • 8/2/2019 BM College Ppt

    18/30

    5/8/12

    Numericals

  • 8/2/2019 BM College Ppt

    19/30

    5/8/12

    Consider the following values:

    d 2.29, 3.1, 4.7, b 3.1, 1.5, k 9, 0.19= = = = = = =

    Here we note that for the values of from 0.1 to 0.854, we get negativevalue of R0. From =0.855

    to 1 we have R0 < 1. In this case there exists no positive equilibrium point.Though the values ofI

    and R (at = 1) given in [11] are considered to be zero, as they are near to zero,and the point is

    considered as a disease free equilibrium point. We tabulatehere the exact values.

  • 8/2/2019 BM College Ppt

    20/30

    5/8/12

    R0 S I R

    0.86 0.028384279 1.60586789 -0.20560182 -0.01030722

    0.88 0.126637555 1.57110796 -0.18149476 -0.00909868

    0.9 0.22489083 1.53907197 -0.15836499 -0.00793914

    0.92 0.323144105 1.5094536 -0.13610188 -0.00682305

    0.94 0.42139738 1.48199077 -0.11461077 -0.00574566

    0.96 0.519650655 1.45645797 -0.09381023 -0.00470289

    0.98 0.61790393 1.4326601 -0.07362978 -0.0036912

    1 0.716157205 1.41042749 -0.05400816 -0.00270753

  • 8/2/2019 BM College Ppt

    21/30

    5/8/12

    N o w w e t a k e t h e v a l u e s o f p a r a m e t e r s a s f o l l o w s :

    d 0 . 2 9 , 3 . 1 , 4 . 7 , b 3 .1, 1 .5 , k 6 . 5 , 0 . 1 9= = = = = =

    T h e v a lu e o f r a n g e s f ro m 0 . 1 t o 1 . 0. At 0 . 1 a n d0 .2 w eg e t R 0 < 1 a n dd o n o t g e t p o s

    e q u i l i b r i u m p o i n t. We t a b u l a te h e r e t h e e q u i l i b r iu m p o i n t s w i t h = 0 . 3 t o1 .0

  • 8/2/2019 BM College Ppt

    22/30

    5/8/12

    R0 S I R

    0.3 10.2887931 5.82262600 0.979633517 0.103983446

    0.4 24.76436782 4.136243065

    1.826020518 0.193823407

    0.5 39.23994253 3.57249213 2.577451746 0.273584264

    0.6 53.71551724 3.31900805 3.335747969 0.354073807

    0.7 68.19109195 3.19732076 4.126860015 0.438046594

    0.8 82.66666667 3.14578340 4.963274822 0.526828054

    0.9 97.14224138 3.13769135 5.853993656 0.621373628

    1 111.6178161 3.1598476 6.807250221 0.722557286

  • 8/2/2019 BM College Ppt

    23/30

    5/8/12

    W ith = 0 .3d 0 .2 9 , 3 .1, 4 .7 , b 3 .1, 1 .5 , k 6 .5 , 0 .1 9= = = = = =,

    A s g iv e n ta b le s h o w s , w e g e t e q u i l ib r iu m p o i n t

    (5 .8 2 2 6 2 6 0 0 5 , 0 .9 7 9 6 3 3 5 1 7 , 0 .1 0 3 9 8 3 4 4 6)

    w h i c h i s s ta b l e a s s e e n i n th e f o l lo w in g g r a p h

  • 8/2/2019 BM College Ppt

    24/30

    5/8/12

  • 8/2/2019 BM College Ppt

    25/30

    5/8/12

    CONCLUS

    ION

  • 8/2/2019 BM College Ppt

    26/30

    5/8/12

    T h e a n a l y s i s o f t h e m o d e l s t u d i e s m o r e c l o s e l y t h e e f

    p r o v i d e s t h e g e n e r a l i z a t i o n o f t h e m o d e l g i v e n i n [1 1] i n S I RS c o m p a r t m e n t s a n d t h e

    r e s u l t g i v e n i n [1 1] c a n e a s i l y b e v e r i f i e d a s a p e r t i c a l a r c a s e t a k i n

  • 8/2/2019 BM College Ppt

    27/30

    5/8/12

    REFEREN

    CES

  • 8/2/2019 BM College Ppt

    28/30

    5/8/12

    1. A. Zegeling, R.E. Kooij, Uniqueness of limit cycles in models for micro parasitic and

    Macro parasitic diseases,J. Math. Biol., 36, (1998). 407417,

    2. F. Brauer, Some Simple Epidemic Models, Mathematical biology and engineering3(1)

    (2006), 1-15.

    3. H.W. Hethcote and P. Van Den Driessche: Some Epidemiological Models with Non-linear

    Incidence. J. math. Boil. 29, (1991) 271-287.

    4 H.W Hethcote.,A Thousand and one Epidemic Models, in SA.Levin, Frontiers in Mathematical

    Biology, Lecture Note in Mathematical Biology, vol.10, Springer, Berlin, (1994), 504-515

    5. H.Thieme,Mathematics in Population Biology. Princeton University Press, Princeton, (2003).

    6. J.D. Murray,Mathematical Biology, Springer-Verlag, New York, 1993.

    7. Kar T. K., Batabyal Ashim, and Agrawal R. P.: Modeling and analysis of an epidemic modelwith classical Kermack-Mcendrick incidence rate under Treatment, J. KSIAM, Vol.14, No.1,

    (2010), 16.

    8. N.T.J. Bailey, The Mathematical theory of Infectious Diseases, Griffin, London, (1975)

  • 8/2/2019 BM College Ppt

    29/30

    5/8/12

    9. O. Diekmann, M. Kretszscmar,Patterns in the effects of infectious disease on population

    growth, J. Math. Bio, 29( 1991) 539-570

    10. R.M. Anderson and R.M. May,Infectious Diseases of Humans, Dynamics and control,

    Oxford University, Oxford,(1991)

    11. S. Pathak, A. Maiti and G.P. Samanta,Rich dynamics of an SIR epidemic model,Nonlinear

    Analysis: modeling and Control,(2010), vol 15, No. 1 71-81

    12. S. Ruan and W. Wang :Dynamical Behavior of an Epidemic Model with

    Nonlinear Incidence Rate. J. Differential equations, 188, (2003) 135-163.

    13. V. Capasso and G. Serio :A Generalization of the Kermack-Mckendrick Deterministic

    Epidemic model, Math. Biosci.42 (1978), 43-61.

    14. W. M. Liu, H. W. Hethcote and S. Levin :A. Dynamical Behavior of

    Epidemiological Models with Nonlinear Incidence Rates. J. Math. Biol., 25, , (1987), 359-380.

    15. W. M. Liu, S. A. Levinand Y. Iwasa :Influence of Nonlinear Incidence Rates upon the

    Behavior of SIRS Epidemiological Models. J. Math. Biol.(1986) 187-204.

  • 8/2/2019 BM College Ppt

    30/30

    5/8/12

    THANKS