Author
phungbao
View
216
Download
1
Embed Size (px)
Bloch, Landau, and Dirac : Hofstadter’s Butterfly in Graphene Philip Kim, Department of Physics, Columbia University
Fractional & Integer Quantum Hall effect in graphene: electron correlation
Dean et al, Nature Phys (2011)
Heteroepitaxy of Layered Materials: Andreev reflection between NbSe2 and graphene
B (
T)
0
2
Vsd (mV) 0 1 -1
dI/dV(μS)
Efetov et al (2013)
graphene
NbSe2
Graphene Materials and Applications
Large-Scale CVD Graphene
+ Graphene
Nanoplatelet Composites
Composites
Cars, Aerospace Appliations
Semi-conductors
Ultrafast Transistors, RFIC,
Photo/Bio/Gas Sensors
Transparent Electrodes Flexible/Transparent
Electrodes/Touch Panels
Printable Inks Conductive Ink,
EMI shields
Energy Electrodes
Super Cap./Solar Cells Secondary Batteries
Fuel Cells
Heat Dissipation
LED Lights, BLU ECU, PC …
Gas Barriers
Gas barriers fo Displays, Solar Cells
Images: Royal Swedish Academy Courtesy: B. H. Hong
Will graphene appear in market soon?
hBN samples: T. Taniguchi & K. Watanabe (NIMS)
Theory: P. Moon & M. Koshino (Tohoku)
Prof. Jim Hone
Prof. Ken Shepard
Dr. Cory Dean Lei Wang Patrick Maher Fereshte Ghahari Carlos Forsythe
Bloch, Landau, and Dirac : Hofstadter’s Butterfly in Graphene
k
e
k
e
n(E)
Bloch Waves: Periodic Structure & Band Filling
Felix Bloch
Periodic Lattice
a
A0 : unit cell volume eF
Zeitschrift für Physik, 52, 555 (1929)
Block Waves: Band Filling factor
MacDonald (1983)
Landau Levels: Quantization of Cyclotron Orbits
Lev Landau
Zeitschrift für Physik, 64, 629 (1930)
Free electron under magnetic field
Each Landau orbit contains magnetic flux quanta
Energy and orbit are quantized:
Massively degenerated energy level
2-D
Density o
f Sta
tes
e
2-dimensional electron systems
Landau level filling fraction:
eF
Harper’s Equation: Competition of Two Length Scales
Proc. Phys. Soc. Lond. A 68 879 (1955)
a
Tight binding on 2D Square lattice with magnetic field
Harper’s Equation
Two competing length scales:
a : lattice periodicity
lB : magnetic periodicity
Commensuration / Incommensuration of Two Length Scales
Spirograph
lB a
a / lB = p/q
Hofstadter’s Butterfly
When b=p/q, where p, q are coprimes, each LL splits into q sub-bands that are p-fold degenerate
Energy bands develop fractal structure when magnetic length is of order the periodic unit cell
Harper’s Equation
energy (in unit of band width)
f (
in u
nit
of f
0)
0 1
1
Energy Gaps in the Butterfly: Wannier Diagram
0 1
1
e /W
n0: # of state per unit cell
f : magnetic flux in unit cell
n : electron density
1/2 1/3 1/4
1/2 1/3 1/4 1/5
Hofstadter’s Energy Spectrum Tracing Gaps in f and n
0 1
1
Wannier, Phys. Status Solidi. 88, 757 (1978)
Diophantine equation for gaps
t : slope, s : offset
Streda Formula and TKNN Integers
What is the physical meaning of the integers s and t ? Band Filling factor
Quantum Hall Conductance
0 1
1
e /W
Experimental Challenges
0 20 40 60 80 100 120 140 1600.1
1
10
100
1000
10000
Bo (
Tesla
)
unit cell (nm)
Obvious technical challenge:
a = 1nm
Disorder, temperature
Hofstadter (1976)
Experimental Search For Butterfly
-Schlosser et al, Semicond. Sci. Technol. (1996) Albrecht et al, PRL. (2001);
Geisler et al, PRL (2004)
• Unit cell limited to ~100 nm • limited field and density range accessible, weak perturbation • Do not observe ‘fully quantized’ mingaps in fractal spectrum
Electrons in Graphene: Effective Dirac Fermions
K K’
kx
ky
E
DiVincenzo and Mele, PRB (1984); Semenov, PRL (1984)
Effective Dirac Equations
kvvH FFeff
0
0
yx
yx
ikk
ikk
Graphene, ultimate 2-d conducting system
Band structure of graphene
Paul Dirac
Graphene: Under Magnetic Fields
N = 1
N = 2
N = 3
N = -3
N = 0
N = -1
N = -2
Energ
y
DOS kx' ky'
E
Quantization Condition
Energ
y (
eV)
B (T)
0 10 20
0
-0.1
-0.2
0.1
0.2
Novoselov et al (2005)
Zhang et al (2005)
Quantum Hall Effect
Bilayer Graphene
Low energy approximation in 1st BZ Bernal stacked bilayer graphene
Guinea, Neto, & Peres, Phys. Rev. B 73, 245426 (2006)
McCann, Phys. Rev. B 74, 161403 (2006)
Novoselov et al.,Nature Physics (2006)
Energ
y (
eV)
B (T)
0 10 20
0
-0.1
-0.2
0.1
0.2
Hofstadter’s Butterfly in Twisted Graphene
-Moon and Koshino, PRB (2012); See also Bistrizer and MacDonald (2011)
Moiré wavelength is determined by angle between the graphene layers
Moire Pattern in Twisted Graphene Layers
STM observation
of Moire pattern
Twisting angle
~1.16,
a = 7.7 nm
Hexa Boron Nitride: Polymorphic Graphene
Boron Nitride graphene
Band Gap Dielectric Constant Optical Phonon Energy Structure
BN 5.5 eV ~4 >150 meV Layered crystal
SiO2 8.9 eV 3.9 59 meV Amorphous
Comparison of h-BN and SiO2
a0 = 0.250 nm a0 = 0.246 nm
Stacking graphene on hBN
Mobility > 100,000 cm2V-1s-1
Dean et al. Nature Nano (2009)
• Co-lamination techniques • Submicron size precision • Atomically smooth interface
Polymer coating/cleaving/peeling
Micro-manipulated Deposition
Remove polymer Anealing
Moire pattern in Graphene on hBN:
a new route to Hofstadter’s butterfly?
Xue et al, Nature Mater (2011);
Decker et al Nano Lett (2011)
Graphene on BN exhibits clear Moiré pattern
q=5.7o q=2.0o q=0.56o
9.0 nm
13.4 nm
Minigap formation near the Dirac point due to Moire superlattice
0 60 20 40 -20 -40 -60
1
2
3
0
Vg (V)
r (
kW
)
Typical Bilayer Graphene
-40 -30 -20 -10 0 10 20 30 400
2
4
6
8
10
12
r
Vgate (Volts)
r (
kW
)
T = 300 mK
Some Bilayer Graphene on hBN
1 mm
Bilayer graphene on BN substrates shows strong signature of satellite peaks…some times… (~ 30%)
Vg
Abnormal Landau Fan Diagram in Bilayer on hBN
Special Samples with Large Moire Unit Cell
VG (Volts)
B (
Tes
la)
Rxx (kW)
Vxx
I
|Rxy| (kW)
B (
Tes
la)
VG (Volts)
I
Vxy
T=300 mK T=300 mK 1.7 K 1.7 K
Low Magnetic field regime
How to “Read” Normal Landau Fan Diagram?
Landau Fan Diagram for “typical” graphene
0
5
10
0 -1 -2 1 n (cm-2)
B (
T)
0
5
Rxx (kW) Rxx
0
1 Rxx (kW)
0
5
10
0 -1 -2 1 n (cm-2)
B (
T)
0
15
|Rxy| (kW) | Rxy |
-2 n =-6 n =2 -3 -4 -5
n =-2 n =-6
n =-10
n =2 n =4
-3 -4 -5
Abnormal Quantum Hall Effect
Quantum Hall-like Transport
-6 -5 -4 -3 -2 -1 0 1 2 3 4 5 60.0
0.5
1.0
1.5
2.0
RXX
RXY
filling fraction (n)
RX
X(k
W)
B=18T
-16
-12
-8
-4
0
4
8
12
16
RX
Y (
kW
)
VG (Volts)
B (
Tes
la)
Rxx (kW)
Vxx
I
T=300 mK
Rxx
Landau level filling factor
Quantum Hall conductance
a
Yankowitz et al., (2012)
Dirac point
Miniband I
Miniband II
T = 300 mK B=0
Zero Field Transport
Cg = 118 aF/mm2
-40 -20 0 20 400
5
10
15
r (
kW
)
Vg (V)
Size of the Moire Supper Lattice in Graphene
Ishigami group (UCF)
Confirmed by UHV AFM
a=15±1 nm ~ 30 V ~ 30 V
Vgsb Vg
sb
a = 14.3 nm
Normalized Fan Diagrams
RXX |RXY|
n /
nO
f / fO f / fO
|RX
Y| (k
W)
-4
-2
-4 -3
-1
+2
+4
-4
-2
-4
-2
-4 -3
-1
+2
+4
-4
-2 n /
nO
RX
X (
kW
)
Normalized Fan Diagrams
RXX |RXY|
n /
nO
f / fO f / fO
|RX
X| (k
W)
-4
-2
-4 -3
-1
+2
+4
-4
-2
-4
-2
-4 -3
-1
+2
+4
-4
-2 n /
nO
RX
X (
kW
)
Wannier diagram:
Tracing gaps in
Hofstadter’s Butterfly
slope offset
Landau Fan in Low Magnetic Field Regime
RXX RXY
RXX (kW) RXY (kW)
B (
T)
B (
T)
t = -4 t = -8
t = -12
t = -16
t = -4 t = -8
t = -12
t = -16
Vg (V) Vg (V) s =-4 s =-4 s = 0 s = 0 s =-2 s =-2
t =0 t =-2 t =-4 t =-6
t =-8
t =0 t =-2 t =-4 t =-6
t =-8
Landau Fan in Low Magnetic Field Regime
RXX RXY
RXX (kW) RXY (kW)
B (
T)
B (
T)
Vg (V) Vg (V) s =-2 s =-2
t =-6
t =-8
t =-6
t =-8
Landau Fan in Low Magnetic Field Regime
RXY
RXY (kW)
B (
T)
Vg (V) s =-2
t =-6
t =-8
0 1 2 3 4 5 6 7 8 9 10 11 12 13 140
1
2
3
4
5
(1/6)h/e2
RX
Y (
kW
)
B (Tesla)
t =-6, s =-2
0 1 2 3 4 5 6 7 8 9 10 110
1
2
3
4
RX
Y (
kW
)
B (Tesla)
(1/8)h/e2
t =-8, s =-2
Hall Conductance in Fractal Band
RXY
|RXY| (kW)
n /
nO
f / fO
2
1
3
1
4
1
-12 -8 -4 0 4 8 120
5
-15
-10
-5
0
5
10
15
RX
Y (
kW
) R
XX (
kW
)
f/f0 1/2
1/3
1/4
RXY
RXX
n/n0
Strong suppression of Rxy while Rxx is finite!
Recursive QHE near the Fractal Bands
σxy
Higher quality sample with lower disorder
1/2
1/3
Hall conductivity across Fractal Band
0.0 0.2 0.4 0.6 0.80
50
100
f / f0
xx
(e
2/h
)
-20
-10
0
10
20
30
xy (e
2/h )
At the Fractal Bands Sign reversal of xy
Large enhancement of xx
1/2
1/3
1/4
1/5
Recursive QHE!
Summary
• Graphene on hBN with high quality interface created Moire pattern with supper lattice modulation
• Quantum Hall conductance are determined by two TKNN integers.
• Anomalous Hall conductance at the fractal bands
Open Questions: • Elementary excitation of the fractal gaps? • Role of interactions, Hofstadter Butterfly in
FQHE?
Fractal Gaps: Energy Scales
(t, s)
(-4, 0)
(-8, 0)
(-12, 0)
(-16, 0)
(4, 0)
(8, 0)
(12, 0)
(16, 0)
(3, 0)
(-2, -2)
(-4, 1)
(-2, 1)
(-1, 1)
(-3, 2) (-4, 2)
(-2, 2)
(-1, 2)
Fractal Quantum Hall Effect
(-3, 1)
0 15 Rxx (kW)
Temperature Dependence
Fractal Gap Size
83 K
Single Layer Graphene Hofstadter’s Butterfly
Rxx (Ohm) Rxy (Ohm)
B1/2
-6 -4
-2 +2
+4
Similar physics is observed in single layer graphene on hBN
Rxx Rxy
Acknowledgement
Funding:
hBN samples: T. Taniguchi & K. Watanabe (NIMS)
Theory: P. Moon & M. Koshino (Tohoku)
Prof. Jim Hone
Prof. Ken Shepard
Dr. Cory Dean Lei Wang Patrick Maher Fereshte Ghahari Carlos Forsythe