142
Attachment D-6: FLAC Analysis Attachment D-6: FLAC Analysis

Attachment D-6: FLAC Analysis · (FLAC) 7.0 by Itasca Consulting Group, Inc was used to complete the numerical analysis of the T-wall. Conventional LEM slope stability analysis and

  • Upload
    others

  • View
    11

  • Download
    0

Embed Size (px)

Citation preview

Page 1: Attachment D-6: FLAC Analysis · (FLAC) 7.0 by Itasca Consulting Group, Inc was used to complete the numerical analysis of the T-wall. Conventional LEM slope stability analysis and

Attachment D-6: FLAC Analysis

Attachment D-6:

FLAC Analysis

Page 2: Attachment D-6: FLAC Analysis · (FLAC) 7.0 by Itasca Consulting Group, Inc was used to complete the numerical analysis of the T-wall. Conventional LEM slope stability analysis and

Fargo Moorhead Metropolitan Area Draft Design Documentation Report Flood Risk Management Project Inlet Diversion

Appendix D, Attachment 6: FLAC Analysis of Floodwall

DDR_FMM_DIS_App_D_Attach_6_FLAC_revised_20160119.docx

Appendix D, Attachment 6: FLAC Analysis of Floodwall

Fargo Moorhead Metropolitan Area

Flood Risk Management Project

Diversion Inlet Structure

Engineering and Design Phase

Doc Version: Draft

January 19, 2016

Page 3: Attachment D-6: FLAC Analysis · (FLAC) 7.0 by Itasca Consulting Group, Inc was used to complete the numerical analysis of the T-wall. Conventional LEM slope stability analysis and

Fargo Moorhead Metropolitan Area Draft Design Documentation Report Flood Risk Management Project Inlet Diversion

Appendix D, Attachment 6: FLAC Analysis of Floodwall

DDR_FMM_DIS_App_D_Attach_6_FLAC_revised_20160119.docx

This page is intentionally left blank

Page 4: Attachment D-6: FLAC Analysis · (FLAC) 7.0 by Itasca Consulting Group, Inc was used to complete the numerical analysis of the T-wall. Conventional LEM slope stability analysis and

Fargo Moorhead Metropolitan Area Draft Design Documentation Report Flood Risk Management Project Inlet Diversion

Appendix D, Attachment 6: FLAC Analysis of Floodwall

DDR_FMM_DIS_App_D_Attach_6_FLAC_revised_20160119.docx Appendix D, Attachment 6: Page i

Appendix D, Attachment 6: FLAC Analysis of Floodwall Table of Contents

1. General .................................................................................................................................................. 1

2. Stratigraphy ........................................................................................................................................... 1

3. Parameters ............................................................................................................................................ 1

3.1. Unit Weights ................................................................................................................................. 2

3.2. Effective Stress Shear Strength Parameters ................................................................................. 2

3.3. Undrained Shear Strength Parameters ......................................................................................... 3

3.4. Elastic Behavior of Soils ................................................................................................................. 3

3.4.1 Shear Modulus, G .................................................................................................................. 3

3.4.2 Bulk Modulus, K .................................................................................................................... 7

4. FLAC Model ........................................................................................................................................... 7

4.1. Model Grid .................................................................................................................................... 9

4.2. T-wall Configuration .................................................................................................................... 11

4.3. Interfaces .................................................................................................................................... 11

4.4. Initial Conditions ......................................................................................................................... 12

4.5. Excavation ................................................................................................................................... 12

4.6. Piles ............................................................................................................................................. 13

4.6.1 Normal Spring Constants .................................................................................................... 14

4.6.2 Shear Spring Constants ....................................................................................................... 17

4.6.2.1 Undrained Shear Spring Constants ................................................................................. 20

4.6.2.2 Drained Shear Spring Constants ..................................................................................... 21

4.7. Flood Loading .............................................................................................................................. 23

5. FLAC Results ........................................................................................................................................ 23

5.1. Initial Stresses ............................................................................................................................. 24

5.2. Stresses After Excavation ............................................................................................................ 26

5.3. Undrained Flood Loading ............................................................................................................ 29

5.4. Drained Flood Loading ................................................................................................................ 30

5.5. 922 Flood Loading Condition ...................................................................................................... 32

Page 5: Attachment D-6: FLAC Analysis · (FLAC) 7.0 by Itasca Consulting Group, Inc was used to complete the numerical analysis of the T-wall. Conventional LEM slope stability analysis and

Fargo Moorhead Metropolitan Area Draft Design Documentation Report Flood Risk Management Project Inlet Diversion

Appendix D, Attachment 6: FLAC Analysis of Floodwall

DDR_FMM_DIS_App_D_Attach_6_FLAC_revised_20160119.docx Appendix D, Attachment 6: Page ii

6. Modulus Sensitivity ............................................................................................................................. 36

6.1. Softer Moduli .............................................................................................................................. 36

6.2. Result Comparison Using Softer Moduli ..................................................................................... 37

6.3. Softer Moduli Results .................................................................................................................. 40

7. STAAD .................................................................................................................................................. 41

7.1. STAAD versus FLAC...................................................................................................................... 42

7.2. Axial Force – Bending Moment Interaction ................................................................................ 44

7.3. Wall Load Only Analysis .............................................................................................................. 44

7.3.1 STAAD Wall Load Only Analysis .......................................................................................... 44

7.3.2 FLAC Wall Load Only Analysis ............................................................................................. 47

7.3.3 STAAD versus FLAC Results for Wall Load Only Analysis .................................................... 52

8. Summary ............................................................................................................................................. 54

9. Conclusion ........................................................................................................................................... 54

10. References .......................................................................................................................................... 55

11. Exhibits ................................................................................................................................................ 55

TABLES Table 1: FLAC Model Parameters .................................................................................................................. 2

Table 2: ε50 and J Constants ........................................................................................................................ 15

FIGURES Figure 1: Selected Shear Modulus Values Correlated to Pressuremeter Tests ............................................ 4

Figure 2: Comparison of CPT and Consolidation G’ values to Selected G’ .................................................... 6

Figure 3: Comparison of CPT and Consolidation G’ values to Selected G’ .................................................... 6

Figure 4: FLAC Model Extents and Stratigraphy ........................................................................................... 8

Figure 5: States used in the FLAC modeling of T-wall ................................................................................... 9

Figure 6: Attached and Interface Locations ................................................................................................ 10

Figure 7: T-wall Configuration and Adjusted Grid....................................................................................... 11

Figure 8: Excavation to Final Grade ............................................................................................................ 13

Page 6: Attachment D-6: FLAC Analysis · (FLAC) 7.0 by Itasca Consulting Group, Inc was used to complete the numerical analysis of the T-wall. Conventional LEM slope stability analysis and

Fargo Moorhead Metropolitan Area Draft Design Documentation Report Flood Risk Management Project Inlet Diversion

Appendix D, Attachment 6: FLAC Analysis of Floodwall

DDR_FMM_DIS_App_D_Attach_6_FLAC_revised_20160119.docx Appendix D, Attachment 6: Page iii

Figure 9: T-wall and Battered Piles ............................................................................................................. 14

Figure 10: p-y Curve for LAC ....................................................................................................................... 16

Figure 11: p-y Curve for Till ......................................................................................................................... 17

Figure 12: Load Displacement Curve from 2012 Pile Load Test ................................................................. 19

Figure 13: Simplified Undrained t-z Curves ................................................................................................ 20

Figure 14: Simplified Undrained Combined t-z and q-z Curve for Pile Segment at Tip .............................. 21

Figure 15: Simplified Drained t-z Curves ..................................................................................................... 22

Figure 16: Simplified Drained Combined t-z and q-z Curve for Pile Segment at Tip................................... 22

Figure 17: Applied Pressures and Ground Water Table for the Drained Condition at Flood Stage of 922. 23

Figure 18: Stress Check at U/S Face of T-wall ............................................................................................. 24

Figure 19:FLAC Syy Plot for Initial Conditions ............................................................................................. 25

Figure 20: FLAC Sxx Plot Initial Conditions .................................................................................................. 25

Figure 21: Stresses after Excavation in Bottom of Diversion Channel (Downstream of T-wall) ................. 26

Figure 22: Stresses after Excavation in Bottom of Connecting Channel (Upstream of T-wall) .................. 27

Figure 23: FLAC Syy Plot after Excavation ................................................................................................... 28

Figure 24: FLAC Sxx Plot after Excavation ................................................................................................... 28

Figure 25: Moment under Undrained Behavior ......................................................................................... 29

Figure 26: X-Displacement under Undrained Behavior .............................................................................. 30

Figure 27: Moment under Drained Behavior .............................................................................................. 31

Figure 28: X-Displacement under Drained Behavior .................................................................................. 31

Figure 29: Moment under Flood Loading Condition of Elevation 922 FT ................................................... 32

Figure 30: X-Displacement under Flood Loading Condition of Elevation 922 FT ........................................ 33

Figure 31: FLAC Y-Displacement Contours (Undrained, 922) ..................................................................... 34

Figure 32: FLAC Y-Displacement Contours (Drained, 922) .......................................................................... 34

Figure 33: FLAC X-Displacement Contours (Undrained, 922) ..................................................................... 35

Figure 34: FLAC X-Displacement Contours (Drained, 922) ......................................................................... 35

Figure 35: Comparison of CPT and Consolidation G’ values to “Softer” G’ ................................................ 36

Figure 36: Comparison of CPT and Consolidation G’ values to “Softer” G’ ................................................ 37

Figure 37: Undrained Moment Comparison between PM Moduli and Softer Moduli ............................... 38

Figure 38: Undrained X-Displacement Comparison between PM Moduli and Softer Moduli ................... 38

Page 7: Attachment D-6: FLAC Analysis · (FLAC) 7.0 by Itasca Consulting Group, Inc was used to complete the numerical analysis of the T-wall. Conventional LEM slope stability analysis and

Fargo Moorhead Metropolitan Area Draft Design Documentation Report Flood Risk Management Project Inlet Diversion

Appendix D, Attachment 6: FLAC Analysis of Floodwall

DDR_FMM_DIS_App_D_Attach_6_FLAC_revised_20160119.docx Appendix D, Attachment 6: Page iv

Figure 39: Drained Moment Comparison between PM Moduli and Softer Moduli ................................... 39

Figure 40: Drained X-Displacement Comparison between PM Moduli and Softer Moduli ........................ 39

Figure 41: Drained and Undrained Moment Comparison using Softer Moduli .......................................... 40

Figure 42: Drained and Undrained X-Displacement Comparison using Softer Moduli .............................. 41

Figure 43: Moment under Undrained Behavior, FLAC vs. STAAD Comparison for Flood Loading up to 922 .................................................................................................................................................................... 42

Figure 44: Moment under Drained Behavior, FLAC vs. STAAD Comparison for Flood Loading up to 922 . 43

Figure 45: X-Displacement under Undrained Behavior, FLAC vs. STAAD Comparison for Flood Loading up to 922 .......................................................................................................................................................... 43

Figure 46: X-Displacement under Drained Behavior, FLAC vs. STAAD Comparison for Flood Loading up to 922 .............................................................................................................................................................. 44

Figure 47: STAAD Undrained Bending Moment ......................................................................................... 45

Figure 48: STAAD Undrained X-Displacement ............................................................................................ 46

Figure 49: STAAD Drained Bending Moment .............................................................................................. 46

Figure 50: STAAD Drained X-Displacement ................................................................................................. 47

Figure 51: FLAC Wall Load Only Analysis for Flood Loading Condition to 922 (Drained) ........................... 48

Figure 52: FLAC Undrained Bending Moment ............................................................................................ 49

Figure 53: FLAC Undrained X-Displacement ............................................................................................... 49

Figure 54: FLAC Drained Bending Moment ................................................................................................. 50

Figure 55: FLAC Drained X-Displacement ................................................................................................... 50

Figure 56: Bending Moment for FLAC Wall Load Only Analysis .................................................................. 51

Figure 57: X-Displacement for FLAC Wall Load Only Analysis .................................................................... 51

Figure 58: FLAC versus STAAD Undrained Bending Moment For Flood Loading of 922. ........................... 52

Figure 59: FLAC versus STAAD Drained Bending Moment For Flood Loading of 922. ................................ 53

Figure 60: FLAC versus STAAD Undrained X-Displacement For Flood Loading of 922. .............................. 53

Figure 61: FLAC versus STAAD Drained X-Displacement For Flood Loading of 922. ................................... 54

Page 8: Attachment D-6: FLAC Analysis · (FLAC) 7.0 by Itasca Consulting Group, Inc was used to complete the numerical analysis of the T-wall. Conventional LEM slope stability analysis and

Fargo Moorhead Metropolitan Area Draft Design Documentation Report Flood Risk Management Project Inlet Diversion

Appendix D, Attachment 6: FLAC Analysis of Floodwall

DDR_FMM_DIS_App_D_Attach_6_FLAC_revised_20160119.docx Appendix D, Attachment 6: Page v

EXHIBITS Exhibit 1: DIS T-Wall FLAC Code

Exhibit 2: Spring Calculations

Exhibit 3: Results of FINAL FLAC Model

Exhibit 4: Results of “Softer” FLAC Model

Exhibit 5: Results of “Wall Load Only” FLAC Model

Page 9: Attachment D-6: FLAC Analysis · (FLAC) 7.0 by Itasca Consulting Group, Inc was used to complete the numerical analysis of the T-wall. Conventional LEM slope stability analysis and

Fargo Moorhead Metropolitan Area Draft Design Documentation Report Flood Risk Management Project Inlet Diversion

Appendix D, Attachment 6: FLAC Analysis of Floodwall

DDR_FMM_DIS_App_D_Attach_6_FLAC_revised_20160119.docx Appendix D, Attachment 6: Page 1

Appendix D, Attachment 6: FLAC Analysis of Floodwall

1. General The Diversion Inlet Structure (DIS) is being designed to include a pile-founded T-wall that connects the structure to the tieback embankments. In designing the T-wall, displacements of the wall along with forces and moments along the pile are needed to evaluate the adequacy of the design. This is similar to the situation on the Hurricane and Storm Damage Risk Reduction System (HSDRRS) in New Orleans where pile-founded T-walls were placed on top of levees to increase the height of the system. Methods were developed to analysis this situation using LPile or Group (Ensoft, INC. software for pile design) and limit equilibrium method (LEM) of slope stability results. These methods were checked and compared to numerical modeling analyses, where the soil-structure interaction (SSI) could be evaluated directly. Based on the lessons learned on the HSDRRS, it was determined that the T-wall for the DIS would be analyzed in a similar way. The finite difference method program Fast Lagrangian Analysis of Continua (FLAC) 7.0 by Itasca Consulting Group, Inc was used to complete the numerical analysis of the T-wall. Conventional LEM slope stability analysis and Group/STAAD was also completed. The T-Wall SSI modeling and results are detailed below.

2. Stratigraphy

The stratigraphy for the FLAC model was the same as what was used in the limit equilibrium method slope stability analysis for determining unbalanced loads and documented in Appendix D: Geotechnical Engineering and Geology. The details of the stratigraphy are as follows:

• Ground surface in the area averages EL. 915 ft and it was assumed the natural ground water table was approximately 10 feet below ground surface.

• The Sherack/Brenna contact ranges from EL. 898 ft to 889 ft. An elevation 893 ft was used which is approximately the average.

• The Brenna/Argusville contact ranges from EL. 869 ft to 864 ft. An elevation of 864 ft was used which close to the modal elevation presented in the borings.

• The Argusville/Unit “A” Till contact ranges from EL. 852 ft to 845 ft. An elevation of 848 ft was used which is the average elevation along the right T-wall.

• The Weathered Till/Intact Till contact was taken as EL. 842 ft, or 6 feet into the till. • Tip elevation of the H-piles was taken as EL. 836 ft, which is the elevation in which most of

the SPT blow counts become greater than 100.

Please note that all elevations are reported in North American Vertical Datum of 1988 (NAVD 88).

3. Parameters

The parameters used in the FLAC model are indicated in Table 1 and described below.

Page 10: Attachment D-6: FLAC Analysis · (FLAC) 7.0 by Itasca Consulting Group, Inc was used to complete the numerical analysis of the T-wall. Conventional LEM slope stability analysis and

Fargo Moorhead Metropolitan Area Draft Design Documentation Report Flood Risk Management Project Inlet Diversion

Appendix D, Attachment 6: FLAC Analysis of Floodwall

DDR_FMM_DIS_App_D_Attach_6_FLAC_revised_20160119.docx Appendix D, Attachment 6: Page 2

Table 1: FLAC Model Parameters

3.1. Unit Weights

The unit weights used if the FLAC model were the same as what is used in the Diversion Channel modeling. The unit weights were converted to a density using a gravity of 32.2 ft/s2.

3.2. Effective Stress Shear Strength Parameters

The effective friction angles for the Lake Agassiz Clays (LAC) (which are Sherack, Brenna, and Argusville) were based on the results of the undisturbed testing associated with the southern borings and checked against the site specific results. The southern borings are the borings taken at the southern end of the project from the Sheyenne River area to the east and south. The failure criteria used was taken at 15% strain, or ultimate strengths, which has been found to be similar to fully-softened shear strengths, see Attachment 9 – FMM Fully Softened Shear Strength Testing Report of the General Report: Geotechnical Engineering and Geology.

• Sherack: The shear strength envelope for the Sherack formation is bi-linear. However, considering the range of anticipated stresses associated with this analysis, the envelope was simplified to 28 degrees, the initial portion of the envelope associate with effective stresses lower than 2000 psf.

• Brenna: The shear strength envelope for the Brenna formation is bi-linear curve starting with a 24 degree friction angle and a 25 pounds per square foot (psf) cohesion intercept and then reducing to 11 degrees at 2000 psf (approximately depth of 15 to 20 feet). A bi-linear envelope cannot be used in FLAC so a friction angle of 24 degrees was used.

• Argusville: The shear strength envelope is the same as for the Brenna formation. Using engineering judgment that Argusville should be slightly stronger, an M-C envelope of 25 degrees was used.

The effective friction angles for the Unit “A” Till formations were based on the results of the pressuremeter testing results obtained at several locations along the project alignment, see Attachment 10 – Pressuremeter Testing of the General Report: Geotechnical Engineering and Geology.

• “Weathered” Till: A friction angle of 34 degrees was used. As a reference, 34 degrees is 2 degrees stronger than the friction angle back calculated from the Pile Load Test results.

• “Intact” Till: A friction angle of 38 degrees was used. It is 1 degree stronger than the friction angle back calculated from the Pile Load Test results.

Page 11: Attachment D-6: FLAC Analysis · (FLAC) 7.0 by Itasca Consulting Group, Inc was used to complete the numerical analysis of the T-wall. Conventional LEM slope stability analysis and

Fargo Moorhead Metropolitan Area Draft Design Documentation Report Flood Risk Management Project Inlet Diversion

Appendix D, Attachment 6: FLAC Analysis of Floodwall

DDR_FMM_DIS_App_D_Attach_6_FLAC_revised_20160119.docx Appendix D, Attachment 6: Page 3

3.3. Undrained Shear Strength Parameters

Like the effective stress shear strength parameters, the undrained shear strength parameters were taken as ultimate strengths associated with the southern borings and checked against site specific results.

• Sherack: An undrained shear strength of 900 psf was selected and is the same as the overall project value. The site specific results compared favorably with this value.

• Brenna: An undrained shear strength 650 psf was selected, which was a 75 psf increase from the overall project value of 575 psf. The higher strength is supported by local test data.

• Argusville: The Argusville undrained shear strength is 650 psf at the top of the formation and then increasing by 10 psf per foot of depth. For the advanced modeling a value of 730 psf was used as this is the average strength across the formation (864 to 848 ft = 16 ft; 16* 10 psf/ft = 160 psf; 160/2 = 80; 650+80 = 730psf).

The undrained cohesion values for the Unit “A” Till formations were based on the results of the pressuremeter testing results obtained at several locations along the project alignment.

• “Weathered” Till: An undrained shear strength 3,000 psf was selected. • “Intact” Till: An undrained shear strength 3,800 psf was selected and was required to be

stronger than the “weathered” till.

3.4. Elastic Behavior of Soils

The elastic behavior of soils is described by elastic parameters. The most commonly used parameters are:

• Young’s Modulus, E: ratio of the stress along an axis to the strain along that axis • Shear Modulus, G: the material’s measure of resistance to deformation under shear • Bulk Modulus, B or K: the material’s measure of resistance to deformation under uniform

compression • Poisson’s Ratio, v: the amount of lateral strain compared to the amount of longitudinal

compression under vertical load • Constrained Modulus, M’ or D’: the ratio of stress along an axis to the strain along that axis

without lateral strain; can only be a drained value

These elastic parameters are not mutually exclusive, thus knowing two parameters, a third parameter can be calculated.

3.4.1 Shear Modulus, G

After much evaluation of methods to determine shear modulus values, it was determined that values based on pressuremeter testing were the most appropriated for a couple of reasons. First, the pressuremeter testing provides a direct measurement of the shear moduli whereas other methods (i.e. CPT and consolidation tests) use correlations to determine values. Secondly, the pressuremeter’s

Page 12: Attachment D-6: FLAC Analysis · (FLAC) 7.0 by Itasca Consulting Group, Inc was used to complete the numerical analysis of the T-wall. Conventional LEM slope stability analysis and

Fargo Moorhead Metropolitan Area Draft Design Documentation Report Flood Risk Management Project Inlet Diversion

Appendix D, Attachment 6: FLAC Analysis of Floodwall

DDR_FMM_DIS_App_D_Attach_6_FLAC_revised_20160119.docx Appendix D, Attachment 6: Page 4

radially expands of the soil in the horizontal direction and by using these values, it is a better representation of the soil’s resistance to horizontal displacements which is an important result of the FLAC model. Thirdly, experience on other projects indicates that using pressuremeter correlated shear moduli is most appropriate. These projects include Baldhill Dam, the drilled shaft wall for soil retention in Grand Forks, and the London Canal Full-scale load test. For the London Canal Full-scale load test, the displacements out of FLAC using pressuremeter correlated shear moduli provide good comparisons to real life measured displacements.

Based on this past experience, the undrained shear modulus values for the Lake Agassiz Clays (LAC) were based on the results from the pressuremeter testing that was completed by In Situ Engineering (In Situ) out of Snohomish, Washington. The initial modulus values along with modulus values from the various unload/reload loops were plotted and all were used in making the determination on appropriate moduli values (see Figure 1).

Theoretically, the undrained shear modulus and the drained shear modulus should be equal as water has no strength and cannot take any shear, but in practice, different moduli are typically used. This is the case for the FLAC modeling completed for the DIS. Using the correlations presented in “Soil and Rock Modulus Correlations for Geotechnical Engineering” by J. Michael Duncan and Andrew Bursey (VT CGPR #44), the undrained Young’s modulus is 1 to 1.33 times larger than the drained Young’s Modulus. Using engineering judgment, a ratio of 1.33 was selected and used to correlate the undrained shear modulus values to the drained shear moduli. The drained shear modulus values are also shown on Figure 1.

Figure 1: Selected Shear Modulus Values Correlated to Pressuremeter Tests

Page 13: Attachment D-6: FLAC Analysis · (FLAC) 7.0 by Itasca Consulting Group, Inc was used to complete the numerical analysis of the T-wall. Conventional LEM slope stability analysis and

Fargo Moorhead Metropolitan Area Draft Design Documentation Report Flood Risk Management Project Inlet Diversion

Appendix D, Attachment 6: FLAC Analysis of Floodwall

DDR_FMM_DIS_App_D_Attach_6_FLAC_revised_20160119.docx Appendix D, Attachment 6: Page 5

Shear modulus values were also determined using the results of the Cone Penetration Test (CPT) sounding results and consolidation tests. Both methods required that the constrained moduli be computed and then be converted to shear moduli using a Poisson’s ratio. For the CPT method, a Poisson’s Ratio of 0.35 (associated with an effective stress friction angle of 28 degrees) was used throughout the soil profile for computational ease. For the consolidation method, the Poisson’s Ratio was based on effective friction angles. The equations used are as follows:

CPT Constrained Modulus, D’

𝐷𝐷′ = 𝛼𝛼𝐷𝐷(𝑞𝑞𝑡𝑡 − 𝜎𝜎𝑣𝑣0)

Where

αD is a scaling factor and assumed to be 8.25 (Soil and Rock Modulus Correlations for Geotechnical Engineering, by Duncan and Bursey, 2007)

qt is the total cone tip resistance

σv0 is the total vertical stress

Consolidation Constrained Modulus, D’

For Normally Consolidated Materials

𝐷𝐷′ =1 + 𝑒𝑒0𝐶𝐶𝑐𝑐

× 𝑙𝑙𝑙𝑙(10) × 𝜎𝜎𝑣𝑣′

For Over Consolidated Materials

𝐷𝐷′ =1 + 𝑒𝑒0𝐶𝐶𝑟𝑟

× 𝑙𝑙𝑙𝑙(10) × 𝜎𝜎𝑣𝑣′

Shear Modulus, G based on D’

𝐺𝐺′ =𝐷𝐷′(1 − 2𝜈𝜈′)

2(1 − 𝜈𝜈′)

Bulk Modulus, K’ based on D’

𝐾𝐾′ =𝐷𝐷′(1 + 𝜈𝜈′)3(1 − 𝜈𝜈′)

It was found that the shear moduli from the CPT were larger than those computed from the consolidation tests, yet both methods produced values that were less than those calculated from the pressuremeter results. The selected values (pressuremeter) were 3 to 10 times larger than those determined by the CPT and consolidation test results. These comparisons are shown in Figure 2 and Figure 3.

Page 14: Attachment D-6: FLAC Analysis · (FLAC) 7.0 by Itasca Consulting Group, Inc was used to complete the numerical analysis of the T-wall. Conventional LEM slope stability analysis and

Fargo Moorhead Metropolitan Area Draft Design Documentation Report Flood Risk Management Project Inlet Diversion

Appendix D, Attachment 6: FLAC Analysis of Floodwall

DDR_FMM_DIS_App_D_Attach_6_FLAC_revised_20160119.docx Appendix D, Attachment 6: Page 6

Figure 2: Comparison of CPT and Consolidation G’ values to Selected G’

Figure 3: Comparison of CPT and Consolidation G’ values to Selected G’

Page 15: Attachment D-6: FLAC Analysis · (FLAC) 7.0 by Itasca Consulting Group, Inc was used to complete the numerical analysis of the T-wall. Conventional LEM slope stability analysis and

Fargo Moorhead Metropolitan Area Draft Design Documentation Report Flood Risk Management Project Inlet Diversion

Appendix D, Attachment 6: FLAC Analysis of Floodwall

DDR_FMM_DIS_App_D_Attach_6_FLAC_revised_20160119.docx Appendix D, Attachment 6: Page 7

3.4.2 Bulk Modulus, K

The bulk moduli were determined using the elastic parameter correlations relating them to Shear Modulus and Poisson’s Ratio.

Bulk Modulus, K 𝑜𝑜𝑜𝑜 𝐵𝐵 = 2𝐺𝐺(1 + 𝜈𝜈)3(1 − 2𝜈𝜈)

Poisson’s Ration, 𝜈𝜈 = 1 − 𝑠𝑠𝑖𝑖𝑙𝑙𝜙𝜙′

2 − 𝑠𝑠𝑖𝑖𝑙𝑙𝜙𝜙′

A Poisson’s ratio of 0.49 was used for undrained conditions as the true value of 0.5 would cause numerical issues within the FLAC program.

4. FLAC Model

A spreadsheet application was developed in conjunction with the FLAC model that included all the required parameters, calculations, and necessary FLAC code within the spreadsheet. The code copied from the spreadsheet and pasted into FLAC. In addition, the FLAC model was built in “states”, with each “state” representing a separate process (i.e. mesh generation, excavation, installation of piles, flood loading, etc.) within FLAC.

The following were the overall requirements used when setting up the model.

• Downstream (dryside) X-Distance was negative; Upstream (floodside) X-Distance was positive. o The left extent was set to X-Distance of -345 feet. o The right extent was set to X-Distance of +351 feet. o Downstream (dryside) face of T-wall located at X-distance of 0. o T-wall footing was 18 feet wide extended from -4 feet to +14 feet.

• Highest extent was set to EL. 932 ft (assumed maximum height of T-wall). • Lowest extent was set to EL. 920 ft (15 feet below tip of piles). • Base of T-wall set at EL. 895 ft. • Final grade elevation at T-wall was EL. 901 ft. • Final grade extends 53 feet downstream of T-wall downstream face before sloping at 1V:7H to

diversion channel elevation of 888 ft.

Page 16: Attachment D-6: FLAC Analysis · (FLAC) 7.0 by Itasca Consulting Group, Inc was used to complete the numerical analysis of the T-wall. Conventional LEM slope stability analysis and

Fargo Moorhead Metropolitan Area Draft Design Documentation Report Flood Risk Management Project Inlet Diversion

Appendix D, Attachment 6: FLAC Analysis of Floodwall

DDR_FMM_DIS_App_D_Attach_6_FLAC_revised_20160119.docx Appendix D, Attachment 6: Page 8

Figure 4: FLAC Model Extents and Stratigraphy

All the states of the FLAC model are shown below in Figure 5 and the major states are described below.

Page 17: Attachment D-6: FLAC Analysis · (FLAC) 7.0 by Itasca Consulting Group, Inc was used to complete the numerical analysis of the T-wall. Conventional LEM slope stability analysis and

Fargo Moorhead Metropolitan Area Draft Design Documentation Report Flood Risk Management Project Inlet Diversion

Appendix D, Attachment 6: FLAC Analysis of Floodwall

DDR_FMM_DIS_App_D_Attach_6_FLAC_revised_20160119.docx Appendix D, Attachment 6: Page 9

Figure 5: States used in the FLAC modeling of T-wall

4.1. Model Grid

The model was set up such that the zones below the final grade and encompassing the H-piles (X-Distance of -25 to +31) were sized to be 1-ft by 1-ft squares. The exception was the till layers were sized

Page 18: Attachment D-6: FLAC Analysis · (FLAC) 7.0 by Itasca Consulting Group, Inc was used to complete the numerical analysis of the T-wall. Conventional LEM slope stability analysis and

Fargo Moorhead Metropolitan Area Draft Design Documentation Report Flood Risk Management Project Inlet Diversion

Appendix D, Attachment 6: FLAC Analysis of Floodwall

DDR_FMM_DIS_App_D_Attach_6_FLAC_revised_20160119.docx Appendix D, Attachment 6: Page 10

to be 2-ft tall by 1-ft wide. The zones above the final grade were sized to be 2-ft tall. The width of the zones was increased to 2-ft, 3-ft and 5-ft, as the distance increased away from the T-wall and zone around the battered piles.

When developing the grid, interfaces around the T-wall were also incorporated into the model to facilitate the movement of the T-wall along the soil using the “Attach” and “Interface” commands. Three “interface regions” were used in the model; one at the base of the T-wall, and one at either side of the T-wall footing. These regions were 2 zones thick. In later steps, the horizontal and vertical zones closest to the T-wall were “nulled” out and the outer zones moved and joined with the adjacent zones. The zones below the base of the T-wall and on either side were assumed not to be able to slip and therefore were “attached.” This was also the case for the zones above the final grade. The remaining zones around the T-wall were joined together using “interfaces” as it was assumed that the soil and footing may move independent of each other (i.e. slide or separate). The “attached” grids are shown below in Figure 6 and are represented by the red plus (+). The “interface” grids are represented by a black (X) in Figure 6.

Figure 6: Attached and Interface Locations

Page 19: Attachment D-6: FLAC Analysis · (FLAC) 7.0 by Itasca Consulting Group, Inc was used to complete the numerical analysis of the T-wall. Conventional LEM slope stability analysis and

Fargo Moorhead Metropolitan Area Draft Design Documentation Report Flood Risk Management Project Inlet Diversion

Appendix D, Attachment 6: FLAC Analysis of Floodwall

DDR_FMM_DIS_App_D_Attach_6_FLAC_revised_20160119.docx Appendix D, Attachment 6: Page 11

The left and right extents of the model were fixed in the x direction. The bottom of the model was fixed in both the x and y directions.

4.2. T-wall Configuration

Once the grid was developed, the T-wall configuration was added to the FLAC model and associated grid points were marked. Minor adjustments were required to the grid points such that the y matched closely to the required T-wall configuration. Also, in a later state, the grid points within the base of the T-wall were adjusted to account for the battered piles.

The zones within the T-wall configuration were initially modeled as soil, as indicated in Figure 7. Once the excavation phase was completed, these zones were then assigned concrete properties.

Figure 7: T-wall Configuration and Adjusted Grid

4.3. Interfaces

As indicated above, the “interface zones” around the T-wall were attached using the interface command where slippage or separation could be expected and attach command everywhere else. The “interface” was modeled using the normal stiffness (kn) and shear stiffness (ks) values that were ten (10) times the equivalent stiffness of the neighboring zones. The equivalent stiffness was determined using the following equation.

Page 20: Attachment D-6: FLAC Analysis · (FLAC) 7.0 by Itasca Consulting Group, Inc was used to complete the numerical analysis of the T-wall. Conventional LEM slope stability analysis and

Fargo Moorhead Metropolitan Area Draft Design Documentation Report Flood Risk Management Project Inlet Diversion

Appendix D, Attachment 6: FLAC Analysis of Floodwall

DDR_FMM_DIS_App_D_Attach_6_FLAC_revised_20160119.docx Appendix D, Attachment 6: Page 12

𝑒𝑒𝑞𝑞𝑒𝑒𝑖𝑖𝑒𝑒𝑒𝑒𝑙𝑙𝑒𝑒𝑙𝑙𝑒𝑒 𝑠𝑠𝑒𝑒𝑖𝑖𝑠𝑠𝑠𝑠𝑙𝑙𝑒𝑒𝑠𝑠𝑠𝑠 =𝐾𝐾 + 4

3𝐺𝐺∆𝑍𝑍𝑚𝑚𝑚𝑚𝑚𝑚

Where

∆zmin is the minimum dimension of the neighboring zone

For the excavation phase and the drained flood loading condition, the interface values were based on drained parameters. For the undrained flooding loading condition, the interface was based on undrained parameters.

4.4. Initial Conditions

The initial conditions, meaning ground surface of EL. 915 feet, were solved for “elastically” at the start of the modeling process. It was observed though that the solved horizontal stresses were considerably smaller that what was expected for overconsolidated materials. This was due to the fact that the “elastic” parameters that FLAC used to solve the model did not account for the overconsolidated nature of the materials. In order to correct this, initial stresses were installed into FLAC. The stresses installed were the total vertical stress (Syy), the total horizontal stress in the x direction (Sxx) and into the page (Szz). Sxx and Szz were assumed to be equal.

The initial stresses were determined by first calculating the total vertical stresses and pore water pressures manually. Using these values, the effective vertical stresses were calculated. The at-rest earth pressure coefficients, Ko, was then calculated incorporating overconsolidation, see the equation below. The Ko values and the effective vertical stresses were then multiplied together to calculate the effective horizontal stresses. Finally, the pore water pressures were added to the effective horizontal stresses to determine the total horizontal stresses.

𝐾𝐾𝑂𝑂 = (1 − 𝑠𝑠𝑖𝑖𝑙𝑙𝜙𝜙′) × 𝑂𝑂𝐶𝐶𝑂𝑂𝑠𝑠𝑚𝑚𝑚𝑚∅′

After the initial stresses were installed, the FLAC model was solved elastically in small-strain mode using drained parameters. This was done to make sure the model was in equilibrium prior to starting the excavation states. It was found that there was very little change in the stresses from that which were installed.

4.5. Excavation

FLAC does not handle extreme changes very well and thus large changes need to be divided into steps or phases. Therefore, the excavation to the final project grade from EL. 915 ft down to EL. 901 ft and EL. 888 ft on the upstream and downstream ends, respectively, was completed in seven phases, removing 4 feet of material in each phase. The exception was the last phase, were only the last 3 feet was required to be removed. The ground water table was also adjusted to match the ground surface once the excavated grade was lower than the original ground water table of 10 feet below ground surface. It was assumed that the ground water table was at the final project grade.

Page 21: Attachment D-6: FLAC Analysis · (FLAC) 7.0 by Itasca Consulting Group, Inc was used to complete the numerical analysis of the T-wall. Conventional LEM slope stability analysis and

Fargo Moorhead Metropolitan Area Draft Design Documentation Report Flood Risk Management Project Inlet Diversion

Appendix D, Attachment 6: FLAC Analysis of Floodwall

DDR_FMM_DIS_App_D_Attach_6_FLAC_revised_20160119.docx Appendix D, Attachment 6: Page 13

The velocities and displacements that were solved for under the initial conditions were zeroed out prior to solving the excavation phase. Each excavation phase was solved using drained elastic parameters in “small-strain” mode.

Figure 8: Excavation to Final Grade

4.6. Piles

The DIS T-wall was designed to be founded on battered HP 14 x 73, three piles to a row, with rows being spaced 5 feet on center. Within each row, one pile was located on the upstream side and two piles located downstream. The piles were battered 3V: 1H; the upstream pile battered in the upstream direction; the downstream piles battered in the downstream direction. The tip elevation of the piles was set to EL. 836 ft. This elevation was selected as the SPT blow counts in the Till became greater than 100 and it was assumed that the piles would not be able to be driven any further.

The piles were modeled as “pile elements” within FLAC, and were installed after the excavation phase was completed and the associated T-wall zones were given concrete properties. The piles were installed in segments with the nodes of each segment being located in the vertical middle of the zones. The pile elements were then connected to the soil mesh through the use of normal and shear coupling springs. Each pile had one segment that was located within the base of the T-wall. These segments were assumed to be rigidly fixed within the concrete and not pinned.

Page 22: Attachment D-6: FLAC Analysis · (FLAC) 7.0 by Itasca Consulting Group, Inc was used to complete the numerical analysis of the T-wall. Conventional LEM slope stability analysis and

Fargo Moorhead Metropolitan Area Draft Design Documentation Report Flood Risk Management Project Inlet Diversion

Appendix D, Attachment 6: FLAC Analysis of Floodwall

DDR_FMM_DIS_App_D_Attach_6_FLAC_revised_20160119.docx Appendix D, Attachment 6: Page 14

Figure 9: T-wall and Battered Piles

At this point in the FLAC model, the states branched to analyze either the undrained or drained behavior of the T-wall under flood loading conditions. The necessary parameters (moduli, shear strength parameters, and spring constants) were adjusted such that they were associated with the corresponding behavior.

4.6.1 Normal Spring Constants

The normal spring constants used in the FLAC model were bi-linear envelopes simplified from the load-deflection (p-y) curves. The p-y curves were computing following the Matlock procedure as used by the Ensoft software programs of Group and LPile. These curves are considered to be correlated to

Page 23: Attachment D-6: FLAC Analysis · (FLAC) 7.0 by Itasca Consulting Group, Inc was used to complete the numerical analysis of the T-wall. Conventional LEM slope stability analysis and

Fargo Moorhead Metropolitan Area Draft Design Documentation Report Flood Risk Management Project Inlet Diversion

Appendix D, Attachment 6: FLAC Analysis of Floodwall

DDR_FMM_DIS_App_D_Attach_6_FLAC_revised_20160119.docx Appendix D, Attachment 6: Page 15

undrained behavior. There are no relationships developed for drained behavior, therefore the undrained normal coupling springs were also used as the values in the “drained” analyses.

The ultimate lateral resistance of the pile and soil is pu and defined by:

𝑝𝑝𝑢𝑢 = (𝐾𝐾𝑃𝑃𝑃𝑃 ) × 𝑐𝑐 × 𝑏𝑏

Where KPU is the smaller of K1,PU or K2,PU

𝐾𝐾1,𝑃𝑃𝑃𝑃 = �3 + 𝛾𝛾′ × 𝑧𝑧𝑐𝑐

+ 𝐽𝐽 × 𝑧𝑧𝑏𝑏

𝐾𝐾2,𝑃𝑃𝑃𝑃 = 9

The lateral resistance given a certain deflection is p and defined by:

𝑝𝑝 = 0.5𝑝𝑝𝑢𝑢 × �𝑦𝑦𝑦𝑦50

�13�

Where

γ’ = average effective unit weight from the ground surface to p-y curve (pcf)

z = depth from the ground surface to p-y curve (ft)

c = undrained cohesion value (psf)

b = width of pile or the equivalent diameter or the pile (ft)

J = experimentally determined constant

y50 = deflection at ½ the ultimate lateral resistance (ft)

𝑦𝑦50 = 2.5 × 𝜀𝜀50 × 𝑏𝑏

ε50 = strain corresponding to ½ the maximum principal stress difference

The values of ε50 and J are constants and vary depending on the consistency of the clay. The range of these values is indicated below in Table 2. In the development of the p-y curves, the LAC had values of ε50 and J of 0.02 and 0.5, respectively, while the Till formation had values of 0.005 and 0.25 for ε50 and J, respectively.

Table 2: ε50 and J Constants

Using the above equations, p-y curves were developed for each pile element node. Since FLAC only allows bi-linear envelopes to be inputted for the normal coupling springs, the p-y curves had to be simplified into two values. These values are the coupling spring normal stiffness (cs_nstiff) and the

Page 24: Attachment D-6: FLAC Analysis · (FLAC) 7.0 by Itasca Consulting Group, Inc was used to complete the numerical analysis of the T-wall. Conventional LEM slope stability analysis and

Fargo Moorhead Metropolitan Area Draft Design Documentation Report Flood Risk Management Project Inlet Diversion

Appendix D, Attachment 6: FLAC Analysis of Floodwall

DDR_FMM_DIS_App_D_Attach_6_FLAC_revised_20160119.docx Appendix D, Attachment 6: Page 16

coupling spring normal cohesion (cs_ncoh). The stiffness was taken as the slope of the bi-linear curve that started at the origin and passed through the p-y curve at y = y50. The cohesion value was taken as the ultimate lateral resistance (pu). Sample p-y curves and simplified bi-linear curves for the different elevations and formations are shown in Figure 10 and Figure 11.

Figure 10: p-y Curve for LAC

Page 25: Attachment D-6: FLAC Analysis · (FLAC) 7.0 by Itasca Consulting Group, Inc was used to complete the numerical analysis of the T-wall. Conventional LEM slope stability analysis and

Fargo Moorhead Metropolitan Area Draft Design Documentation Report Flood Risk Management Project Inlet Diversion

Appendix D, Attachment 6: FLAC Analysis of Floodwall

DDR_FMM_DIS_App_D_Attach_6_FLAC_revised_20160119.docx Appendix D, Attachment 6: Page 17

Figure 11: p-y Curve for Till

4.6.2 Shear Spring Constants

Shear coupling springs were also required to connect the pile elements to the soil mesh and are analogous to skin friction along the pile. The shear spring constants used in the FLAC model were also bi-linear envelopes and were simplified from the load-settlement (t-z) curves. Procedures for computing t-z curves are described in Ensoft’s APile manual. The equation selected for developing the t-z curves for the FLAC model was an equation developed by Vijayvergiya and cited in AMEC’s report “Numerical Modeling and Evaluation of a Pile-Supported T-Wall in St. Bernard Parish, LPV 145, Repair Area 2” dated December 2014. These curves were developed for both undrained and drained behaviors.

The ultimate unit skin friction (tmax) for undrained behavior was computed using:

𝑒𝑒𝑚𝑚𝑚𝑚𝑚𝑚,𝑢𝑢𝑚𝑚𝑢𝑢𝑟𝑟𝑚𝑚𝑚𝑚𝑚𝑚𝑢𝑢𝑢𝑢 = 𝐶𝐶𝛼𝛼 × 𝐴𝐴𝑠𝑠

Where

Cα is the pile adhesion factor

As is the surface area of the pile in contact with the soil

The ultimate unit skin friction (tmax) for drained behavior was computed using:

𝑒𝑒𝑚𝑚𝑚𝑚𝑚𝑚,𝑢𝑢𝑟𝑟𝑚𝑚𝑚𝑚𝑚𝑚𝑢𝑢𝑢𝑢 = 𝜎𝜎𝑣𝑣′ × 𝑒𝑒𝑒𝑒𝑙𝑙(𝛿𝛿) × 𝐴𝐴𝑆𝑆

Where

Page 26: Attachment D-6: FLAC Analysis · (FLAC) 7.0 by Itasca Consulting Group, Inc was used to complete the numerical analysis of the T-wall. Conventional LEM slope stability analysis and

Fargo Moorhead Metropolitan Area Draft Design Documentation Report Flood Risk Management Project Inlet Diversion

Appendix D, Attachment 6: FLAC Analysis of Floodwall

DDR_FMM_DIS_App_D_Attach_6_FLAC_revised_20160119.docx Appendix D, Attachment 6: Page 18

σ’v is the effective vertical stress

δ is the friction angle between the soil and pile and assumed to be

𝛿𝛿 = 0.6 ∅′

Typical values of δ is between 0.67 to 0.83 (EM 1110-2-2906) but was decreased to 0.6 such that the capacity of the pile was similar to the capacity of the pile computed using the Beta Method as found in FHWA’s Design and Construction of Drive Pile Foundations, Volume 1 Manual.

As is the surface area of the pile in contact with the soil

The shear resistance of the pile given a certain displacement is “t” and defined by Vijayvergiya as

𝑒𝑒 = 𝑒𝑒𝑚𝑚𝑚𝑚𝑚𝑚 × 2�𝑧𝑧𝑧𝑧𝑐𝑐

− 𝑧𝑧𝑧𝑧𝑐𝑐

Or

𝑒𝑒𝑒𝑒𝑚𝑚𝑚𝑚𝑚𝑚

= 2�𝑧𝑧𝑧𝑧𝑐𝑐

− 𝑧𝑧𝑧𝑧𝑐𝑐

Where

z is the displacement of the pile

zc is the critical displacement of the pile, assumed to be 0.25 inches, as stated in APile manual.

In addition to the shear resistance along the pile, the end bearing capacity of the pile is also required. The following equations were used in this determination.

𝐸𝐸𝑙𝑙𝐸𝐸 𝐵𝐵𝑒𝑒𝑒𝑒𝑜𝑜𝑖𝑖𝑙𝑙𝐵𝐵,𝑄𝑄𝑡𝑡 = 𝑞𝑞 𝑥𝑥 𝐴𝐴𝑡𝑡

Where

𝑞𝑞𝑢𝑢𝑚𝑚𝑢𝑢𝑟𝑟𝑚𝑚𝑚𝑚𝑚𝑚𝑢𝑢𝑢𝑢 = 𝑁𝑁𝑞𝑞 × 𝑆𝑆𝑢𝑢

𝑞𝑞𝑢𝑢𝑟𝑟𝑚𝑚𝑚𝑚𝑚𝑚𝑢𝑢𝑢𝑢 = 𝑁𝑁𝑞𝑞 × 𝜎𝜎𝑣𝑣′

Nq is assumed to be 9

Su is the undrained shear strength of the soil

σ’v is the effective vertical stress

At is the area of the tip of the pile and assumed to be the box end area of the H-pile

Page 27: Attachment D-6: FLAC Analysis · (FLAC) 7.0 by Itasca Consulting Group, Inc was used to complete the numerical analysis of the T-wall. Conventional LEM slope stability analysis and

Fargo Moorhead Metropolitan Area Draft Design Documentation Report Flood Risk Management Project Inlet Diversion

Appendix D, Attachment 6: FLAC Analysis of Floodwall

DDR_FMM_DIS_App_D_Attach_6_FLAC_revised_20160119.docx Appendix D, Attachment 6: Page 19

Within FLAC, an end bearing spring cannot be included. Instead, the shear spring of the last pile segment must be modified to include the end-bearing component. This means that the bottom most pile element is a combination of the t-z curve (skin friction) and q-z (end bearing).

The q-z curve is converted to an equivalent end bearing shear spring (teq) using the following relationship.

𝑒𝑒𝑢𝑢𝑞𝑞 =𝑄𝑄𝑡𝑡𝐿𝐿𝑢𝑢𝑒𝑒𝑒𝑒

Where

Leff is the length of the last pile segment

The behavior of the teq spring was modeled after the results of the pile load test completed by the Corps in 2012, see Appendix D, Attachment 12: Pile Load Test and Design Method of the General Report: Geotechnical Engineering and Geology see. From the pile load test load-displacement curve, as shown in Figure 12, the following relationship was obtained.

𝑞𝑞𝑞𝑞𝑚𝑚𝑚𝑚𝑚𝑚

= 25.565𝑧𝑧3 − 25.9𝑧𝑧2 + 8.8036𝑧𝑧

Figure 12: Load Displacement Curve from 2012 Pile Load Test

Page 28: Attachment D-6: FLAC Analysis · (FLAC) 7.0 by Itasca Consulting Group, Inc was used to complete the numerical analysis of the T-wall. Conventional LEM slope stability analysis and

Fargo Moorhead Metropolitan Area Draft Design Documentation Report Flood Risk Management Project Inlet Diversion

Appendix D, Attachment 6: FLAC Analysis of Floodwall

DDR_FMM_DIS_App_D_Attach_6_FLAC_revised_20160119.docx Appendix D, Attachment 6: Page 20

4.6.2.1 Undrained Shear Spring Constants

Using the above equations, t-z curves were developed for the various materials. But FLAC only allows bi-linear envelopes to be inputted for the shear coupling springs. Therefore, the t-z curves had to be simplified into two values. These values are the coupling spring shear stiffness (cs_sstiff) and the coupling spring shear cohesion (cs_scoh). The stiffness was taken as the slope of the bi-linear curve that started at the origin and truncates at z/Dequiv = 0.006, which is approximately 0.1 inches. The cohesion was taken as the ultimate shear resistance (tmax). Sample t-z curves and simplified bi-linear curves for the different formations are shown in Figure 13. The combined undrained t-z and q-z curves and simplified bi-linear curve for the bottom pile element is shown in Figure 14.

Figure 13: Simplified Undrained t-z Curves

Page 29: Attachment D-6: FLAC Analysis · (FLAC) 7.0 by Itasca Consulting Group, Inc was used to complete the numerical analysis of the T-wall. Conventional LEM slope stability analysis and

Fargo Moorhead Metropolitan Area Draft Design Documentation Report Flood Risk Management Project Inlet Diversion

Appendix D, Attachment 6: FLAC Analysis of Floodwall

DDR_FMM_DIS_App_D_Attach_6_FLAC_revised_20160119.docx Appendix D, Attachment 6: Page 21

Figure 14: Simplified Undrained Combined t-z and q-z Curve for Pile Segment at Tip

4.6.2.2 Drained Shear Spring Constants

The drained shear spring constants were developed for the various materials in a similar manner as the undrained shear springs. Sample t-z curves and simplified bi-linear curves for the different formations are shown in Figure 15. The combined undrained t-z and q-z curves and simplified bi-linear curve for the bottom pile element is shown in Figure 16.

Page 30: Attachment D-6: FLAC Analysis · (FLAC) 7.0 by Itasca Consulting Group, Inc was used to complete the numerical analysis of the T-wall. Conventional LEM slope stability analysis and

Fargo Moorhead Metropolitan Area Draft Design Documentation Report Flood Risk Management Project Inlet Diversion

Appendix D, Attachment 6: FLAC Analysis of Floodwall

DDR_FMM_DIS_App_D_Attach_6_FLAC_revised_20160119.docx Appendix D, Attachment 6: Page 22

Figure 15: Simplified Drained t-z Curves

Figure 16: Simplified Drained Combined t-z and q-z Curve for Pile Segment at Tip

Page 31: Attachment D-6: FLAC Analysis · (FLAC) 7.0 by Itasca Consulting Group, Inc was used to complete the numerical analysis of the T-wall. Conventional LEM slope stability analysis and

Fargo Moorhead Metropolitan Area Draft Design Documentation Report Flood Risk Management Project Inlet Diversion

Appendix D, Attachment 6: FLAC Analysis of Floodwall

DDR_FMM_DIS_App_D_Attach_6_FLAC_revised_20160119.docx Appendix D, Attachment 6: Page 23

4.7. Flood Loading

The final stage of the FLAC model was to solve for the flood loading conditions. The flood loading was modeled be applying pressures and increasing the ground water table, and can be separated into three parts. The first part was applying pressures to the ground surface and to the T-wall that was equivalent to the depth of water. The “apply pressure” command was used in FLAC which applied the pressures normal to the surface. The second part was increasing the ground water table to match the flood loading condition. The final part was to apply seepage uplift pressures to the T-wall footing (which is discussed in detail below). The applied pressures (represented as red arrows) and the groundwater table (represented as a blue line) can be seen below in Figure 17.

Figure 17: Applied Pressures and Ground Water Table for the Drained Condition at Flood Stage of 922.

As indicated above, FLAC does not handle extreme changes so applying the flood loading to EL. 922 ft from a starting ground elevation of 901 ft was broken into 11 steps. In each step, the upstream pool elevation was increased by 2 feet, except for Step 11, in which the pool elevation was increased only by 1 foot. The ultimate condition of pool to EL. 926 ft with tailwater of 910 ft was completed using 7 additional steps. In Steps 12 through 17, the tailwater elevation was increased from 888 ft to 910 ft in 3-foot or 4-foot increments. In Step 18, the upstream pool elevation was increased from EL. 922 ft to EL. 926 ft. These steps are shown above in Figure 5.

The flood loading for both undrained and drained behavior was solved in “large” strain mode.

5. FLAC Results

The results of the DIS T-wall analysis for the various “solved” states are described and indicated below.

It should be noted that the sign convention of the results is important and thus explained below.

Page 32: Attachment D-6: FLAC Analysis · (FLAC) 7.0 by Itasca Consulting Group, Inc was used to complete the numerical analysis of the T-wall. Conventional LEM slope stability analysis and

Fargo Moorhead Metropolitan Area Draft Design Documentation Report Flood Risk Management Project Inlet Diversion

Appendix D, Attachment 6: FLAC Analysis of Floodwall

DDR_FMM_DIS_App_D_Attach_6_FLAC_revised_20160119.docx Appendix D, Attachment 6: Page 24

• X-Displacement: Positive values indicate movement in the upstream direction whereas negative values indicate movement in the downstream directions

• Bending Moments: Positive values indicate that the upstream side of the pile is in compression and the downstream side is in tension. Negative values indicate that the downstream side of the pile is in compression and the upstream side is in tension.

The nomenclature for stresses within FLAC is distinctive and thus explained also.

• Syy – total stress on the “y” plane (as defined by the direction of the normal of the plane) in the “y” direction, a.k.a. vertical stress

• Sxx – total stress on the “x” plane in the “x” direction, a.k.a. horizontal stress in the “x” direction

• Szz – total stress on the “z” plane in the “z” direction, a.k.a. horizontal stress into the page • Esxx - effective stress on the “x” plane in the “x” direction, a.k.a. horizontal stress in the “x”

direction

5.1. Initial Stresses

As indicated above, initial stresses were installed into the FLAC model and then the FLAC model was solved elastically. It was found that the initial stresses installed and those that were solved for compared reasonable well as shown in Figure 18.

Figure 18: Stress Check at U/S Face of T-wall

Page 33: Attachment D-6: FLAC Analysis · (FLAC) 7.0 by Itasca Consulting Group, Inc was used to complete the numerical analysis of the T-wall. Conventional LEM slope stability analysis and

Fargo Moorhead Metropolitan Area Draft Design Documentation Report Flood Risk Management Project Inlet Diversion

Appendix D, Attachment 6: FLAC Analysis of Floodwall

DDR_FMM_DIS_App_D_Attach_6_FLAC_revised_20160119.docx Appendix D, Attachment 6: Page 25

Figure 19:FLAC Syy Plot for Initial Conditions

Figure 20: FLAC Sxx Plot Initial Conditions

Page 34: Attachment D-6: FLAC Analysis · (FLAC) 7.0 by Itasca Consulting Group, Inc was used to complete the numerical analysis of the T-wall. Conventional LEM slope stability analysis and

Fargo Moorhead Metropolitan Area Draft Design Documentation Report Flood Risk Management Project Inlet Diversion

Appendix D, Attachment 6: FLAC Analysis of Floodwall

DDR_FMM_DIS_App_D_Attach_6_FLAC_revised_20160119.docx Appendix D, Attachment 6: Page 26

5.2. Stresses After Excavation

The excavation from the existing grade of EL. 915 ft to final grade (EL. 901 ft on upstream/connecting channel and EL. 888 ft on downstream/diversion channel) was completed in seven steps, each step being solved for. A comparison of the solved stresses after excavation and hand calculated values was done at a location upstream of the T-wall in the connecting channel and also downstream in the diversion channel. It was found that the solved stresses were comparable for the most part to the hand calculated values. The exception was the total and effective horizontal stresses near the top of the final grade. Near the top of the final grade, FLAC’s computed horizontal stresses were larger than the hand calculated stresses. One thought is that FLAC’s horizontal stresses are “locked” in and when the excavation takes place, the horizontal stresses are not allowed to relax completely. This is depicted in Figure 21 and Figure 22.

Figure 21: Stresses after Excavation in Bottom of Diversion Channel (Downstream of T-wall)

Page 35: Attachment D-6: FLAC Analysis · (FLAC) 7.0 by Itasca Consulting Group, Inc was used to complete the numerical analysis of the T-wall. Conventional LEM slope stability analysis and

Fargo Moorhead Metropolitan Area Draft Design Documentation Report Flood Risk Management Project Inlet Diversion

Appendix D, Attachment 6: FLAC Analysis of Floodwall

DDR_FMM_DIS_App_D_Attach_6_FLAC_revised_20160119.docx Appendix D, Attachment 6: Page 27

Figure 22: Stresses after Excavation in Bottom of Connecting Channel (Upstream of T-wall)

Page 36: Attachment D-6: FLAC Analysis · (FLAC) 7.0 by Itasca Consulting Group, Inc was used to complete the numerical analysis of the T-wall. Conventional LEM slope stability analysis and

Fargo Moorhead Metropolitan Area Draft Design Documentation Report Flood Risk Management Project Inlet Diversion

Appendix D, Attachment 6: FLAC Analysis of Floodwall

DDR_FMM_DIS_App_D_Attach_6_FLAC_revised_20160119.docx Appendix D, Attachment 6: Page 28

Figure 23: FLAC Syy Plot after Excavation

Figure 24: FLAC Sxx Plot after Excavation

Page 37: Attachment D-6: FLAC Analysis · (FLAC) 7.0 by Itasca Consulting Group, Inc was used to complete the numerical analysis of the T-wall. Conventional LEM slope stability analysis and

Fargo Moorhead Metropolitan Area Draft Design Documentation Report Flood Risk Management Project Inlet Diversion

Appendix D, Attachment 6: FLAC Analysis of Floodwall

DDR_FMM_DIS_App_D_Attach_6_FLAC_revised_20160119.docx Appendix D, Attachment 6: Page 29

5.3. Undrained Flood Loading

For the flood loading to 922, the maximum bending moment (~25 kip-ft) occurs at the top of Pile 1 (upstream pile). High bending moments (~17 kip-ft) also occur near the Argusville / “Weathered” Till contact (EL. 848 ft) in all the piles. The bending moments in the piles for flood loading to 926 (with a tailwater of EL. 910 ft) are reduced by at least 30% from those of the flood loading to 922. This is due to the stabilizing force of the tailwater. This is shown in Figure 25.

The X-displacements along the length of the pile are very similar for all three piles, within 0.02 of an inch. For the flood loading to 922, the maximum X-displacement is around 0.58 inches in the downstream direction. With the flood loading of 926 and tailwater of 910, the maximum X-displacement is reduce to around 0.39 inches. This is shown in Figure 26.

Figure 25: Moment under Undrained Behavior

Page 38: Attachment D-6: FLAC Analysis · (FLAC) 7.0 by Itasca Consulting Group, Inc was used to complete the numerical analysis of the T-wall. Conventional LEM slope stability analysis and

Fargo Moorhead Metropolitan Area Draft Design Documentation Report Flood Risk Management Project Inlet Diversion

Appendix D, Attachment 6: FLAC Analysis of Floodwall

DDR_FMM_DIS_App_D_Attach_6_FLAC_revised_20160119.docx Appendix D, Attachment 6: Page 30

Figure 26: X-Displacement under Undrained Behavior

5.4. Drained Flood Loading

For the flood loading to 922, the maximum bending moment (~25 kip-ft) occurs at the top of Pile 3 (furthest downstream pile). High bending moments (~21 to 24 kip-ft) also occur near the Argusville / “Weathered” Till contact (EL. 848 ft) in all the piles. The bending moments in the piles for flood loading to 926 (with a tailwater of 910) are reduced by at least 30% from those of the flood loading to 922. This is due to the stabilizing force of the tailwater. This is shown in Figure 27.

The X-displacements along the length of the pile are very similar for all three piles, within 0.1 of an inch. For the flood loading to 922, the maximum X-displacement is around 0.85 inches in the downstream direction. With the flood loading of 926 and tailwater of 910, the maximum X-displacement is reduce to around 0.65 inches. This is shown in Figure 28.

Page 39: Attachment D-6: FLAC Analysis · (FLAC) 7.0 by Itasca Consulting Group, Inc was used to complete the numerical analysis of the T-wall. Conventional LEM slope stability analysis and

Fargo Moorhead Metropolitan Area Draft Design Documentation Report Flood Risk Management Project Inlet Diversion

Appendix D, Attachment 6: FLAC Analysis of Floodwall

DDR_FMM_DIS_App_D_Attach_6_FLAC_revised_20160119.docx Appendix D, Attachment 6: Page 31

Figure 27: Moment under Drained Behavior

Figure 28: X-Displacement under Drained Behavior

Page 40: Attachment D-6: FLAC Analysis · (FLAC) 7.0 by Itasca Consulting Group, Inc was used to complete the numerical analysis of the T-wall. Conventional LEM slope stability analysis and

Fargo Moorhead Metropolitan Area Draft Design Documentation Report Flood Risk Management Project Inlet Diversion

Appendix D, Attachment 6: FLAC Analysis of Floodwall

DDR_FMM_DIS_App_D_Attach_6_FLAC_revised_20160119.docx Appendix D, Attachment 6: Page 32

5.5. 922 Flood Loading Condition

The 922 Flood Loading Condition was found to be the most critical condition as the bending moments and X-displacements are reduced due to the raised tailwater which and provides a stabilizing force on the wall and slope. Comparisons of the drained versus undrained behavior under this condition are shown in Figure 29 and Figure 30.

Figure 29: Moment under Flood Loading Condition of Elevation 922 FT

Page 41: Attachment D-6: FLAC Analysis · (FLAC) 7.0 by Itasca Consulting Group, Inc was used to complete the numerical analysis of the T-wall. Conventional LEM slope stability analysis and

Fargo Moorhead Metropolitan Area Draft Design Documentation Report Flood Risk Management Project Inlet Diversion

Appendix D, Attachment 6: FLAC Analysis of Floodwall

DDR_FMM_DIS_App_D_Attach_6_FLAC_revised_20160119.docx Appendix D, Attachment 6: Page 33

Figure 30: X-Displacement under Flood Loading Condition of Elevation 922 FT

Page 42: Attachment D-6: FLAC Analysis · (FLAC) 7.0 by Itasca Consulting Group, Inc was used to complete the numerical analysis of the T-wall. Conventional LEM slope stability analysis and

Fargo Moorhead Metropolitan Area Draft Design Documentation Report Flood Risk Management Project Inlet Diversion

Appendix D, Attachment 6: FLAC Analysis of Floodwall

DDR_FMM_DIS_App_D_Attach_6_FLAC_revised_20160119.docx Appendix D, Attachment 6: Page 34

Figure 31: FLAC Y-Displacement Contours (Undrained, 922)

Figure 32: FLAC Y-Displacement Contours (Drained, 922)

Page 43: Attachment D-6: FLAC Analysis · (FLAC) 7.0 by Itasca Consulting Group, Inc was used to complete the numerical analysis of the T-wall. Conventional LEM slope stability analysis and

Fargo Moorhead Metropolitan Area Draft Design Documentation Report Flood Risk Management Project Inlet Diversion

Appendix D, Attachment 6: FLAC Analysis of Floodwall

DDR_FMM_DIS_App_D_Attach_6_FLAC_revised_20160119.docx Appendix D, Attachment 6: Page 35

Figure 33: FLAC X-Displacement Contours (Undrained, 922)

Figure 34: FLAC X-Displacement Contours (Drained, 922)

Page 44: Attachment D-6: FLAC Analysis · (FLAC) 7.0 by Itasca Consulting Group, Inc was used to complete the numerical analysis of the T-wall. Conventional LEM slope stability analysis and

Fargo Moorhead Metropolitan Area Draft Design Documentation Report Flood Risk Management Project Inlet Diversion

Appendix D, Attachment 6: FLAC Analysis of Floodwall

DDR_FMM_DIS_App_D_Attach_6_FLAC_revised_20160119.docx Appendix D, Attachment 6: Page 36

6. Modulus Sensitivity

The FLAC results are sensitive to the modulus values used. A change in modulus values was made to determine how sensitive the results are.

6.1. Softer Moduli

The selected modulus values were reduced to 1/5th of the initially selected values, making them softer. The softer drained shear modulus values compared favorably with the modulus values determined from the CPT soundings as shown in Figure 35 and Figure 36.

Figure 35: Comparison of CPT and Consolidation G’ values to “Softer” G’

Page 45: Attachment D-6: FLAC Analysis · (FLAC) 7.0 by Itasca Consulting Group, Inc was used to complete the numerical analysis of the T-wall. Conventional LEM slope stability analysis and

Fargo Moorhead Metropolitan Area Draft Design Documentation Report Flood Risk Management Project Inlet Diversion

Appendix D, Attachment 6: FLAC Analysis of Floodwall

DDR_FMM_DIS_App_D_Attach_6_FLAC_revised_20160119.docx Appendix D, Attachment 6: Page 37

Figure 36: Comparison of CPT and Consolidation G’ values to “Softer” G’

6.2. Result Comparison Using Softer Moduli

The softer moduli resulted in larger displacements and larger moments. The X-displacement was approximately 4 times greater and the moment was 3 to 4 times greater. These results are indicated in Figure 37 through Figure 40.

Page 46: Attachment D-6: FLAC Analysis · (FLAC) 7.0 by Itasca Consulting Group, Inc was used to complete the numerical analysis of the T-wall. Conventional LEM slope stability analysis and

Fargo Moorhead Metropolitan Area Draft Design Documentation Report Flood Risk Management Project Inlet Diversion

Appendix D, Attachment 6: FLAC Analysis of Floodwall

DDR_FMM_DIS_App_D_Attach_6_FLAC_revised_20160119.docx Appendix D, Attachment 6: Page 38

Figure 37: Undrained Moment Comparison between PM Moduli and Softer Moduli

Figure 38: Undrained X-Displacement Comparison between PM Moduli and Softer Moduli

Page 47: Attachment D-6: FLAC Analysis · (FLAC) 7.0 by Itasca Consulting Group, Inc was used to complete the numerical analysis of the T-wall. Conventional LEM slope stability analysis and

Fargo Moorhead Metropolitan Area Draft Design Documentation Report Flood Risk Management Project Inlet Diversion

Appendix D, Attachment 6: FLAC Analysis of Floodwall

DDR_FMM_DIS_App_D_Attach_6_FLAC_revised_20160119.docx Appendix D, Attachment 6: Page 39

Figure 39: Drained Moment Comparison between PM Moduli and Softer Moduli

Figure 40: Drained X-Displacement Comparison between PM Moduli and Softer Moduli

Page 48: Attachment D-6: FLAC Analysis · (FLAC) 7.0 by Itasca Consulting Group, Inc was used to complete the numerical analysis of the T-wall. Conventional LEM slope stability analysis and

Fargo Moorhead Metropolitan Area Draft Design Documentation Report Flood Risk Management Project Inlet Diversion

Appendix D, Attachment 6: FLAC Analysis of Floodwall

DDR_FMM_DIS_App_D_Attach_6_FLAC_revised_20160119.docx Appendix D, Attachment 6: Page 40

6.3. Softer Moduli Results

The comparison of the undrained to drained behavior was shown above in Section 5.5. It was found that using the softer moduli, the same sort of comparison between undrained and drained could be made as indicated in Figure 41 and Figure 42.

Figure 41: Drained and Undrained Moment Comparison using Softer Moduli

Page 49: Attachment D-6: FLAC Analysis · (FLAC) 7.0 by Itasca Consulting Group, Inc was used to complete the numerical analysis of the T-wall. Conventional LEM slope stability analysis and

Fargo Moorhead Metropolitan Area Draft Design Documentation Report Flood Risk Management Project Inlet Diversion

Appendix D, Attachment 6: FLAC Analysis of Floodwall

DDR_FMM_DIS_App_D_Attach_6_FLAC_revised_20160119.docx Appendix D, Attachment 6: Page 41

Figure 42: Drained and Undrained X-Displacement Comparison using Softer Moduli

7. STAAD

The Structural Section also modeled the DIS T-wall using a structural computer program called STAAD. The intent was that the behavior of the T-wall and piles would be found to be similar between FLAC and STAAD and that the structural design could be completed using STAAD. In addition, the T-wall including the bridge, piles, and Diversion Inlet structure was modeled in 3-dimensions within STAAD.

The modeling of the piles within STAAD is similar to FLAC, in which springs along the piles are used to model the behavior of the piles. There are major differences though between STAAD and FLAC and indicated below.

• Within STAAD, the piles are attached to a rigid body through the springs, whereas in FLAC, the piles are attached to a deformable soil mass through the springs.

• STAAD only uses normal springs along the pile and does not include any shear springs, which are used in FLAC.

• In the STAAD drained model, the unbalanced load from the limit equilibrium method (LEM) slope stability analysis is distributed along the piles above the LEM slip surface. In addition, the normal springs above the LEM slip surface are reduced to 50% of the original values.

• The vertical flood loading component is applied directly to the T-wall in the STAAD model. In FLAC, the vertical flood loading is applied to the ground surface and is transferred to the

Page 50: Attachment D-6: FLAC Analysis · (FLAC) 7.0 by Itasca Consulting Group, Inc was used to complete the numerical analysis of the T-wall. Conventional LEM slope stability analysis and

Fargo Moorhead Metropolitan Area Draft Design Documentation Report Flood Risk Management Project Inlet Diversion

Appendix D, Attachment 6: FLAC Analysis of Floodwall

DDR_FMM_DIS_App_D_Attach_6_FLAC_revised_20160119.docx Appendix D, Attachment 6: Page 42

T-wall through the soil. Also, in FLAC, this vertical flood loading extends upstream of the T-wall.

7.1. STAAD versus FLAC

The results of the STAAD modeling were compared to the results of the FLAC modeling. It was found that the maximum magnitude of the STAAD moments were 1.5 and 2 times greater than the FLAC modeling for the undrained and drained conditions, respectively. The X-displacements at the top of the piles were 3 and 2.7 times greater in the FLAC model than in the STAAD model for the undrained and drained conditions, respectively. The differences are believed to be due to the FLAC model accounts for the movement of the soil mass in additional to the movement of the pile within the soil mass. Whereas in STAAD, there is no soil mass modeled. These comparisons can be observed in the figures below.

Figure 43: Moment under Undrained Behavior, FLAC vs. STAAD Comparison for Flood Loading up to 922

Page 51: Attachment D-6: FLAC Analysis · (FLAC) 7.0 by Itasca Consulting Group, Inc was used to complete the numerical analysis of the T-wall. Conventional LEM slope stability analysis and

Fargo Moorhead Metropolitan Area Draft Design Documentation Report Flood Risk Management Project Inlet Diversion

Appendix D, Attachment 6: FLAC Analysis of Floodwall

DDR_FMM_DIS_App_D_Attach_6_FLAC_revised_20160119.docx Appendix D, Attachment 6: Page 43

Figure 44: Moment under Drained Behavior, FLAC vs. STAAD Comparison for Flood Loading up to 922

Figure 45: X-Displacement under Undrained Behavior, FLAC vs. STAAD Comparison for Flood Loading up

to 922

Page 52: Attachment D-6: FLAC Analysis · (FLAC) 7.0 by Itasca Consulting Group, Inc was used to complete the numerical analysis of the T-wall. Conventional LEM slope stability analysis and

Fargo Moorhead Metropolitan Area Draft Design Documentation Report Flood Risk Management Project Inlet Diversion

Appendix D, Attachment 6: FLAC Analysis of Floodwall

DDR_FMM_DIS_App_D_Attach_6_FLAC_revised_20160119.docx Appendix D, Attachment 6: Page 44

Figure 46: X-Displacement under Drained Behavior, FLAC vs. STAAD Comparison for Flood Loading up to

922

7.2. Axial Force – Bending Moment Interaction

The interaction of the axial load and bending moment was checked to make sure the structural capacity of the H-piles is not exceeded. This interaction is reported as a fraction and needs to be less than one to be o.k. Using the moments and axial force from STAAD, the interaction is much less than one.

A check of the force-bending interaction was also completed using the FLAC bending moments based on the softer moduli values. The interaction value was much higher due to the larger bending moments, but even so, the interaction was less than one. Therefore there is no anticipated issue with the structural capacity of the piles.

7.3. Wall Load Only Analysis

As indicated earlier, the results from the STAAD and FLAC models did not compare very well. This was a result of how the two different programs model the T-wall and springs. It was decided that the STAAD and FLAC models would be modified such that the modeling of the T-wall was as similar as possible.

7.3.1 STAAD Wall Load Only Analysis

The drained STAAD model was adjusted so it more closely resembled the FLAC model. The unbalanced distributed load was removed from the piles and the normal springs were modeled at full strength. The undrained STAAD model did not have to be adjusted at all.

Page 53: Attachment D-6: FLAC Analysis · (FLAC) 7.0 by Itasca Consulting Group, Inc was used to complete the numerical analysis of the T-wall. Conventional LEM slope stability analysis and

Fargo Moorhead Metropolitan Area Draft Design Documentation Report Flood Risk Management Project Inlet Diversion

Appendix D, Attachment 6: FLAC Analysis of Floodwall

DDR_FMM_DIS_App_D_Attach_6_FLAC_revised_20160119.docx Appendix D, Attachment 6: Page 45

The STAAD model results for undrained behavior indicate similar bending moments and X-displacements for both flood loading condition of 922 and 926, see Figure 47 and Figure 48. This is also the case for the drained behavior, see Figure 49 and Figure 50.

Figure 47: STAAD Undrained Bending Moment

Page 54: Attachment D-6: FLAC Analysis · (FLAC) 7.0 by Itasca Consulting Group, Inc was used to complete the numerical analysis of the T-wall. Conventional LEM slope stability analysis and

Fargo Moorhead Metropolitan Area Draft Design Documentation Report Flood Risk Management Project Inlet Diversion

Appendix D, Attachment 6: FLAC Analysis of Floodwall

DDR_FMM_DIS_App_D_Attach_6_FLAC_revised_20160119.docx Appendix D, Attachment 6: Page 46

Figure 48: STAAD Undrained X-Displacement

Figure 49: STAAD Drained Bending Moment

Page 55: Attachment D-6: FLAC Analysis · (FLAC) 7.0 by Itasca Consulting Group, Inc was used to complete the numerical analysis of the T-wall. Conventional LEM slope stability analysis and

Fargo Moorhead Metropolitan Area Draft Design Documentation Report Flood Risk Management Project Inlet Diversion

Appendix D, Attachment 6: FLAC Analysis of Floodwall

DDR_FMM_DIS_App_D_Attach_6_FLAC_revised_20160119.docx Appendix D, Attachment 6: Page 47

Figure 50: STAAD Drained X-Displacement

7.3.2 FLAC Wall Load Only Analysis

The FLAC model was adjusted so that the flood load was only applied to the wall. To do this, the soil above the T-wall footing was removed and an equivalent vertical pressure equal to the soil weight and the water weight was applied. In addition, no pressures were applied to the soil adjacent to the T-wall. This limited the influence of the flood loading to only the T-wall. This is shown below in Figure 51. In addition, for the drained analysis, buoyant unit weights of the materials were used instead of the ground water table.

Page 56: Attachment D-6: FLAC Analysis · (FLAC) 7.0 by Itasca Consulting Group, Inc was used to complete the numerical analysis of the T-wall. Conventional LEM slope stability analysis and

Fargo Moorhead Metropolitan Area Draft Design Documentation Report Flood Risk Management Project Inlet Diversion

Appendix D, Attachment 6: FLAC Analysis of Floodwall

DDR_FMM_DIS_App_D_Attach_6_FLAC_revised_20160119.docx Appendix D, Attachment 6: Page 48

Figure 51: FLAC Wall Load Only Analysis for Flood Loading Condition to 922 (Drained)

The FLAC model results for undrained behavior indicate similar bending moments and X-displacements for both flood loading condition of 922 and 926, see Figure 52 and Figure 53. This is also the case for the drained behavior, see Figure 54 and Figure 55. Similar undrained and drained bending moments are seen in Pile 1 (upstream) for the flood loading condition of 922. For Piles 2 and 2, the undrained bending moments are less than the drained, see Figure 56. The drained X-displacement is considerably larger than the undrained displacement, see Figure 57.

Page 57: Attachment D-6: FLAC Analysis · (FLAC) 7.0 by Itasca Consulting Group, Inc was used to complete the numerical analysis of the T-wall. Conventional LEM slope stability analysis and

Fargo Moorhead Metropolitan Area Draft Design Documentation Report Flood Risk Management Project Inlet Diversion

Appendix D, Attachment 6: FLAC Analysis of Floodwall

DDR_FMM_DIS_App_D_Attach_6_FLAC_revised_20160119.docx Appendix D, Attachment 6: Page 49

Figure 52: FLAC Undrained Bending Moment

Figure 53: FLAC Undrained X-Displacement

Page 58: Attachment D-6: FLAC Analysis · (FLAC) 7.0 by Itasca Consulting Group, Inc was used to complete the numerical analysis of the T-wall. Conventional LEM slope stability analysis and

Fargo Moorhead Metropolitan Area Draft Design Documentation Report Flood Risk Management Project Inlet Diversion

Appendix D, Attachment 6: FLAC Analysis of Floodwall

DDR_FMM_DIS_App_D_Attach_6_FLAC_revised_20160119.docx Appendix D, Attachment 6: Page 50

Figure 54: FLAC Drained Bending Moment

Figure 55: FLAC Drained X-Displacement

Page 59: Attachment D-6: FLAC Analysis · (FLAC) 7.0 by Itasca Consulting Group, Inc was used to complete the numerical analysis of the T-wall. Conventional LEM slope stability analysis and

Fargo Moorhead Metropolitan Area Draft Design Documentation Report Flood Risk Management Project Inlet Diversion

Appendix D, Attachment 6: FLAC Analysis of Floodwall

DDR_FMM_DIS_App_D_Attach_6_FLAC_revised_20160119.docx Appendix D, Attachment 6: Page 51

Figure 56: Bending Moment for FLAC Wall Load Only Analysis

Figure 57: X-Displacement for FLAC Wall Load Only Analysis

Page 60: Attachment D-6: FLAC Analysis · (FLAC) 7.0 by Itasca Consulting Group, Inc was used to complete the numerical analysis of the T-wall. Conventional LEM slope stability analysis and

Fargo Moorhead Metropolitan Area Draft Design Documentation Report Flood Risk Management Project Inlet Diversion

Appendix D, Attachment 6: FLAC Analysis of Floodwall

DDR_FMM_DIS_App_D_Attach_6_FLAC_revised_20160119.docx Appendix D, Attachment 6: Page 52

7.3.3 STAAD versus FLAC Results for Wall Load Only Analysis

When comparing the STAAD results to the FLAC results for the 922 flood loading condition, it was found that bending moments from the STAAD model were considerably higher than those in the FLAC model, see Figure 58 and Figure 59. The X-displacement at the top of piles for the undrained state was similar between the STAAD and FLAC models, see Figure 60. For the drained state, the STAAD X-displacements were much less, see Figure 61.

Figure 58: FLAC versus STAAD Undrained Bending Moment For Flood Loading of 922.

Page 61: Attachment D-6: FLAC Analysis · (FLAC) 7.0 by Itasca Consulting Group, Inc was used to complete the numerical analysis of the T-wall. Conventional LEM slope stability analysis and

Fargo Moorhead Metropolitan Area Draft Design Documentation Report Flood Risk Management Project Inlet Diversion

Appendix D, Attachment 6: FLAC Analysis of Floodwall

DDR_FMM_DIS_App_D_Attach_6_FLAC_revised_20160119.docx Appendix D, Attachment 6: Page 53

Figure 59: FLAC versus STAAD Drained Bending Moment For Flood Loading of 922.

Figure 60: FLAC versus STAAD Undrained X-Displacement For Flood Loading of 922.

Page 62: Attachment D-6: FLAC Analysis · (FLAC) 7.0 by Itasca Consulting Group, Inc was used to complete the numerical analysis of the T-wall. Conventional LEM slope stability analysis and

Fargo Moorhead Metropolitan Area Draft Design Documentation Report Flood Risk Management Project Inlet Diversion

Appendix D, Attachment 6: FLAC Analysis of Floodwall

DDR_FMM_DIS_App_D_Attach_6_FLAC_revised_20160119.docx Appendix D, Attachment 6: Page 54

Figure 61: FLAC versus STAAD Drained X-Displacement For Flood Loading of 922.

8. Summary

The DIS T-wall was analyzed using FLAC due to the interaction of the H-piles and soil which cannot easily be evaluated for using traditional methods of analyses. This numerical analysis was completed in a similar fashion as those completed for the HSDRRS. In addition, the STAAD program was used to analyze the T-wall and included unbalanced loads which were found using a LEM slope stability analysis. It was found that the results from the FLAC and STAAD models did not compare as well as what was found on the HSDRRS. The FLAC modeling provided the largest X-displacements (maximum of 0.85 inches) while the STAAD modeling resulted in the largest bending moments.

9. Conclusion

The advanced numerical modeling of the T-wall was an interative process. Throughout the process the model was continually adjusted and changes made to produce what was thought to be the most realistic behavior. These adjustments included changes in horizontal stresses and moduli values. In the end, it is felt that the FLAC displacements results are appropriate and the maximum X-displacement of 0.85 inches is within the range of allowable movement. The moments from FLAC are likely to be more realistic than the STAAD moments due to the fact the FLAC model considers the soil mass. Even so, the STAAD model produces higher bending moments than FLAC and will be used for the structural design of the T-wall and H-piles, which is conservative

Page 63: Attachment D-6: FLAC Analysis · (FLAC) 7.0 by Itasca Consulting Group, Inc was used to complete the numerical analysis of the T-wall. Conventional LEM slope stability analysis and

Fargo Moorhead Metropolitan Area Draft Design Documentation Report Flood Risk Management Project Inlet Diversion

Appendix D, Attachment 6: FLAC Analysis of Floodwall

DDR_FMM_DIS_App_D_Attach_6_FLAC_revised_20160119.docx Appendix D, Attachment 6: Page 55

10. References AMEC Environment & Infrastructure, Inc. Final Report Numerical Modeling and Evaluation of a Pile-Supported T-Wall in St. Bernard Parish, LPV 145, Repair Area 2. Oakland, California. December 2014

Duncan, J. Michael and Bursey, Andrew. Soil and Rock Modulus Correlations for Geotechnical Engineering. Center for Geotechnical Practice and Research. Blacksburg, Virginia. May 2007

Goble, Hannigan. P.J., etal. FHWA Design and Construction of Driven Pile Foundations. Washington DC. December 1996.

Reese, Lymon C., etal. Computer Program APile Plus Version 4.0 Technical Manual. Austin, Texas. 2004.

Reese, Lymon C., etal. Computer Program LPile Plus Version 5.0 Technical Manual. Austin, Texas. July 2004.

U.S. Army Corps of Engineers. EM 1110-2-2906, Design of Pile Foundations. Washington DC. January 15, 1991.

U.S. Army Corps of Engineers, St. Paul District. General Report: Geotechnical Design and Geology of the Fargo-Moorhead Metropolitan Area Flood Risk Management Project North Dakota Diversion Alignment. St. Paul, MN. May 13, 2013.

11. Exhibits Exhibit 1: DIS T-Wall FLAC Code Exhibit 2: Spring Calculations Exhibit 3: Results of FINAL FLAC Model Exhibit 4: Results of “Softer” FLAC Model Exhibit 5: Results of “Wall Load Only” FLAC Model

Page 64: Attachment D-6: FLAC Analysis · (FLAC) 7.0 by Itasca Consulting Group, Inc was used to complete the numerical analysis of the T-wall. Conventional LEM slope stability analysis and

Fargo Moorhead Metropolitan Area Draft Design Documentation Report Flood Risk Management Project Inlet Diversion

Appendix D, Attachment 6: FLAC Analysis of Floodwall

Exhibit 1: DIS T-Wall FLAC Code

Page 65: Attachment D-6: FLAC Analysis · (FLAC) 7.0 by Itasca Consulting Group, Inc was used to complete the numerical analysis of the T-wall. Conventional LEM slope stability analysis and

;Project Record Tree export ;File:T-Wall_Updated.dat ;Units: Imperial: foot-slug-second;Title:Existing Conditions ;Branch 1:01_Mesh.sav ;File: DIS_T-Wall_FINAL ;"FINAL" model is based on shear moduli correlated to pressuremeter (PM) tests. ;Many iterations were completed and final judgement was that shear moduli should be ;based on PM tests. New Orleans experince indicated the PM moduli provide good ;match to actual measured horizontal displacements. ;Revisions to "FINAL"model made starting 28 SEP 2015 by KAH. ;"FINAL" Model includes: ;1 - Initial horizontal streses based on Ko around 1 because soils are overconsolidated. ;2 - Shear strengths of Till based on PM results ;3 - Elastic parameters based on the following ; - Gundrained, PM selected to match PM test results ; - Kundrained, PM = f(G and nu) ; - Gdrained = Gundrained / 1.33 ; - Kdrained = f(G and nu) ; ;************************************************************* ;MESH GENERATION ;Step 1: Create overall grid. ;Step 2: Modify mesh. ;Step 3: Initialize mesh above ground surface to match 3-ft increments. ;************************************************************* config ats, extra 20 grid 222 84 model elastic gen -345,820 -345,933 351,933 351,820 ; ; ;Generate Block Associated with Bottom of Channel gen -345,820 -345,830 -145,830 -145,820 ratio 1,1 i 1,40 & j 1,6 gen -345,830 -345,842 -145,842 -145,830 ratio 1,1 i 1,40 & j 6,12 gen -345,842 -345,848 -145,848 -145,842 ratio 1,1 i 1,40 & j 12,15 gen -345,848 -345,864 -145,864 -145,848 ratio 1,1 i 1,40 & j 15,31 gen -345,864 -345,888 -145,888 -145,864 ratio 1,1 i 1,40 & j 31,55 gen -345,888 -345,893 -145,893 -145,888 ratio 1,1 i 1,40 & j 55,60 gen -345,893 -345,894 -145,894 -145,893 ratio 1,1 i 1,40 & j 60,61 gen -345,894 -345,895 -145,895 -145,894 ratio 1,1 i 1,40 & j 61,63 gen -345,895 -345,901 -145,901 -145,895 ratio 1,1 i 1,40 & j 63,69 gen -345,901 -345,905 -145,905 -145,901 ratio 1,1 i 1,40 & j 69,71 gen -345,905 -345,915 -145,915 -145,905 ratio 1,1 i 1,40 & j 71,76 gen -345,915 -345,933 -145,933 -145,915 ratio 1,1 i 1,40 & j 76,85 ; ; ;Generate Block Associated with Cut Slope gen -145,820 -145,830 -55,830 -55,820 ratio 1,1 i 40,70 j & 1,6 gen -145,830 -145,842 -55,842 -55,830 ratio 1,1 i 40,70 j & 6,12 gen -145,842 -145,848 -55,848 -55,842 ratio 1,1 i 40,70 j & 12,15 gen -145,848 -145,864 -55,864 -55,848 ratio 1,1 i 40,70 j & 15,31 gen -145,864 -145,888 -55,888 -55,864 ratio 1,1 i 40,70 j & 31,55 gen -145,888 -145,893 -55,893 -55,888 ratio 1,1 i 40,70 j & 55,60 gen -145,893 -145,894 -55,894 -55,893 ratio 1,1 i 40,70 j & 60,61 gen -145,894 -145,895 -55,895 -55,894 ratio 1,1 i 40,70 j & 61,63 gen -145,895 -145,901 -55,901 -55,895 ratio 1,1 i 40,70 j & 63,69 gen -145,901 -145,905 -55,905 -55,901 ratio 1,1 i 40,70 j & 69,71 gen -145,905 -145,915 -55,915 -55,905 ratio 1,1 i 40,70 j & 71,76 gen -145,915 -145,933 -55,933 -55,915 ratio 1,1 i 40,70 j & 76,85 ; ; ;Generate Block Associated with Flat Ground D/S of T-Wall gen -55,820 -55,830 -25,830 -25,820 ratio 1,1 i 70,85 j & 1,6 gen -55,830 -55,842 -25,842 -25,830 ratio 1,1 i 70,85 j & 6,12 gen -55,842 -55,848 -25,848 -25,842 ratio 1,1 i 70,85 j & 12,15 gen -55,848 -55,864 -25,864 -25,848 ratio 1,1 i 70,85 j & 15,31 gen -55,864 -55,888 -25,888 -25,864 ratio 1,1 i 70,85 j &

Page 66: Attachment D-6: FLAC Analysis · (FLAC) 7.0 by Itasca Consulting Group, Inc was used to complete the numerical analysis of the T-wall. Conventional LEM slope stability analysis and

31,55 gen -55,888 -55,893 -25,893 -25,888 ratio 1,1 i 70,85 j & 55,60 gen -55,893 -55,894 -25,894 -25,893 ratio 1,1 i 70,85 j & 60,61 gen -55,894 -55,895 -25,895 -25,894 ratio 1,1 i 70,85 j & 61,63 gen -55,895 -55,901 -25,901 -25,895 ratio 1,1 i 70,85 j & 63,69 gen -55,901 -55,905 -25,905 -25,901 ratio 1,1 i 70,85 j & 69,71 gen -55,905 -55,915 -25,915 -25,905 ratio 1,1 i 70,85 j & 71,76 gen -55,915 -55,933 -25,933 -25,915 ratio 1,1 i 70,85 j & 76,85 ; ; ;Generate Block Associated with Foundation Where Piles Extend Into gen -25,820 -25,830 -5,830 -5,820 ratio 1,1 i 85,105 j & 1,6 gen -25,830 -25,842 -5,842 -5,830 ratio 1,1 i 85,105 j & 6,12 gen -25,842 -25,848 -5,848 -5,842 ratio 1,1 i 85,105 j & 12,15 gen -25,848 -25,864 -5,864 -5,848 ratio 1,1 i 85,105 j & 15,31 gen -25,864 -25,888 -5,888 -5,864 ratio 1,1 i 85,105 j & 31,55 gen -25,888 -25,893 -5,893 -5,888 ratio 1,1 i 85,105 j & 55,60 gen -25,893 -25,894 -5,894 -5,893 ratio 1,1 i 85,105 j & 60,61 gen -25,894 -25,895 -5,895 -5,894 ratio 1,1 i 85,105 j & 61,63 gen -25,895 -25,901 -5,901 -5,895 ratio 1,1 i 85,105 j & 63,69 gen -25,901 -25,905 -5,905 -5,901 ratio 1,1 i 85,105 j & 69,71 gen -25,905 -25,915 -5,915 -5,905 ratio 1,1 i 85,105 j & 71,76 gen -25,915 -25,933 -5,933 -5,915 ratio 1,1 i 85,105 j & 76,85 ; ; ;Generate Block Associated with Null Zone Around T-Wall gen -5,820 -5,830 -4,830 -4,820 ratio 1,1 i 105,107 j & 1,6 gen -5,830 -5,842 -4,842 -4,830 ratio 1,1 i 105,107 j & 6,12 gen -5,842 -5,848 -4,848 -4,842 ratio 1,1 i 105,107 j & 12,15 gen -5,848 -5,864 -4,864 -4,848 ratio 1,1 i 105,107 j & 15,31 gen -5,864 -5,888 -4,888 -4,864 ratio 1,1 i 105,107 j & 31,55 gen -5,888 -5,893 -4,893 -4,888 ratio 1,1 i 105,107 j & 55,60 gen -5,893 -5,894 -4,894 -4,893 ratio 1,1 i 105,107 j & 60,61 gen -5,894 -5,895 -4,895 -4,894 ratio 1,1 i 105,107 j & 61,63 gen -5,895 -5,901 -4,901 -4,895 ratio 1,1 i 105,107 j & 63,69 gen -5,901 -5,905 -4,905 -4,901 ratio 1,1 i 105,107 j & 69,71 gen -5,905 -5,915 -4,915 -4,905 ratio 1,1 i 105,107 j & 71,76 gen -5,915 -5,933 -4,933 -4,915 ratio 1,1 i 105,107 j & 76,85 ; ; ;Generate Block Associated with T-Wall gen -4,820 -4,830 14,830 14,820 ratio 1,1 i 107,125 j & 1,6 gen -4,830 -4,842 14,842 14,830 ratio 1,1 i 107,125 j & 6,12 gen -4,842 -4,848 14,848 14,842 ratio 1,1 i 107,125 j & 12,15 gen -4,848 -4,864 14,864 14,848 ratio 1,1 i 107,125 j & 15,31 gen -4,864 -4,888 14,888 14,864 ratio 1,1 i 107,125 j & 31,55 gen -4,888 -4,893 14,893 14,888 ratio 1,1 i 107,125 j & 55,60 gen -4,893 -4,894 14,894 14,893 ratio 1,1 i 107,125 j & 60,61 gen -4,894 -4,895 14,895 14,894 ratio 1,1 i 107,125 j & 61,63 gen -4,895 -4,901 14,901 14,895 ratio 1,1 i 107,125 j & 63,69 gen -4,901 -4,905 14,905 14,901 ratio 1,1 i 107,125 j & 69,71 gen -4,905 -4,915 14,915 14,905 ratio 1,1 i 107,125 j & 71,76 gen -4,915 -4,933 14,933 14,915 ratio 1,1 i 107,125 j &

Page 67: Attachment D-6: FLAC Analysis · (FLAC) 7.0 by Itasca Consulting Group, Inc was used to complete the numerical analysis of the T-wall. Conventional LEM slope stability analysis and

76,85 ; ; ;Generate Block Associated with Null Zone Around T-Wall gen 14,820 14,830 15,830 15,820 ratio 1,1 i 125,127 j & 1,6 gen 14,830 14,842 15,842 15,830 ratio 1,1 i 125,127 j & 6,12 gen 14,842 14,848 15,848 15,842 ratio 1,1 i 125,127 j & 12,15 gen 14,848 14,864 15,864 15,848 ratio 1,1 i 125,127 j & 15,31 gen 14,864 14,888 15,888 15,864 ratio 1,1 i 125,127 j & 31,55 gen 14,888 14,893 15,893 15,888 ratio 1,1 i 125,127 j & 55,60 gen 14,893 14,894 15,894 15,893 ratio 1,1 i 125,127 j & 60,61 gen 14,894 14,895 15,895 15,894 ratio 1,1 i 125,127 j & 61,63 gen 14,895 14,901 15,901 15,895 ratio 1,1 i 125,127 j & 63,69 gen 14,901 14,905 15,905 15,901 ratio 1,1 i 125,127 j & 69,71 gen 14,905 14,915 15,915 15,905 ratio 1,1 i 125,127 j & 71,76 gen 14,915 14,933 15,933 15,915 ratio 1,1 i 125,127 j & 76,85 ; ; ;Generate Block Associated with Foundation Where Piles Extend Into gen 15,820 15,830 31,830 31,820 ratio 1,1 i 127,143 j & 1,6 gen 15,830 15,842 31,842 31,830 ratio 1,1 i 127,143 j & 6,12 gen 15,842 15,848 31,848 31,842 ratio 1,1 i 127,143 j & 12,15 gen 15,848 15,864 31,864 31,848 ratio 1,1 i 127,143 j & 15,31 gen 15,864 15,888 31,888 31,864 ratio 1,1 i 127,143 j & 31,55 gen 15,888 15,893 31,893 31,888 ratio 1,1 i 127,143 j & 55,60 gen 15,893 15,894 31,894 31,893 ratio 1,1 i 127,143 j & 60,61 gen 15,894 15,895 31,895 31,894 ratio 1,1 i 127,143 j & 61,63 gen 15,895 15,901 31,901 31,895 ratio 1,1 i 127,143 j & 63,69 gen 15,901 15,905 31,905 31,901 ratio 1,1 i 127,143 j & 69,71 gen 15,905 15,915 31,915 31,905 ratio 1,1 i 127,143 j & 71,76 gen 15,915 15,933 31,933 31,915 ratio 1,1 i 127,143 j & 76,85 ; ; ;Generate Block Associated with U/S Connecting Channel gen 31,820 31,830 151,830 151,820 ratio 1,1 i 143,183 j & 1,6 gen 31,830 31,842 151,842 151,830 ratio 1,1 i 143,183 j & 6,12 gen 31,842 31,848 151,848 151,842 ratio 1,1 i 143,183 j & 12,15 gen 31,848 31,864 151,864 151,848 ratio 1,1 i 143,183 j & 15,31 gen 31,864 31,888 151,888 151,864 ratio 1,1 i 143,183 j & 31,55 gen 31,888 31,893 151,893 151,888 ratio 1,1 i 143,183 j & 55,60 gen 31,893 31,894 151,894 151,893 ratio 1,1 i 143,183 j & 60,61 gen 31,894 31,895 151,895 151,894 ratio 1,1 i 143,183 j & 61,63 gen 31,895 31,901 151,901 151,895 ratio 1,1 i 143,183 j & 63,69 gen 31,901 31,905 151,905 151,901 ratio 1,1 i 143,183 j & 69,71 gen 31,905 31,915 151,915 151,905 ratio 1,1 i 143,183 j & 71,76 gen 31,915 31,933 151,933 151,915 ratio 1,1 i 143,183 j & 76,85 ; ; ;Generate Block Associated with U/S Connecting Channel gen 151,820 151,830 351,830 351,820 ratio 1,1 i 183,223 j & 1,6 gen 151,830 151,842 351,842 351,830 ratio 1,1 i 183,223 j & 6,12 gen 151,842 151,848 351,848 351,842 ratio 1,1 i 183,223 j & 12,15 gen 151,848 151,864 351,864 351,848 ratio 1,1 i 183,223 j & 15,31 gen 151,864 151,888 351,888 351,864 ratio 1,1 i 183,223 j & 31,55

Page 68: Attachment D-6: FLAC Analysis · (FLAC) 7.0 by Itasca Consulting Group, Inc was used to complete the numerical analysis of the T-wall. Conventional LEM slope stability analysis and

gen 151,888 151,893 351,893 351,888 ratio 1,1 i 183,223 j & 55,60 gen 151,893 151,894 351,894 351,893 ratio 1,1 i 183,223 j & 60,61 gen 151,894 151,895 351,895 351,894 ratio 1,1 i 183,223 j & 61,63 gen 151,895 151,901 351,901 351,895 ratio 1,1 i 183,223 j & 63,69 gen 151,901 151,905 351,905 351,901 ratio 1,1 i 183,223 j & 69,71 gen 151,905 151,915 351,915 351,905 ratio 1,1 i 183,223 j & 71,76 gen 151,915 151,933 351,933 351,915 ratio 1,1 i 183,223 j & 76,85 ; save 01_Mesh.sav ;Branch 2:02_Stratigraphy.sav ;GENERATE STRATIGRAPHY ;CAUTION: Remember about the zones around T-Wall ;Step 1: Group the "j" zones into the formations ;Step 2: Group the zones aroud the T-Wall for interface ;***************************************** group 'Intact Till' j=1,5 group 'Intact Till' j=6,11 group 'Weathered Till' j=12,14 group 'Argusville' j=15,30 group 'Brenna' j=31,54 group 'Brenna' j=55,59 group 'Sherack' j=60,60 group 'Interface around T-Wall' j=61,62 group 'Sherack' j=63,68 group 'Sherack' j=69,70 group 'Sherack (Above GWT)' j=71,75 group 'Above Ground Surface' j=76,84 ; ;Interface associated with T-Wall Base (Horizontal) group 'Interface around T-Wall' i=105,106 group 'Interface around T-Wall' i=125,126 ; save 02_Stratigraphy.sav ;Branch 3:03_Wall_Config.sav ;GENERATE WALL CONFIGURATION ;Step 1: Input T-Wall configuration using tables. ;Step 2: Move grid points for the T-Wall (interative process). ;******************************************************************************* ;Generate T-Wall configuration using tables. table 701 -4,895 -4,898 0,898 0,901 0,915 2.5,915 3.5,898 & 14,898 14,895 table 702 0,915 0,932 1.5,932 2.5,915 table 703 -4,895 14,895 gen table 701 gen table 702 gen table 703 ; ;Move grid points for T-Wall ;Top of Wall to 932 initial y 932 j=84 ; ;Right side of T-Wall at base of stem initial x 3.5 i=114 j=66 initial y 898 i=114 j=66 ; ;Right side of T-Wall at Existing Ground initial x 2.4 i=113 j=76 initial y 915 i=113 j=76 ; ;Right side of T-Wall at Existing Ground initial x 2.6 i=114 j=76 initial y 915 i=114 j=76 ; ;Right side of T-Wall at Top initial x 1 i=112 j=84 initial y 932 i=112 j=84 ; save 03_Wall_Config.sav ;Branch 4:04_Wall_Mesh.sav ;MODIFIED T-WALL MESH FOR PILES AND BATTERED PILES ;Step: Move grid points within T-Wall mesh to account for the battered piles. ;******************************************************************* initial x 9 i=120 j=63 initial x 8.67 i=120 j=64 initial y 896 i=120 j=64 ; initial x 2.25 i=113 j=63 initial x 2.58 i=113 j=64 initial y 896 i=113 j=64 ; initial x -2.75 i=108 j=63 initial x -2.42 i=108 j=64 initial y 896 i=108 j=64 ; save 04_Wall_Mesh.sav

Page 69: Attachment D-6: FLAC Analysis · (FLAC) 7.0 by Itasca Consulting Group, Inc was used to complete the numerical analysis of the T-wall. Conventional LEM slope stability analysis and

;Branch 5:05_Final_Grade.sav ;GENERATE FINAL GRADE ;Step 1: Generate final grade using tables. ;Step 2: Adjust the grid points associated with interface and final slope. ;******************************************************************************* table 751 -450,888 -145,888 -54,901 -4,901 0,901 table 752 3.32,901 14,901 350,901 ; gen table 751 gen table 752 ; ;Step: Move grid points associated with interface and final slope. ;******************************************************************* initial x -106 i=53 j=60 initial y 893.5 i=53 j=60 ; initial x -100 i=55 j=62 initial y 894.5 i=55 j=62 ; initial x -97 i=56 j=62 initial y 894.5 i=56 j=62 ; initial x -97 i=56 j=63 initial y 895 i=56 j=63 ; initial x -94 i=57 j=63 initial y 895 i=57 j=63 save 05_Final_Grade.sav ;Branch 6:06_Null_Zones.sav ;NULL ZONES TO ALLOW FOR SLIPPAGE ALONG AND SEPERATION BETWEEN T-WALL AND SOIL ;Step: Null zones that will be used in the Attach command. ;******************************************************************************* ; Null zones beneath the T-Wall model null i = 1,105 j = 62 model null i = 126,222 j = 62 model null i = 107,124 j = 62 ; ;Null vertical zones on left side of T-Wall model null i = 106 j = 1,62 model null i = 106 j = 66,84 model null i = 106 j = 63,65 ; ;Null vertical zones on right side of T-Wall model null i = 125 j = 1,62 model null i = 125 j = 66,84 model null i = 125 j = 63,65 ; save 06_Null_Zones.sav ;Branch 7:07_Attach_Grid.sav ;ATTACH GRIDPOINTS (DO NOT ALLOW SLIPPAGE OR SEPERATION) ;Step: Attach grip points. ; ;Modification made by KAH on 28 SEP 2015 ;soil between footing and final grade surface not attached. ;instead, this will be given an interface. ;******************************************************************************* ;Attach grid points ;Horizontal line left of footing attach aside from 1,62 to 106,62 bside from 1,63 to 106,63 ; ;Horizontal line right of footing attach aside from 126,62 to 223,62 bside from 126,63 to 223,63 ; ;Vertical line left and below footing attach aside from 106,1 to 106,62 bside from 107,1 to 107,62 ; ;Vertical line left and above final grade attach aside from 106,70 to 106,85 bside from 107,70 to 107,85 ; ;Vertical line right and below footing attach aside from 125,1 to 125,62 bside from 126,1 to 126,62 ; ;Vertical line right and above final grade attach aside from 125,70 to 125,85 bside from 126,70 to 126,85 ; save 07_Attach_Grid.sav ;Branch 8:08_Wall_Interface.sav ;ATTACH GRIDPOINTS TO T-WALL MESH WITH INTERFACE ;Initially do not allow slippage or seperation. ;Later steps, slippage and/or seperation will be allowed ;Step: Attach grip points using an interface. ; ;Modification made by KAH to include an interface for soil above footing. ;******************************************************************************* ;Attach grid points with glued interface using an equivalent stiffness. ;Horizontal line beneath footing interface 101 aside from 125,62 to 107,62 bside from 125,63 to 107,63 interface 101 glued kn = 8367000 ks = 8367000 ; ; ;

Page 70: Attachment D-6: FLAC Analysis · (FLAC) 7.0 by Itasca Consulting Group, Inc was used to complete the numerical analysis of the T-wall. Conventional LEM slope stability analysis and

;Left vertical line at footing interface 102 aside from 106,63 to 106,66 bside from 107,63 to 107,66 interface 102 glued kn = 8367000 ks = 8367000 ; ; ; ;Right vertical line at footing interface 103 aside from 126,66 to 126,63 bside from 125,66 to 125,63 interface 103 glued kn = 8367000 ks = 8367000 ; ; ;Modification made by KAH on 28 SEP 2015 to include an interface for soil above footing. ;Left vertical line at above footing interface 104 aside from 106,67 to 106,69 bside from 107,67 to 107,69 interface 104 glued kn = 8567000 ks = 8567000 ; ; ; ;Right vertical line above footing interface 105 aside from 126,67 to 126,69 bside from 125,67 to 125,69 interface 105 glued kn = 8567000 ks = 8567000 ; save 08_Wall_Interface.sav ;Branch 9:09_Move_Zones.sav ;MOVE ATTACH AND INTERFACE POINTS ;Step 1: Move grid points together along attach and interface zones ;Step 2: Move and grid points for the T-Wall mess. ;Step 3: Reestablish the Interface Zone around T-Wall to correct materials ;******************************************************************************* ;Step 1: Move grid points ;Move grid points for T-Wall ;Horizontal Attach and Interface below T-Wall initial y 895 j=62 ; ;Vertical Attach and Interface Left of T-Wall initial x -4 i=106 ; ;Vertical Attach and Interface Right of T-Wall initial x 14 i=126 ; ;Step 2: Move gridpoints for T-Wall Mesh ;2nd Pile Grid Point initial x 2.25 i=113 j=62 initial y 895 i=113 j=62 ; ;3rd Pile Grid Point initial x -2.75 i=108 j=62 initial y 895 i=108 j=62 ; ;Step 3: Group the zones aroud the T-Wall (Interface) into the correct materials. ; group 'Sherack' i=1,105 j=61 group 'Sherack' i=107,124 j=61 group 'Sherack' i=126,222 j=61 ; ; group 'Intact Till' i=105 j=1,11 group 'Weathered Till' i=105 j=12,14 group 'Argusville' i=105 j=15,30 group 'Brenna' i=105 j=31,59 group 'Sherack' i=105 j=60,61 group 'Sherack' i=105 j=63,70 group 'Sherack (Above GWT)' i=105 j=71,75 ; group 'Intact Till' i=126 j=1,11 group 'Weathered Till' i=126 j=12,14 group 'Argusville' i=126 j=15,30 group 'Brenna' i=126 j=31,59 group 'Sherack' i=126 j=60,61 group 'Sherack' i=126 j=63,70 group 'Sherack (Above GWT)' i=126 j=71,75 ; save 09_Move_Zones.sav ;Branch 10:10_Initial_GWT.sav ;INITIAL GROUND WATER TABLE ;Set Ground Water Table ;***************************************** ; table 601 delete table 601 -345,905 351,905 water table 601 water density = 1.94 ; save 10_Initial_GWT.sav ;Branch 11:11_Existing_Conditions.sav ;MODEL EXISITNG CONDITIONS ;Step 1: Fix boundary conditions and apply gravity ;Step 2: Generate existing grade ;Step 3: Enter soil properties ;Step 4: Install initial stresses (modified by KAH on 21 AUG 2015) ;******************************************************************************* ;STEP 1: INPUT BOUNDARY CONDITIONS & GRAVTIY

Page 71: Attachment D-6: FLAC Analysis · (FLAC) 7.0 by Itasca Consulting Group, Inc was used to complete the numerical analysis of the T-wall. Conventional LEM slope stability analysis and

;Fix bottom of model in X&Y directions; fix sides in X direction ; fix x y i = 1,223 j = 1 fix x i = 1 fix x i = 223 ; ;Set Gravity set gravity = 32.2 ; ;******************************************************************************* ;STEP 2: GENERATE EXISTING GRADE ;Step: Null zones above existing ground surface ; ;Null mesh above ground surface model null i = 1,223 j = 76,85 group 'null' i = 1,223 j = 76,85 group delete 'null' ; ;******************************************************************************* ;STEP 3: ENTER SOIL PROPERTIES FOR ELASTIC SOLUTION ;Moduli values based on pressuremeter testing results (KAH 28 SEP 2015) ;Excluded cohesion as elastic solution is based on long-term, drained parameters. prop density = 3.571 bulk = 590000 shear = 200000 friction = 28 & group 'Sherack (Above GWT)' prop density = 3.571 bulk = 590000 shear = 200000 friction = 28 & group 'Sherack' prop density = 3.292 bulk = 610000 shear = 170000 friction = 24 & group 'Brenna' prop density = 3.416 bulk = 650000 shear = 190000 friction = 25 & group 'Argusville' prop density = 3.82 bulk = 5070000 shear = 2260000 friction = 34 & group 'Weathered Till' prop density = 3.82 bulk = 5480000 shear = 2860000 friction = 38 & group 'Intact Till' ; ;STEP 4: INSTALL INITIAL STRESSES ;Modification made by KAH on 21 AUG 2015 to account for higher horizontal ;stresses due to the soil being overconsolidated. ;Pore pressures installed by using Ground Water Table ; initial syy = -10808 var 0,1230 j= 1,6 initial syy = -9578 var 0,1476 j= 6,12 initial syy = -8102 var 0,738 j= 12,15 initial syy = -7364 var 0,1760 j= 15,31 initial syy = -5604 var 0,2544 j= 31,55 initial syy = -3060 var 0,530 j= 55,61 initial syy = -2530 var 0,230 j= 60,62 initial syy = -2300 var 0,690 j= 63,69 initial syy = -1610 var 0,460 j= 69,71 initial syy = -1150 var 0,1150 j= 71,76 ; ;Sxx & Szz initial sxx = -10271 var 0,1171 j= 1,6 initial sxx = -9100 var 0,1405 j= 6,12 initial sxx = -7923 var 0,723 j= 12,15 initial sxx = -6503 var 0,1588 j= 15,31 initial sxx = -5383 var 0,2468 j= 31,55 initial sxx = -2915 var 0,514 j= 55,61 initial sxx = -2473 var 0,227 j= 60,62 initial sxx = -2246 var 0,680 j= 63,69 initial sxx = -1566 var 0,453 j= 69,71 initial sxx = -1113 var 0,1113 j= 71,76 ; initial szz = -10271 var 0,1171 j= 1,6 initial szz = -9100 var 0,1405 j= 6,12 initial szz = -7923 var 0,723 j= 12,15 initial szz = -6503 var 0,1588 j= 15,31 initial szz = -5383 var 0,2468 j= 31,55 initial szz = -2915 var 0,514 j= 55,61 initial szz = -2473 var 0,227 j= 60,62 initial szz = -2246 var 0,680 j= 63,69 initial szz = -1566 var 0,453 j= 69,71 initial szz = -1113 var 0,1113 j= 71,76 ; save 11_Existing_Conditions.sav ;Branch 12:12_Histories.sav ;Histories to Track Y-Displacements ; History 201 ydispl I = 82 j = 69 ; Y-displacement at 901 on left History 202 ydispl I = 112 j = 69 ; Y-displacement at 901 at wall History 203 ydispl I = 170 j = 69 ; Y-displacement at 901 on right ; History 204 ydispl I = 20 j = 55 ; Y-displacement at 888 on far left History 205 ydispl I = 82 j = 55 ; Y-displacement at 888 on left History 206 ydispl I = 112 j = 55 ; Y-displacement at 888 at wall History 207 ydispl I = 170 j = 55 ; Y-displacement at 888 on right ; History 208 ydispl I = 20 j = 31 ; Y-displacement at B/A contact on far left History 209 ydispl I = 82 j = 31 ; Y-displacement at B/A contact on left History 210 ydispl I = 112 j = 31 ; Y-displacement at B/A contact on left History 211 ydispl I = 170 j = 31 ; Y-displacement at B/A contact on right ; History 212 ydispl I = 20 j = 15 ; Y-displacement at Till on far left History 213 ydispl I = 82 j = 15 ; Y-displacement at Till on left

Page 72: Attachment D-6: FLAC Analysis · (FLAC) 7.0 by Itasca Consulting Group, Inc was used to complete the numerical analysis of the T-wall. Conventional LEM slope stability analysis and

History 214 ydispl I = 112 j = 15 ; Y-displacement at Till on left History 215 ydispl I = 170 j = 15 ; Y-displacement at Till on right ; save 12_Histories.sav ;Branch 13:13_Solve_Initial_Conditions.sav history 999 unbalanced solve elastic save 13_Solve_Initial_Conditions.sav ;Branch 14:14_Excav_Phase_01.sav ;EXCAVATION TO FINAL GRADE ;Complete excavation in mutliple phases ;CAUTION: Must modify groundwater table as excavation ;extends below natural groundwater level. ;Zero out displacements and velocities from initial conditions elastic solution ; ;Zero displacements and velocities initial xvelocity = 0 yvelocity = 0 xdisplacement = 0 ydisplacement & =0 ; ;Phase 1 - Excavation down to 911 (Thickness = 4 ft) model null i=1,222 j=74,75 group 'null' i = 1,222 j = 74,75 group delete 'null' ; ;EXECUTE EXCAVATION BY SOLVING set flow = off solve save 14_Excav_Phase_01.sav ;Branch 15:14_Excav_Phase_02.sav ;Phase 2 - Excavation down to 907 (Thickness = 4 ft) model null i=1,222 j=72,73 group 'null' i = 1,222 j = 72,73 group delete 'null' ; ;EXECUTE EXCAVATION BY SOLVING set flow = off solve save 14_Excav_Phase_02.sav ;Branch 16:14_Excav_Phase_03.sav ;Phase 3 - Excavation down to 903 (Thickness = 4 ft) model null i=1,222 j=70,71 group 'null' i = 1,222 j = 70,71 group delete 'null' ; table 601 delete table 602 -345,903 -4,903 14,903 351,903 water table 602 ; ;EXECUTE EXCAVATION BY SOLVING set flow = off solve save 14_Excav_Phase_03.sav ;Branch 17:14_Excav_Phase_04.sav ;Phase 4 - Excavation down to 899 (Thickness = 4 ft) model null i=1,222 j=69 group 'null' i = 1,222 j = 69 group delete 'null' model null i=1,68 j=68 group 'null' i = 1,68 j = 68 group delete 'null' model null i=1,66 j=67 group 'null' i = 1,66 j = 67 group delete 'null' ; table 602 delete table 603 -345,899 -67,899 -53,901 351,901 water table 603 ; ;EXECUTE EXCAVATION BY SOLVING set flow = off solve save 14_Excav_Phase_04.sav ;Branch 18:14_Excav_Phase_05.sav ;Phase 5 - Excavation down to 895 (Thickness = 4 ft) model null i=1,63 j=66 group 'null' i = 1,63 j = 66 group delete 'null' model null i=1,61 j=65 group 'null' i = 1,61 j = 65 group delete 'null' model null i=1,59 j=64 group 'null' i = 1,59 j = 64 group delete 'null' model null i=1,56 j=63 group 'null' i = 1,56 j = 63 group delete 'null' ; table 603 delete table 604 -345,895 -94,895 -53,901 351,901

Page 73: Attachment D-6: FLAC Analysis · (FLAC) 7.0 by Itasca Consulting Group, Inc was used to complete the numerical analysis of the T-wall. Conventional LEM slope stability analysis and

water table 604 ; ;EXECUTE EXCAVATION BY SOLVING set flow = off solve save 14_Excav_Phase_05.sav ;Branch 19:14_Excav_Phase_06.sav ;Phase 6 - Excavation down to 891 (Thickness = 4 ft) model null i=1,54 j=61 group 'null' i = 1,54 j = 61 group delete 'null' model null i=1,52 j=60 group 'null' i = 1,52 j = 60 group delete 'null' model null i=1,50 j=59 group 'null' i = 1,50 j = 59 group delete 'null' model null i=1,47 j=58 group 'null' i = 1,47 j = 58 group delete 'null' ; table 604 delete table 605 -345,891 -124,891 -53,901 351,901 water table 605 ; ;EXECUTE EXCAVATION BY SOLVING set flow = off solve save 14_Excav_Phase_06.sav ;Branch 20:14_Excav_Phase_07.sav ;Phase 7 - Excavation down to 888 (Thickness = 3 ft) model null i=1,45 j=57 group 'null' i = 1,45 j = 57 group delete 'null' model null i=1,42 j=56 group 'null' i = 1,42 j = 56 group delete 'null' model null i=1,40 j=55 group 'null' i = 1,40 j = 55 group delete 'null' ; table 605 delete table 606 -345,888 -145,888 -53,901 351,901 water table 606 ; ;EXECUTE EXCAVATION BY SOLVING set flow = off solve save 14_Excav_Phase_07.sav ;Branch 21:15_T-Wall_Reinstalled.sav ;INSTALL CONCRETE T-WALL BACK INTO THE MODEL & REPLACE INTERFACES ;CAUTION: Need to turn nulled regions back on. ;Step 1: Reset mesh to original configuration ;Step 2: Turn nulled regions back on by making them elastic regions. ;Step 3: Group the T-Wall regions into Concrete. ;Step 4: Give properties to concrete. ;Step 5: Update interface properties to along for slippage and seperation. ;******************************************************************************* ;Step 1: Zero out displacements and velocities initial xvelocity = 0 yvelocity = 0 xdisplacement = 0 ydisplacement & =0 ; ;Step 2: Turn nulled regions back on by making them elastic regions model elastic region i=111 j=70 model elastic region i=111 j=79 ; ;Step 3: Assign concrete to T-Wall regions group 'concrete' region i = 111 j = 70 group 'concrete' region i = 111 j = 79 ; ;Step 4: Input concrete properties ;only input elastic properties prop density = 4.658 bulk = 368090000 shear = 220850000 group & 'concrete' ; ;Step 5: Allow slippage and seperation. ;Interface is based on undrained material properties ;Cohesion taken as 2/3 of the undrained shear strength. ;******************************************************************************* ;Remove the existing interfaces interface 101 remove interface 102 remove interface 103 remove ; ;modified by Kah on 28 SEP 2015 so that soil above footing has interface ; interface 104 remove interface 105 remove ; ;Attach grid points with unglued interface and equal to shear strength. ; ;Horizontal line beneath footing

Page 74: Attachment D-6: FLAC Analysis · (FLAC) 7.0 by Itasca Consulting Group, Inc was used to complete the numerical analysis of the T-wall. Conventional LEM slope stability analysis and

interface 111 aside from 125,62 to 107,62 bside from 125,63 to 107,63 interface 111 unglued kn = 112233000 ks = 112233000 cohesion = 433 & dilation = 0 friction = 0 tbond = 0 sbratio =100 bslip = off ; ;Left vertical line at footing interface 112 aside from 106,63 to 106,66 bside from 107,63 to 107,66 interface 112 unglued kn = 112233000 ks = 112233000 cohesion = 433 & dilation = 0 friction = 0 tbond = 0 sbratio =100 bslip = off ; ;Right vertical line at footing interface 113 aside from 126,66 to 126,63 bside from 125,66 to 125,63 interface 113 unglued kn = 112233000 ks = 112233000 cohesion = 433 & dilation = 0 friction = 0 tbond = 0 sbratio =100 bslip = off ; ;modified by Kah on 28 SEP 2015 so that soil above footing has interface ; ;Left vertical line above footing interface 114 aside from 106,67 to 106,69 bside from 107,67 to 107,69 interface 114 unglued kn = 132567000 ks = 132567000 cohesion = 600 & dilation = 0 friction = 0 tbond = 0 sbratio =100 bslip = off ; ;Right vertical line above footing interface 115 aside from 126,67 to 126,69 bside from 125,67 to 125,69 interface 115 unglued kn = 132567000 ks = 132567000 cohesion = 600 & dilation = 0 friction = 0 tbond = 0 sbratio =100 bslip = off ; save 15_T-Wall_Reinstalled.sav ;Branch 22:16_Install_Piles.sav ;INSTALL PILES INTO MODEL USING PILE ELEMENTS ;Set the top two pile nodes to the mesh within the T-Wall footing ;Each segment will be given different property number ;Define the segment property number ;Define the geometric properties and Young's Modulus and Perimeter ;Coupling-spring constants will be defined in following save state ;******************************************************************************* ;First Pile struct node 1 grid 120,64 struct node 2 grid 120,63 struct node 3 9.17,894.5 struct node 4 9.5,893.5 struct node 5 9.83,892.5 struct node 6 10.17,891.5 struct node 7 10.5,890.5 struct node 8 10.83,889.5 struct node 9 11.17,888.5 struct node 10 11.5,887.5 struct node 11 11.83,886.5 struct node 12 12.17,885.5 struct node 13 12.5,884.5 struct node 14 12.83,883.5 struct node 15 13.17,882.5 struct node 16 13.5,881.5 struct node 17 13.83,880.5 struct node 18 14.17,879.5 struct node 19 14.5,878.5 struct node 20 14.83,877.5 struct node 21 15.17,876.5 struct node 22 15.5,875.5 struct node 23 15.83,874.5 struct node 24 16.17,873.5 struct node 25 16.5,872.5 struct node 26 16.83,871.5 struct node 27 17.17,870.5 struct node 28 17.5,869.5 struct node 29 17.83,868.5 struct node 30 18.17,867.5 struct node 31 18.5,866.5 struct node 32 18.83,865.5 struct node 33 19.17,864.5 struct node 34 19.5,863.5 struct node 35 19.83,862.5 struct node 36 20.17,861.5 struct node 37 20.5,860.5 struct node 38 20.83,859.5 struct node 39 21.17,858.5 struct node 40 21.5,857.5 struct node 41 21.83,856.5 struct node 42 22.17,855.5 struct node 43 22.5,854.5 struct node 44 22.83,853.5 struct node 45 23.17,852.5 struct node 46 23.5,851.5 struct node 47 23.83,850.5 struct node 48 24.17,849.5 struct node 49 24.5,848.5 struct node 50 25,847 struct node 51 25.67,845 struct node 52 26.33,843 struct node 53 27,841 struct node 54 27.67,839 struct node 55 28.33,837 struct node 56 28.67,836 ; struct pile begin node 1 end node 2 seg 1 prop 3001

Page 75: Attachment D-6: FLAC Analysis · (FLAC) 7.0 by Itasca Consulting Group, Inc was used to complete the numerical analysis of the T-wall. Conventional LEM slope stability analysis and

struct pile begin node 2 end node 3 seg 1 prop 3002 struct pile begin node 3 end node 4 seg 1 prop 3003 struct pile begin node 4 end node 5 seg 1 prop 3004 struct pile begin node 5 end node 6 seg 1 prop 3005 struct pile begin node 6 end node 7 seg 1 prop 3006 struct pile begin node 7 end node 8 seg 1 prop 3007 struct pile begin node 8 end node 9 seg 1 prop 3008 struct pile begin node 9 end node 10 seg 1 prop 3009 struct pile begin node 10 end node 11 seg 1 prop 3010 struct pile begin node 11 end node 12 seg 1 prop 3011 struct pile begin node 12 end node 13 seg 1 prop 3012 struct pile begin node 13 end node 14 seg 1 prop 3013 struct pile begin node 14 end node 15 seg 1 prop 3014 struct pile begin node 15 end node 16 seg 1 prop 3015 struct pile begin node 16 end node 17 seg 1 prop 3016 struct pile begin node 17 end node 18 seg 1 prop 3017 struct pile begin node 18 end node 19 seg 1 prop 3018 struct pile begin node 19 end node 20 seg 1 prop 3019 struct pile begin node 20 end node 21 seg 1 prop 3020 struct pile begin node 21 end node 22 seg 1 prop 3021 struct pile begin node 22 end node 23 seg 1 prop 3022 struct pile begin node 23 end node 24 seg 1 prop 3023 struct pile begin node 24 end node 25 seg 1 prop 3024 struct pile begin node 25 end node 26 seg 1 prop 3025 struct pile begin node 26 end node 27 seg 1 prop 3026 struct pile begin node 27 end node 28 seg 1 prop 3027 struct pile begin node 28 end node 29 seg 1 prop 3028 struct pile begin node 29 end node 30 seg 1 prop 3029 struct pile begin node 30 end node 31 seg 1 prop 3030 struct pile begin node 31 end node 32 seg 1 prop 3031 struct pile begin node 32 end node 33 seg 1 prop 3032 struct pile begin node 33 end node 34 seg 1 prop 3033 struct pile begin node 34 end node 35 seg 1 prop 3034 struct pile begin node 35 end node 36 seg 1 prop 3035 struct pile begin node 36 end node 37 seg 1 prop 3036 struct pile begin node 37 end node 38 seg 1 prop 3037 struct pile begin node 38 end node 39 seg 1 prop 3038 struct pile begin node 39 end node 40 seg 1 prop 3039 struct pile begin node 40 end node 41 seg 1 prop 3040 struct pile begin node 41 end node 42 seg 1 prop 3041 struct pile begin node 42 end node 43 seg 1 prop 3042 struct pile begin node 43 end node 44 seg 1 prop 3043 struct pile begin node 44 end node 45 seg 1 prop 3044 struct pile begin node 45 end node 46 seg 1 prop 3045 struct pile begin node 46 end node 47 seg 1 prop 3046 struct pile begin node 47 end node 48 seg 1 prop 3047 struct pile begin node 48 end node 49 seg 1 prop 3048 struct pile begin node 49 end node 50 seg 1 prop 3049 struct pile begin node 50 end node 51 seg 1 prop 3050 struct pile begin node 51 end node 52 seg 1 prop 3051 struct pile begin node 52 end node 53 seg 1 prop 3052 struct pile begin node 53 end node 54 seg 1 prop 3053 struct pile begin node 54 end node 55 seg 1 prop 3054 struct pile begin node 55 end node 56 seg 1 prop 3055 ; struct prop 3001 struct prop 3002 struct prop 3003 struct prop 3004 struct prop 3005 struct prop 3006 struct prop 3007 struct prop 3008 struct prop 3009 struct prop 3010 struct prop 3011 struct prop 3012 struct prop 3013 struct prop 3014 struct prop 3015 struct prop 3016 struct prop 3017 struct prop 3018 struct prop 3019 struct prop 3020 struct prop 3021 struct prop 3022 struct prop 3023 struct prop 3024 struct prop 3025 struct prop 3026 struct prop 3027 struct prop 3028 struct prop 3029 struct prop 3030 struct prop 3031 struct prop 3032 struct prop 3033 struct prop 3034 struct prop 3035 struct prop 3036 struct prop 3037 struct prop 3038 struct prop 3039 struct prop 3040

Page 76: Attachment D-6: FLAC Analysis · (FLAC) 7.0 by Itasca Consulting Group, Inc was used to complete the numerical analysis of the T-wall. Conventional LEM slope stability analysis and

struct prop 3041 struct prop 3042 struct prop 3043 struct prop 3044 struct prop 3045 struct prop 3046 struct prop 3047 struct prop 3048 struct prop 3049 struct prop 3050 struct prop 3051 struct prop 3052 struct prop 3053 struct prop 3054 struct prop 3055 ; struct prop 3001 area = 0.14861 i = 0.03515625 e = 4176000000 & perimeter = 4.69917 spacing = 5 struct prop 3002 area = 0.14861 i = 0.03515625 e = 4176000000 & perimeter = 4.69917 spacing = 5 struct prop 3003 area = 0.14861 i = 0.03515625 e = 4176000000 & perimeter = 4.69917 spacing = 5 struct prop 3004 area = 0.14861 i = 0.03515625 e = 4176000000 & perimeter = 4.69917 spacing = 5 struct prop 3005 area = 0.14861 i = 0.03515625 e = 4176000000 & perimeter = 4.69917 spacing = 5 struct prop 3006 area = 0.14861 i = 0.03515625 e = 4176000000 & perimeter = 4.69917 spacing = 5 struct prop 3007 area = 0.14861 i = 0.03515625 e = 4176000000 & perimeter = 4.69917 spacing = 5 struct prop 3008 area = 0.14861 i = 0.03515625 e = 4176000000 & perimeter = 4.69917 spacing = 5 struct prop 3009 area = 0.14861 i = 0.03515625 e = 4176000000 & perimeter = 4.69917 spacing = 5 struct prop 3010 area = 0.14861 i = 0.03515625 e = 4176000000 & perimeter = 4.69917 spacing = 5 struct prop 3011 area = 0.14861 i = 0.03515625 e = 4176000000 & perimeter = 4.69917 spacing = 5 struct prop 3012 area = 0.14861 i = 0.03515625 e = 4176000000 & perimeter = 4.69917 spacing = 5 struct prop 3013 area = 0.14861 i = 0.03515625 e = 4176000000 & perimeter = 4.69917 spacing = 5 struct prop 3014 area = 0.14861 i = 0.03515625 e = 4176000000 & perimeter = 4.69917 spacing = 5 struct prop 3015 area = 0.14861 i = 0.03515625 e = 4176000000 & perimeter = 4.69917 spacing = 5 struct prop 3016 area = 0.14861 i = 0.03515625 e = 4176000000 & perimeter = 4.69917 spacing = 5 struct prop 3017 area = 0.14861 i = 0.03515625 e = 4176000000 & perimeter = 4.69917 spacing = 5 struct prop 3018 area = 0.14861 i = 0.03515625 e = 4176000000 & perimeter = 4.69917 spacing = 5 struct prop 3019 area = 0.14861 i = 0.03515625 e = 4176000000 & perimeter = 4.69917 spacing = 5 struct prop 3020 area = 0.14861 i = 0.03515625 e = 4176000000 & perimeter = 4.69917 spacing = 5 struct prop 3021 area = 0.14861 i = 0.03515625 e = 4176000000 & perimeter = 4.69917 spacing = 5 struct prop 3022 area = 0.14861 i = 0.03515625 e = 4176000000 & perimeter = 4.69917 spacing = 5 struct prop 3023 area = 0.14861 i = 0.03515625 e = 4176000000 & perimeter = 4.69917 spacing = 5 struct prop 3024 area = 0.14861 i = 0.03515625 e = 4176000000 & perimeter = 4.69917 spacing = 5 struct prop 3025 area = 0.14861 i = 0.03515625 e = 4176000000 & perimeter = 4.69917 spacing = 5 struct prop 3026 area = 0.14861 i = 0.03515625 e = 4176000000 & perimeter = 4.69917 spacing = 5 struct prop 3027 area = 0.14861 i = 0.03515625 e = 4176000000 & perimeter = 4.69917 spacing = 5 struct prop 3028 area = 0.14861 i = 0.03515625 e = 4176000000 & perimeter = 4.69917 spacing = 5 struct prop 3029 area = 0.14861 i = 0.03515625 e = 4176000000 & perimeter = 4.69917 spacing = 5 struct prop 3030 area = 0.14861 i = 0.03515625 e = 4176000000 & perimeter = 4.69917 spacing = 5 struct prop 3031 area = 0.14861 i = 0.03515625 e = 4176000000 & perimeter = 4.69917 spacing = 5 struct prop 3032 area = 0.14861 i = 0.03515625 e = 4176000000 & perimeter = 4.69917 spacing = 5 struct prop 3033 area = 0.14861 i = 0.03515625 e = 4176000000 & perimeter = 4.69917 spacing = 5 struct prop 3034 area = 0.14861 i = 0.03515625 e = 4176000000 & perimeter = 4.69917 spacing = 5 struct prop 3035 area = 0.14861 i = 0.03515625 e = 4176000000 & perimeter = 4.69917 spacing = 5 struct prop 3036 area = 0.14861 i = 0.03515625 e = 4176000000 & perimeter = 4.69917 spacing = 5 struct prop 3037 area = 0.14861 i = 0.03515625 e = 4176000000 & perimeter = 4.69917 spacing = 5 struct prop 3038 area = 0.14861 i = 0.03515625 e = 4176000000 & perimeter = 4.69917 spacing = 5 struct prop 3039 area = 0.14861 i = 0.03515625 e = 4176000000 & perimeter = 4.69917 spacing = 5 struct prop 3040 area = 0.14861 i = 0.03515625 e = 4176000000 &

Page 77: Attachment D-6: FLAC Analysis · (FLAC) 7.0 by Itasca Consulting Group, Inc was used to complete the numerical analysis of the T-wall. Conventional LEM slope stability analysis and

perimeter = 4.69917 spacing = 5 struct prop 3041 area = 0.14861 i = 0.03515625 e = 4176000000 & perimeter = 4.69917 spacing = 5 struct prop 3042 area = 0.14861 i = 0.03515625 e = 4176000000 & perimeter = 4.69917 spacing = 5 struct prop 3043 area = 0.14861 i = 0.03515625 e = 4176000000 & perimeter = 4.69917 spacing = 5 struct prop 3044 area = 0.14861 i = 0.03515625 e = 4176000000 & perimeter = 4.69917 spacing = 5 struct prop 3045 area = 0.14861 i = 0.03515625 e = 4176000000 & perimeter = 4.69917 spacing = 5 struct prop 3046 area = 0.14861 i = 0.03515625 e = 4176000000 & perimeter = 4.69917 spacing = 5 struct prop 3047 area = 0.14861 i = 0.03515625 e = 4176000000 & perimeter = 4.69917 spacing = 5 struct prop 3048 area = 0.14861 i = 0.03515625 e = 4176000000 & perimeter = 4.69917 spacing = 5 struct prop 3049 area = 0.14861 i = 0.03515625 e = 4176000000 & perimeter = 4.69917 spacing = 5 struct prop 3050 area = 0.14861 i = 0.03515625 e = 4176000000 & perimeter = 4.69917 spacing = 5 struct prop 3051 area = 0.14861 i = 0.03515625 e = 4176000000 & perimeter = 4.69917 spacing = 5 struct prop 3052 area = 0.14861 i = 0.03515625 e = 4176000000 & perimeter = 4.69917 spacing = 5 struct prop 3053 area = 0.14861 i = 0.03515625 e = 4176000000 & perimeter = 4.69917 spacing = 5 struct prop 3054 area = 0.14861 i = 0.03515625 e = 4176000000 & perimeter = 4.69917 spacing = 5 struct prop 3055 area = 0.14861 i = 0.03515625 e = 4176000000 & perimeter = 4.69917 spacing = 5 ; ;Second Pile struct node 57 grid 113,64 struct node 58 grid 113,63 struct node 59 2.08,894.5 struct node 60 1.75,893.5 struct node 61 1.42,892.5 struct node 62 1.08,891.5 struct node 63 0.75,890.5 struct node 64 0.42,889.5 struct node 65 0.08,888.5 struct node 66 -0.25,887.5 struct node 67 -0.58,886.5 struct node 68 -0.92,885.5 struct node 69 -1.25,884.5 struct node 70 -1.58,883.5 struct node 71 -1.92,882.5 struct node 72 -2.25,881.5 struct node 73 -2.58,880.5 struct node 74 -2.92,879.5 struct node 75 -3.25,878.5 struct node 76 -3.58,877.5 struct node 77 -3.92,876.5 struct node 78 -4.25,875.5 struct node 79 -4.58,874.5 struct node 80 -4.92,873.5 struct node 81 -5.25,872.5 struct node 82 -5.58,871.5 struct node 83 -5.92,870.5 struct node 84 -6.25,869.5 struct node 85 -6.58,868.5 struct node 86 -6.92,867.5 struct node 87 -7.25,866.5 struct node 88 -7.58,865.5 struct node 89 -7.92,864.5 struct node 90 -8.25,863.5 struct node 91 -8.58,862.5 struct node 92 -8.92,861.5 struct node 93 -9.25,860.5 struct node 94 -9.58,859.5 struct node 95 -9.92,858.5 struct node 96 -10.25,857.5 struct node 97 -10.58,856.5 struct node 98 -10.92,855.5 struct node 99 -11.25,854.5 struct node 100 -11.58,853.5 struct node 101 -11.92,852.5 struct node 102 -12.25,851.5 struct node 103 -12.58,850.5 struct node 104 -12.92,849.5 struct node 105 -13.25,848.5 struct node 106 -13.75,847 struct node 107 -14.42,845 struct node 108 -15.08,843 struct node 109 -15.75,841 struct node 110 -16.42,839 struct node 111 -17.08,837 struct node 112 -17.42,836 ; struct pile begin node 57 end node 58 seg 1 prop 3056 struct pile begin node 58 end node 59 seg 1 prop 3057 struct pile begin node 59 end node 60 seg 1 prop 3058 struct pile begin node 60 end node 61 seg 1 prop 3059 struct pile begin node 61 end node 62 seg 1 prop 3060

Page 78: Attachment D-6: FLAC Analysis · (FLAC) 7.0 by Itasca Consulting Group, Inc was used to complete the numerical analysis of the T-wall. Conventional LEM slope stability analysis and

struct pile begin node 62 end node 63 seg 1 prop 3061 struct pile begin node 63 end node 64 seg 1 prop 3062 struct pile begin node 64 end node 65 seg 1 prop 3063 struct pile begin node 65 end node 66 seg 1 prop 3064 struct pile begin node 66 end node 67 seg 1 prop 3065 struct pile begin node 67 end node 68 seg 1 prop 3066 struct pile begin node 68 end node 69 seg 1 prop 3067 struct pile begin node 69 end node 70 seg 1 prop 3068 struct pile begin node 70 end node 71 seg 1 prop 3069 struct pile begin node 71 end node 72 seg 1 prop 3070 struct pile begin node 72 end node 73 seg 1 prop 3071 struct pile begin node 73 end node 74 seg 1 prop 3072 struct pile begin node 74 end node 75 seg 1 prop 3073 struct pile begin node 75 end node 76 seg 1 prop 3074 struct pile begin node 76 end node 77 seg 1 prop 3075 struct pile begin node 77 end node 78 seg 1 prop 3076 struct pile begin node 78 end node 79 seg 1 prop 3077 struct pile begin node 79 end node 80 seg 1 prop 3078 struct pile begin node 80 end node 81 seg 1 prop 3079 struct pile begin node 81 end node 82 seg 1 prop 3080 struct pile begin node 82 end node 83 seg 1 prop 3081 struct pile begin node 83 end node 84 seg 1 prop 3082 struct pile begin node 84 end node 85 seg 1 prop 3083 struct pile begin node 85 end node 86 seg 1 prop 3084 struct pile begin node 86 end node 87 seg 1 prop 3085 struct pile begin node 87 end node 88 seg 1 prop 3086 struct pile begin node 88 end node 89 seg 1 prop 3087 struct pile begin node 89 end node 90 seg 1 prop 3088 struct pile begin node 90 end node 91 seg 1 prop 3089 struct pile begin node 91 end node 92 seg 1 prop 3090 struct pile begin node 92 end node 93 seg 1 prop 3091 struct pile begin node 93 end node 94 seg 1 prop 3092 struct pile begin node 94 end node 95 seg 1 prop 3093 struct pile begin node 95 end node 96 seg 1 prop 3094 struct pile begin node 96 end node 97 seg 1 prop 3095 struct pile begin node 97 end node 98 seg 1 prop 3096 struct pile begin node 98 end node 99 seg 1 prop 3097 struct pile begin node 99 end node 100 seg 1 prop 3098 struct pile begin node 100 end node 101 seg 1 prop 3099 struct pile begin node 101 end node 102 seg 1 prop 3100 struct pile begin node 102 end node 103 seg 1 prop 3101 struct pile begin node 103 end node 104 seg 1 prop 3102 struct pile begin node 104 end node 105 seg 1 prop 3103 struct pile begin node 105 end node 106 seg 1 prop 3104 struct pile begin node 106 end node 107 seg 1 prop 3105 struct pile begin node 107 end node 108 seg 1 prop 3106 struct pile begin node 108 end node 109 seg 1 prop 3107 struct pile begin node 109 end node 110 seg 1 prop 3108 struct pile begin node 110 end node 111 seg 1 prop 3109 struct pile begin node 111 end node 112 seg 1 prop 3110 ; struct prop 3056 struct prop 3057 struct prop 3058 struct prop 3059 struct prop 3060 struct prop 3061 struct prop 3062 struct prop 3063 struct prop 3064 struct prop 3065 struct prop 3066 struct prop 3067 struct prop 3068 struct prop 3069 struct prop 3070 struct prop 3071 struct prop 3072 struct prop 3073 struct prop 3074 struct prop 3075 struct prop 3076 struct prop 3077 struct prop 3078 struct prop 3079 struct prop 3080 struct prop 3081 struct prop 3082 struct prop 3083 struct prop 3084 struct prop 3085 struct prop 3086 struct prop 3087 struct prop 3088 struct prop 3089 struct prop 3090 struct prop 3091 struct prop 3092 struct prop 3093 struct prop 3094 struct prop 3095 struct prop 3096 struct prop 3097 struct prop 3098 struct prop 3099

Page 79: Attachment D-6: FLAC Analysis · (FLAC) 7.0 by Itasca Consulting Group, Inc was used to complete the numerical analysis of the T-wall. Conventional LEM slope stability analysis and

struct prop 3100 struct prop 3101 struct prop 3102 struct prop 3103 struct prop 3104 struct prop 3105 struct prop 3106 struct prop 3107 struct prop 3108 struct prop 3109 struct prop 3110 ; struct prop 3056 area = 0.14861 i = 0.03515625 e = 4176000000 & perimeter = 4.69917 spacing = 5 struct prop 3057 area = 0.14861 i = 0.03515625 e = 4176000000 & perimeter = 4.69917 spacing = 5 struct prop 3058 area = 0.14861 i = 0.03515625 e = 4176000000 & perimeter = 4.69917 spacing = 5 struct prop 3059 area = 0.14861 i = 0.03515625 e = 4176000000 & perimeter = 4.69917 spacing = 5 struct prop 3060 area = 0.14861 i = 0.03515625 e = 4176000000 & perimeter = 4.69917 spacing = 5 struct prop 3061 area = 0.14861 i = 0.03515625 e = 4176000000 & perimeter = 4.69917 spacing = 5 struct prop 3062 area = 0.14861 i = 0.03515625 e = 4176000000 & perimeter = 4.69917 spacing = 5 struct prop 3063 area = 0.14861 i = 0.03515625 e = 4176000000 & perimeter = 4.69917 spacing = 5 struct prop 3064 area = 0.14861 i = 0.03515625 e = 4176000000 & perimeter = 4.69917 spacing = 5 struct prop 3065 area = 0.14861 i = 0.03515625 e = 4176000000 & perimeter = 4.69917 spacing = 5 struct prop 3066 area = 0.14861 i = 0.03515625 e = 4176000000 & perimeter = 4.69917 spacing = 5 struct prop 3067 area = 0.14861 i = 0.03515625 e = 4176000000 & perimeter = 4.69917 spacing = 5 struct prop 3068 area = 0.14861 i = 0.03515625 e = 4176000000 & perimeter = 4.69917 spacing = 5 struct prop 3069 area = 0.14861 i = 0.03515625 e = 4176000000 & perimeter = 4.69917 spacing = 5 struct prop 3070 area = 0.14861 i = 0.03515625 e = 4176000000 & perimeter = 4.69917 spacing = 5 struct prop 3071 area = 0.14861 i = 0.03515625 e = 4176000000 & perimeter = 4.69917 spacing = 5 struct prop 3072 area = 0.14861 i = 0.03515625 e = 4176000000 & perimeter = 4.69917 spacing = 5 struct prop 3073 area = 0.14861 i = 0.03515625 e = 4176000000 & perimeter = 4.69917 spacing = 5 struct prop 3074 area = 0.14861 i = 0.03515625 e = 4176000000 & perimeter = 4.69917 spacing = 5 struct prop 3075 area = 0.14861 i = 0.03515625 e = 4176000000 & perimeter = 4.69917 spacing = 5 struct prop 3076 area = 0.14861 i = 0.03515625 e = 4176000000 & perimeter = 4.69917 spacing = 5 struct prop 3077 area = 0.14861 i = 0.03515625 e = 4176000000 & perimeter = 4.69917 spacing = 5 struct prop 3078 area = 0.14861 i = 0.03515625 e = 4176000000 & perimeter = 4.69917 spacing = 5 struct prop 3079 area = 0.14861 i = 0.03515625 e = 4176000000 & perimeter = 4.69917 spacing = 5 struct prop 3080 area = 0.14861 i = 0.03515625 e = 4176000000 & perimeter = 4.69917 spacing = 5 struct prop 3081 area = 0.14861 i = 0.03515625 e = 4176000000 & perimeter = 4.69917 spacing = 5 struct prop 3082 area = 0.14861 i = 0.03515625 e = 4176000000 & perimeter = 4.69917 spacing = 5 struct prop 3083 area = 0.14861 i = 0.03515625 e = 4176000000 & perimeter = 4.69917 spacing = 5 struct prop 3084 area = 0.14861 i = 0.03515625 e = 4176000000 & perimeter = 4.69917 spacing = 5 struct prop 3085 area = 0.14861 i = 0.03515625 e = 4176000000 & perimeter = 4.69917 spacing = 5 struct prop 3086 area = 0.14861 i = 0.03515625 e = 4176000000 & perimeter = 4.69917 spacing = 5 struct prop 3087 area = 0.14861 i = 0.03515625 e = 4176000000 & perimeter = 4.69917 spacing = 5 struct prop 3088 area = 0.14861 i = 0.03515625 e = 4176000000 & perimeter = 4.69917 spacing = 5 struct prop 3089 area = 0.14861 i = 0.03515625 e = 4176000000 & perimeter = 4.69917 spacing = 5 struct prop 3090 area = 0.14861 i = 0.03515625 e = 4176000000 & perimeter = 4.69917 spacing = 5 struct prop 3091 area = 0.14861 i = 0.03515625 e = 4176000000 & perimeter = 4.69917 spacing = 5 struct prop 3092 area = 0.14861 i = 0.03515625 e = 4176000000 & perimeter = 4.69917 spacing = 5 struct prop 3093 area = 0.14861 i = 0.03515625 e = 4176000000 & perimeter = 4.69917 spacing = 5 struct prop 3094 area = 0.14861 i = 0.03515625 e = 4176000000 & perimeter = 4.69917 spacing = 5 struct prop 3095 area = 0.14861 i = 0.03515625 e = 4176000000 & perimeter = 4.69917 spacing = 5 struct prop 3096 area = 0.14861 i = 0.03515625 e = 4176000000 & perimeter = 4.69917 spacing = 5 struct prop 3097 area = 0.14861 i = 0.03515625 e = 4176000000 &

Page 80: Attachment D-6: FLAC Analysis · (FLAC) 7.0 by Itasca Consulting Group, Inc was used to complete the numerical analysis of the T-wall. Conventional LEM slope stability analysis and

perimeter = 4.69917 spacing = 5 struct prop 3098 area = 0.14861 i = 0.03515625 e = 4176000000 & perimeter = 4.69917 spacing = 5 struct prop 3099 area = 0.14861 i = 0.03515625 e = 4176000000 & perimeter = 4.69917 spacing = 5 struct prop 3100 area = 0.14861 i = 0.03515625 e = 4176000000 & perimeter = 4.69917 spacing = 5 struct prop 3101 area = 0.14861 i = 0.03515625 e = 4176000000 & perimeter = 4.69917 spacing = 5 struct prop 3102 area = 0.14861 i = 0.03515625 e = 4176000000 & perimeter = 4.69917 spacing = 5 struct prop 3103 area = 0.14861 i = 0.03515625 e = 4176000000 & perimeter = 4.69917 spacing = 5 struct prop 3104 area = 0.14861 i = 0.03515625 e = 4176000000 & perimeter = 4.69917 spacing = 5 struct prop 3105 area = 0.14861 i = 0.03515625 e = 4176000000 & perimeter = 4.69917 spacing = 5 struct prop 3106 area = 0.14861 i = 0.03515625 e = 4176000000 & perimeter = 4.69917 spacing = 5 struct prop 3107 area = 0.14861 i = 0.03515625 e = 4176000000 & perimeter = 4.69917 spacing = 5 struct prop 3108 area = 0.14861 i = 0.03515625 e = 4176000000 & perimeter = 4.69917 spacing = 5 struct prop 3109 area = 0.14861 i = 0.03515625 e = 4176000000 & perimeter = 4.69917 spacing = 5 struct prop 3110 area = 0.14861 i = 0.03515625 e = 4176000000 & perimeter = 4.69917 spacing = 5 ; ;Third Pile struct node 113 grid 108,64 struct node 114 grid 108,63 struct node 115 -2.92,894.5 struct node 116 -3.25,893.5 struct node 117 -3.58,892.5 struct node 118 -3.92,891.5 struct node 119 -4.25,890.5 struct node 120 -4.58,889.5 struct node 121 -4.92,888.5 struct node 122 -5.25,887.5 struct node 123 -5.58,886.5 struct node 124 -5.92,885.5 struct node 125 -6.25,884.5 struct node 126 -6.58,883.5 struct node 127 -6.92,882.5 struct node 128 -7.25,881.5 struct node 129 -7.58,880.5 struct node 130 -7.92,879.5 struct node 131 -8.25,878.5 struct node 132 -8.58,877.5 struct node 133 -8.92,876.5 struct node 134 -9.25,875.5 struct node 135 -9.58,874.5 struct node 136 -9.92,873.5 struct node 137 -10.25,872.5 struct node 138 -10.58,871.5 struct node 139 -10.92,870.5 struct node 140 -11.25,869.5 struct node 141 -11.58,868.5 struct node 142 -11.92,867.5 struct node 143 -12.25,866.5 struct node 144 -12.58,865.5 struct node 145 -12.92,864.5 struct node 146 -13.25,863.5 struct node 147 -13.58,862.5 struct node 148 -13.92,861.5 struct node 149 -14.25,860.5 struct node 150 -14.58,859.5 struct node 151 -14.92,858.5 struct node 152 -15.25,857.5 struct node 153 -15.58,856.5 struct node 154 -15.92,855.5 struct node 155 -16.25,854.5 struct node 156 -16.58,853.5 struct node 157 -16.92,852.5 struct node 158 -17.25,851.5 struct node 159 -17.58,850.5 struct node 160 -17.92,849.5 struct node 161 -18.25,848.5 struct node 162 -18.75,847 struct node 163 -19.42,845 struct node 164 -20.08,843 struct node 165 -20.75,841 struct node 166 -21.42,839 struct node 167 -22.08,837 struct node 168 -22.42,836 ; struct pile begin node 113 end node 114 seg 1 prop 3111 struct pile begin node 114 end node 115 seg 1 prop 3112 struct pile begin node 115 end node 116 seg 1 prop 3113 struct pile begin node 116 end node 117 seg 1 prop 3114 struct pile begin node 117 end node 118 seg 1 prop 3115 struct pile begin node 118 end node 119 seg 1 prop 3116 struct pile begin node 119 end node 120 seg 1 prop 3117 struct pile begin node 120 end node 121 seg 1 prop 3118 struct pile begin node 121 end node 122 seg 1 prop 3119

Page 81: Attachment D-6: FLAC Analysis · (FLAC) 7.0 by Itasca Consulting Group, Inc was used to complete the numerical analysis of the T-wall. Conventional LEM slope stability analysis and

struct pile begin node 122 end node 123 seg 1 prop 3120 struct pile begin node 123 end node 124 seg 1 prop 3121 struct pile begin node 124 end node 125 seg 1 prop 3122 struct pile begin node 125 end node 126 seg 1 prop 3123 struct pile begin node 126 end node 127 seg 1 prop 3124 struct pile begin node 127 end node 128 seg 1 prop 3125 struct pile begin node 128 end node 129 seg 1 prop 3126 struct pile begin node 129 end node 130 seg 1 prop 3127 struct pile begin node 130 end node 131 seg 1 prop 3128 struct pile begin node 131 end node 132 seg 1 prop 3129 struct pile begin node 132 end node 133 seg 1 prop 3130 struct pile begin node 133 end node 134 seg 1 prop 3131 struct pile begin node 134 end node 135 seg 1 prop 3132 struct pile begin node 135 end node 136 seg 1 prop 3133 struct pile begin node 136 end node 137 seg 1 prop 3134 struct pile begin node 137 end node 138 seg 1 prop 3135 struct pile begin node 138 end node 139 seg 1 prop 3136 struct pile begin node 139 end node 140 seg 1 prop 3137 struct pile begin node 140 end node 141 seg 1 prop 3138 struct pile begin node 141 end node 142 seg 1 prop 3139 struct pile begin node 142 end node 143 seg 1 prop 3140 struct pile begin node 143 end node 144 seg 1 prop 3141 struct pile begin node 144 end node 145 seg 1 prop 3142 struct pile begin node 145 end node 146 seg 1 prop 3143 struct pile begin node 146 end node 147 seg 1 prop 3144 struct pile begin node 147 end node 148 seg 1 prop 3145 struct pile begin node 148 end node 149 seg 1 prop 3146 struct pile begin node 149 end node 150 seg 1 prop 3147 struct pile begin node 150 end node 151 seg 1 prop 3148 struct pile begin node 151 end node 152 seg 1 prop 3149 struct pile begin node 152 end node 153 seg 1 prop 3150 struct pile begin node 153 end node 154 seg 1 prop 3151 struct pile begin node 154 end node 155 seg 1 prop 3152 struct pile begin node 155 end node 156 seg 1 prop 3153 struct pile begin node 156 end node 157 seg 1 prop 3154 struct pile begin node 157 end node 158 seg 1 prop 3155 struct pile begin node 158 end node 159 seg 1 prop 3156 struct pile begin node 159 end node 160 seg 1 prop 3157 struct pile begin node 160 end node 161 seg 1 prop 3158 struct pile begin node 161 end node 162 seg 1 prop 3159 struct pile begin node 162 end node 163 seg 1 prop 3160 struct pile begin node 163 end node 164 seg 1 prop 3161 struct pile begin node 164 end node 165 seg 1 prop 3162 struct pile begin node 165 end node 166 seg 1 prop 3163 struct pile begin node 166 end node 167 seg 1 prop 3164 struct pile begin node 167 end node 168 seg 1 prop 3165 ; struct prop 3111 struct prop 3112 struct prop 3113 struct prop 3114 struct prop 3115 struct prop 3116 struct prop 3117 struct prop 3118 struct prop 3119 struct prop 3120 struct prop 3121 struct prop 3122 struct prop 3123 struct prop 3124 struct prop 3125 struct prop 3126 struct prop 3127 struct prop 3128 struct prop 3129 struct prop 3130 struct prop 3131 struct prop 3132 struct prop 3133 struct prop 3134 struct prop 3135 struct prop 3136 struct prop 3137 struct prop 3138 struct prop 3139 struct prop 3140 struct prop 3141 struct prop 3142 struct prop 3143 struct prop 3144 struct prop 3145 struct prop 3146 struct prop 3147 struct prop 3148 struct prop 3149 struct prop 3150 struct prop 3151 struct prop 3152 struct prop 3153 struct prop 3154 struct prop 3155 struct prop 3156 struct prop 3157 struct prop 3158

Page 82: Attachment D-6: FLAC Analysis · (FLAC) 7.0 by Itasca Consulting Group, Inc was used to complete the numerical analysis of the T-wall. Conventional LEM slope stability analysis and

struct prop 3159 struct prop 3160 struct prop 3161 struct prop 3162 struct prop 3163 struct prop 3164 struct prop 3165 ; struct prop 3111 area = 0.14861 i = 0.03515625 e = 4176000000 & perimeter = 4.69917 spacing = 5 struct prop 3112 area = 0.14861 i = 0.03515625 e = 4176000000 & perimeter = 4.69917 spacing = 5 struct prop 3113 area = 0.14861 i = 0.03515625 e = 4176000000 & perimeter = 4.69917 spacing = 5 struct prop 3114 area = 0.14861 i = 0.03515625 e = 4176000000 & perimeter = 4.69917 spacing = 5 struct prop 3115 area = 0.14861 i = 0.03515625 e = 4176000000 & perimeter = 4.69917 spacing = 5 struct prop 3116 area = 0.14861 i = 0.03515625 e = 4176000000 & perimeter = 4.69917 spacing = 5 struct prop 3117 area = 0.14861 i = 0.03515625 e = 4176000000 & perimeter = 4.69917 spacing = 5 struct prop 3118 area = 0.14861 i = 0.03515625 e = 4176000000 & perimeter = 4.69917 spacing = 5 struct prop 3119 area = 0.14861 i = 0.03515625 e = 4176000000 & perimeter = 4.69917 spacing = 5 struct prop 3120 area = 0.14861 i = 0.03515625 e = 4176000000 & perimeter = 4.69917 spacing = 5 struct prop 3121 area = 0.14861 i = 0.03515625 e = 4176000000 & perimeter = 4.69917 spacing = 5 struct prop 3122 area = 0.14861 i = 0.03515625 e = 4176000000 & perimeter = 4.69917 spacing = 5 struct prop 3123 area = 0.14861 i = 0.03515625 e = 4176000000 & perimeter = 4.69917 spacing = 5 struct prop 3124 area = 0.14861 i = 0.03515625 e = 4176000000 & perimeter = 4.69917 spacing = 5 struct prop 3125 area = 0.14861 i = 0.03515625 e = 4176000000 & perimeter = 4.69917 spacing = 5 struct prop 3126 area = 0.14861 i = 0.03515625 e = 4176000000 & perimeter = 4.69917 spacing = 5 struct prop 3127 area = 0.14861 i = 0.03515625 e = 4176000000 & perimeter = 4.69917 spacing = 5 struct prop 3128 area = 0.14861 i = 0.03515625 e = 4176000000 & perimeter = 4.69917 spacing = 5 struct prop 3129 area = 0.14861 i = 0.03515625 e = 4176000000 & perimeter = 4.69917 spacing = 5 struct prop 3130 area = 0.14861 i = 0.03515625 e = 4176000000 & perimeter = 4.69917 spacing = 5 struct prop 3131 area = 0.14861 i = 0.03515625 e = 4176000000 & perimeter = 4.69917 spacing = 5 struct prop 3132 area = 0.14861 i = 0.03515625 e = 4176000000 & perimeter = 4.69917 spacing = 5 struct prop 3133 area = 0.14861 i = 0.03515625 e = 4176000000 & perimeter = 4.69917 spacing = 5 struct prop 3134 area = 0.14861 i = 0.03515625 e = 4176000000 & perimeter = 4.69917 spacing = 5 struct prop 3135 area = 0.14861 i = 0.03515625 e = 4176000000 & perimeter = 4.69917 spacing = 5 struct prop 3136 area = 0.14861 i = 0.03515625 e = 4176000000 & perimeter = 4.69917 spacing = 5 struct prop 3137 area = 0.14861 i = 0.03515625 e = 4176000000 & perimeter = 4.69917 spacing = 5 struct prop 3138 area = 0.14861 i = 0.03515625 e = 4176000000 & perimeter = 4.69917 spacing = 5 struct prop 3139 area = 0.14861 i = 0.03515625 e = 4176000000 & perimeter = 4.69917 spacing = 5 struct prop 3140 area = 0.14861 i = 0.03515625 e = 4176000000 & perimeter = 4.69917 spacing = 5 struct prop 3141 area = 0.14861 i = 0.03515625 e = 4176000000 & perimeter = 4.69917 spacing = 5 struct prop 3142 area = 0.14861 i = 0.03515625 e = 4176000000 & perimeter = 4.69917 spacing = 5 struct prop 3143 area = 0.14861 i = 0.03515625 e = 4176000000 & perimeter = 4.69917 spacing = 5 struct prop 3144 area = 0.14861 i = 0.03515625 e = 4176000000 & perimeter = 4.69917 spacing = 5 struct prop 3145 area = 0.14861 i = 0.03515625 e = 4176000000 & perimeter = 4.69917 spacing = 5 struct prop 3146 area = 0.14861 i = 0.03515625 e = 4176000000 & perimeter = 4.69917 spacing = 5 struct prop 3147 area = 0.14861 i = 0.03515625 e = 4176000000 & perimeter = 4.69917 spacing = 5 struct prop 3148 area = 0.14861 i = 0.03515625 e = 4176000000 & perimeter = 4.69917 spacing = 5 struct prop 3149 area = 0.14861 i = 0.03515625 e = 4176000000 & perimeter = 4.69917 spacing = 5 struct prop 3150 area = 0.14861 i = 0.03515625 e = 4176000000 & perimeter = 4.69917 spacing = 5 struct prop 3151 area = 0.14861 i = 0.03515625 e = 4176000000 & perimeter = 4.69917 spacing = 5 struct prop 3152 area = 0.14861 i = 0.03515625 e = 4176000000 & perimeter = 4.69917 spacing = 5 struct prop 3153 area = 0.14861 i = 0.03515625 e = 4176000000 & perimeter = 4.69917 spacing = 5 struct prop 3154 area = 0.14861 i = 0.03515625 e = 4176000000 &

Page 83: Attachment D-6: FLAC Analysis · (FLAC) 7.0 by Itasca Consulting Group, Inc was used to complete the numerical analysis of the T-wall. Conventional LEM slope stability analysis and

perimeter = 4.69917 spacing = 5 struct prop 3155 area = 0.14861 i = 0.03515625 e = 4176000000 & perimeter = 4.69917 spacing = 5 struct prop 3156 area = 0.14861 i = 0.03515625 e = 4176000000 & perimeter = 4.69917 spacing = 5 struct prop 3157 area = 0.14861 i = 0.03515625 e = 4176000000 & perimeter = 4.69917 spacing = 5 struct prop 3158 area = 0.14861 i = 0.03515625 e = 4176000000 & perimeter = 4.69917 spacing = 5 struct prop 3159 area = 0.14861 i = 0.03515625 e = 4176000000 & perimeter = 4.69917 spacing = 5 struct prop 3160 area = 0.14861 i = 0.03515625 e = 4176000000 & perimeter = 4.69917 spacing = 5 struct prop 3161 area = 0.14861 i = 0.03515625 e = 4176000000 & perimeter = 4.69917 spacing = 5 struct prop 3162 area = 0.14861 i = 0.03515625 e = 4176000000 & perimeter = 4.69917 spacing = 5 struct prop 3163 area = 0.14861 i = 0.03515625 e = 4176000000 & perimeter = 4.69917 spacing = 5 struct prop 3164 area = 0.14861 i = 0.03515625 e = 4176000000 & perimeter = 4.69917 spacing = 5 struct prop 3165 area = 0.14861 i = 0.03515625 e = 4176000000 & perimeter = 4.69917 spacing = 5 ; save 16_Install_Piles.sav ;Branch 23:17_Histories_Wall_Displacement.sav ;Histories to Track Wall Displacements ; History 220 xdispl I = 111 j = 84 ; X-displacement at Top of Wall History 221 ydispl I = 111 j = 84 ; Y-displacement at Top of Wall ; History 222 xdispl I = 107 j = 66 ; X-displacement of Footing, Left Side History 223 ydispl I = 107 j = 66 ; Y-displacement of Footing, Left Side ; History 224 xdispl I = 125 j = 66 ; X-displacement of Footing, Right Side History 225 ydispl I = 125 j = 66 ; Y-displacement of Footing, Right Side ; save 17_Histories_Wall_Displacement.sav restore '17_Histories_Wall_Displacement.sav' ;Branch 0:18_Undrained_Springs.sav ;ENTER THE UNDRAINED COUPLING SPRING CONSTANTS FOR THE PILE ELEMENTS ;Enter the normal and shear spring constants ;End Bearing Shear Spring based on t & q combined (PLT) ;******************************************************************************* ; ;First Pile - Undrained Coupling Spring Constants struct prop 3001 cs_nstiff = 2000000 cs_ncoh = 65000 cs_nfric = 0 & cs_sstiff = 2000000 cs_scoh = 20000 cs_sfric = 0 cs_ngap = 0 struct prop 3002 cs_nstiff = 52000 cs_ncoh = 7000 cs_nfric = 0 & cs_sstiff = 532000 cs_scoh = 4229 cs_sfric = 0 cs_ngap = 0 struct prop 3003 cs_nstiff = 56000 cs_ncoh = 7000 cs_nfric = 0 & cs_sstiff = 532000 cs_scoh = 4229 cs_sfric = 0 cs_ngap = 0 struct prop 3004 cs_nstiff = 45000 cs_ncoh = 6000 cs_nfric = 0 & cs_sstiff = 384000 cs_scoh = 3054 cs_sfric = 0 cs_ngap = 0 struct prop 3005 cs_nstiff = 48000 cs_ncoh = 6000 cs_nfric = 0 & cs_sstiff = 384000 cs_scoh = 3054 cs_sfric = 0 cs_ngap = 0 struct prop 3006 cs_nstiff = 51000 cs_ncoh = 7000 cs_nfric = 0 & cs_sstiff = 384000 cs_scoh = 3054 cs_sfric = 0 cs_ngap = 0 struct prop 3007 cs_nstiff = 53000 cs_ncoh = 7000 cs_nfric = 0 & cs_sstiff = 384000 cs_scoh = 3054 cs_sfric = 0 cs_ngap = 0 struct prop 3008 cs_nstiff = 56000 cs_ncoh = 7000 cs_nfric = 0 & cs_sstiff = 384000 cs_scoh = 3054 cs_sfric = 0 cs_ngap = 0 struct prop 3009 cs_nstiff = 59000 cs_ncoh = 8000 cs_nfric = 0 & cs_sstiff = 384000 cs_scoh = 3054 cs_sfric = 0 cs_ngap = 0 struct prop 3010 cs_nstiff = 59000 cs_ncoh = 8000 cs_nfric = 0 & cs_sstiff = 384000 cs_scoh = 3054 cs_sfric = 0 cs_ngap = 0 struct prop 3011 cs_nstiff = 59000 cs_ncoh = 8000 cs_nfric = 0 & cs_sstiff = 384000 cs_scoh = 3054 cs_sfric = 0 cs_ngap = 0 struct prop 3012 cs_nstiff = 59000 cs_ncoh = 8000 cs_nfric = 0 & cs_sstiff = 384000 cs_scoh = 3054 cs_sfric = 0 cs_ngap = 0 struct prop 3013 cs_nstiff = 59000 cs_ncoh = 8000 cs_nfric = 0 & cs_sstiff = 384000 cs_scoh = 3054 cs_sfric = 0 cs_ngap = 0 struct prop 3014 cs_nstiff = 59000 cs_ncoh = 8000 cs_nfric = 0 & cs_sstiff = 384000 cs_scoh = 3054 cs_sfric = 0 cs_ngap = 0 struct prop 3015 cs_nstiff = 59000 cs_ncoh = 8000 cs_nfric = 0 & cs_sstiff = 384000 cs_scoh = 3054 cs_sfric = 0 cs_ngap = 0 struct prop 3016 cs_nstiff = 59000 cs_ncoh = 8000 cs_nfric = 0 & cs_sstiff = 384000 cs_scoh = 3054 cs_sfric = 0 cs_ngap = 0 struct prop 3017 cs_nstiff = 59000 cs_ncoh = 8000 cs_nfric = 0 & cs_sstiff = 384000 cs_scoh = 3054 cs_sfric = 0 cs_ngap = 0 struct prop 3018 cs_nstiff = 59000 cs_ncoh = 8000 cs_nfric = 0 & cs_sstiff = 384000 cs_scoh = 3054 cs_sfric = 0 cs_ngap = 0 struct prop 3019 cs_nstiff = 59000 cs_ncoh = 8000 cs_nfric = 0 & cs_sstiff = 384000 cs_scoh = 3054 cs_sfric = 0 cs_ngap = 0 struct prop 3020 cs_nstiff = 59000 cs_ncoh = 8000 cs_nfric = 0 & cs_sstiff = 384000 cs_scoh = 3054 cs_sfric = 0 cs_ngap = 0 struct prop 3021 cs_nstiff = 59000 cs_ncoh = 8000 cs_nfric = 0 & cs_sstiff = 384000 cs_scoh = 3054 cs_sfric = 0 cs_ngap = 0 struct prop 3022 cs_nstiff = 59000 cs_ncoh = 8000 cs_nfric = 0 & cs_sstiff = 384000 cs_scoh = 3054 cs_sfric = 0 cs_ngap = 0 struct prop 3023 cs_nstiff = 59000 cs_ncoh = 8000 cs_nfric = 0 & cs_sstiff = 384000 cs_scoh = 3054 cs_sfric = 0 cs_ngap = 0 struct prop 3024 cs_nstiff = 59000 cs_ncoh = 8000 cs_nfric = 0 &

Page 84: Attachment D-6: FLAC Analysis · (FLAC) 7.0 by Itasca Consulting Group, Inc was used to complete the numerical analysis of the T-wall. Conventional LEM slope stability analysis and

cs_sstiff = 384000 cs_scoh = 3054 cs_sfric = 0 cs_ngap = 0 struct prop 3025 cs_nstiff = 59000 cs_ncoh = 8000 cs_nfric = 0 & cs_sstiff = 384000 cs_scoh = 3054 cs_sfric = 0 cs_ngap = 0 struct prop 3026 cs_nstiff = 59000 cs_ncoh = 8000 cs_nfric = 0 & cs_sstiff = 384000 cs_scoh = 3054 cs_sfric = 0 cs_ngap = 0 struct prop 3027 cs_nstiff = 59000 cs_ncoh = 8000 cs_nfric = 0 & cs_sstiff = 384000 cs_scoh = 3054 cs_sfric = 0 cs_ngap = 0 struct prop 3028 cs_nstiff = 59000 cs_ncoh = 8000 cs_nfric = 0 & cs_sstiff = 384000 cs_scoh = 3054 cs_sfric = 0 cs_ngap = 0 struct prop 3029 cs_nstiff = 59000 cs_ncoh = 8000 cs_nfric = 0 & cs_sstiff = 384000 cs_scoh = 3054 cs_sfric = 0 cs_ngap = 0 struct prop 3030 cs_nstiff = 59000 cs_ncoh = 8000 cs_nfric = 0 & cs_sstiff = 384000 cs_scoh = 3054 cs_sfric = 0 cs_ngap = 0 struct prop 3031 cs_nstiff = 59000 cs_ncoh = 8000 cs_nfric = 0 & cs_sstiff = 384000 cs_scoh = 3054 cs_sfric = 0 cs_ngap = 0 struct prop 3032 cs_nstiff = 59000 cs_ncoh = 8000 cs_nfric = 0 & cs_sstiff = 384000 cs_scoh = 3054 cs_sfric = 0 cs_ngap = 0 struct prop 3033 cs_nstiff = 66000 cs_ncoh = 9000 cs_nfric = 0 & cs_sstiff = 432000 cs_scoh = 3430 cs_sfric = 0 cs_ngap = 0 struct prop 3034 cs_nstiff = 66000 cs_ncoh = 9000 cs_nfric = 0 & cs_sstiff = 432000 cs_scoh = 3430 cs_sfric = 0 cs_ngap = 0 struct prop 3035 cs_nstiff = 66000 cs_ncoh = 9000 cs_nfric = 0 & cs_sstiff = 432000 cs_scoh = 3430 cs_sfric = 0 cs_ngap = 0 struct prop 3036 cs_nstiff = 66000 cs_ncoh = 9000 cs_nfric = 0 & cs_sstiff = 432000 cs_scoh = 3430 cs_sfric = 0 cs_ngap = 0 struct prop 3037 cs_nstiff = 66000 cs_ncoh = 9000 cs_nfric = 0 & cs_sstiff = 432000 cs_scoh = 3430 cs_sfric = 0 cs_ngap = 0 struct prop 3038 cs_nstiff = 66000 cs_ncoh = 9000 cs_nfric = 0 & cs_sstiff = 432000 cs_scoh = 3430 cs_sfric = 0 cs_ngap = 0 struct prop 3039 cs_nstiff = 66000 cs_ncoh = 9000 cs_nfric = 0 & cs_sstiff = 432000 cs_scoh = 3430 cs_sfric = 0 cs_ngap = 0 struct prop 3040 cs_nstiff = 66000 cs_ncoh = 9000 cs_nfric = 0 & cs_sstiff = 432000 cs_scoh = 3430 cs_sfric = 0 cs_ngap = 0 struct prop 3041 cs_nstiff = 66000 cs_ncoh = 9000 cs_nfric = 0 & cs_sstiff = 432000 cs_scoh = 3430 cs_sfric = 0 cs_ngap = 0 struct prop 3042 cs_nstiff = 66000 cs_ncoh = 9000 cs_nfric = 0 & cs_sstiff = 432000 cs_scoh = 3430 cs_sfric = 0 cs_ngap = 0 struct prop 3043 cs_nstiff = 66000 cs_ncoh = 9000 cs_nfric = 0 & cs_sstiff = 432000 cs_scoh = 3430 cs_sfric = 0 cs_ngap = 0 struct prop 3044 cs_nstiff = 66000 cs_ncoh = 9000 cs_nfric = 0 & cs_sstiff = 432000 cs_scoh = 3430 cs_sfric = 0 cs_ngap = 0 struct prop 3045 cs_nstiff = 66000 cs_ncoh = 9000 cs_nfric = 0 & cs_sstiff = 432000 cs_scoh = 3430 cs_sfric = 0 cs_ngap = 0 struct prop 3046 cs_nstiff = 66000 cs_ncoh = 9000 cs_nfric = 0 & cs_sstiff = 432000 cs_scoh = 3430 cs_sfric = 0 cs_ngap = 0 struct prop 3047 cs_nstiff = 66000 cs_ncoh = 9000 cs_nfric = 0 & cs_sstiff = 432000 cs_scoh = 3430 cs_sfric = 0 cs_ngap = 0 struct prop 3048 cs_nstiff = 66000 cs_ncoh = 9000 cs_nfric = 0 & cs_sstiff = 432000 cs_scoh = 3430 cs_sfric = 0 cs_ngap = 0 struct prop 3049 cs_nstiff = 1080000 cs_ncoh = 36000 cs_nfric = 0 & cs_sstiff = 887000 cs_scoh = 7049 cs_sfric = 0 cs_ngap = 0 struct prop 3050 cs_nstiff = 1080000 cs_ncoh = 36000 cs_nfric = 0 & cs_sstiff = 887000 cs_scoh = 7049 cs_sfric = 0 cs_ngap = 0 struct prop 3051 cs_nstiff = 1080000 cs_ncoh = 36000 cs_nfric = 0 & cs_sstiff = 887000 cs_scoh = 7049 cs_sfric = 0 cs_ngap = 0 struct prop 3052 cs_nstiff = 1368000 cs_ncoh = 45000 cs_nfric = 0 & cs_sstiff = 1123000 cs_scoh = 8928 cs_sfric = 0 cs_ngap = 0 struct prop 3053 cs_nstiff = 1368000 cs_ncoh = 45000 cs_nfric = 0 & cs_sstiff = 1123000 cs_scoh = 8928 cs_sfric = 0 cs_ngap = 0 struct prop 3054 cs_nstiff = 1368000 cs_ncoh = 45000 cs_nfric = 0 & cs_sstiff = 1123000 cs_scoh = 8928 cs_sfric = 0 cs_ngap = 0 struct prop 3055 cs_nstiff = 1368000 cs_ncoh = 45000 cs_nfric = 1 & cs_sstiff = 6428000 cs_scoh = 53600 cs_sfric = 0 cs_ngap = 0 ; ;Second Pile - Undrained Coupling Spring Constants struct prop 3056 cs_nstiff = 2000000 cs_ncoh = 65000 cs_nfric = 0 & cs_sstiff = 2000000 cs_scoh = 20000 cs_sfric = 0 cs_ngap = 0 struct prop 3057 cs_nstiff = 52000 cs_ncoh = 7000 cs_nfric = 0 & cs_sstiff = 532000 cs_scoh = 4229 cs_sfric = 0 cs_ngap = 0 struct prop 3058 cs_nstiff = 56000 cs_ncoh = 7000 cs_nfric = 0 & cs_sstiff = 532000 cs_scoh = 4229 cs_sfric = 0 cs_ngap = 0 struct prop 3059 cs_nstiff = 45000 cs_ncoh = 6000 cs_nfric = 0 & cs_sstiff = 384000 cs_scoh = 3054 cs_sfric = 0 cs_ngap = 0 struct prop 3060 cs_nstiff = 48000 cs_ncoh = 6000 cs_nfric = 0 & cs_sstiff = 384000 cs_scoh = 3054 cs_sfric = 0 cs_ngap = 0 struct prop 3061 cs_nstiff = 51000 cs_ncoh = 7000 cs_nfric = 0 & cs_sstiff = 384000 cs_scoh = 3054 cs_sfric = 0 cs_ngap = 0 struct prop 3062 cs_nstiff = 53000 cs_ncoh = 7000 cs_nfric = 0 & cs_sstiff = 384000 cs_scoh = 3054 cs_sfric = 0 cs_ngap = 0 struct prop 3063 cs_nstiff = 56000 cs_ncoh = 7000 cs_nfric = 0 & cs_sstiff = 384000 cs_scoh = 3054 cs_sfric = 0 cs_ngap = 0 struct prop 3064 cs_nstiff = 59000 cs_ncoh = 8000 cs_nfric = 0 & cs_sstiff = 384000 cs_scoh = 3054 cs_sfric = 0 cs_ngap = 0 struct prop 3065 cs_nstiff = 59000 cs_ncoh = 8000 cs_nfric = 0 & cs_sstiff = 384000 cs_scoh = 3054 cs_sfric = 0 cs_ngap = 0 struct prop 3066 cs_nstiff = 59000 cs_ncoh = 8000 cs_nfric = 0 & cs_sstiff = 384000 cs_scoh = 3054 cs_sfric = 0 cs_ngap = 0 struct prop 3067 cs_nstiff = 59000 cs_ncoh = 8000 cs_nfric = 0 & cs_sstiff = 384000 cs_scoh = 3054 cs_sfric = 0 cs_ngap = 0 struct prop 3068 cs_nstiff = 59000 cs_ncoh = 8000 cs_nfric = 0 & cs_sstiff = 384000 cs_scoh = 3054 cs_sfric = 0 cs_ngap = 0 struct prop 3069 cs_nstiff = 59000 cs_ncoh = 8000 cs_nfric = 0 & cs_sstiff = 384000 cs_scoh = 3054 cs_sfric = 0 cs_ngap = 0 struct prop 3070 cs_nstiff = 59000 cs_ncoh = 8000 cs_nfric = 0 & cs_sstiff = 384000 cs_scoh = 3054 cs_sfric = 0 cs_ngap = 0

Page 85: Attachment D-6: FLAC Analysis · (FLAC) 7.0 by Itasca Consulting Group, Inc was used to complete the numerical analysis of the T-wall. Conventional LEM slope stability analysis and

struct prop 3071 cs_nstiff = 59000 cs_ncoh = 8000 cs_nfric = 0 & cs_sstiff = 384000 cs_scoh = 3054 cs_sfric = 0 cs_ngap = 0 struct prop 3072 cs_nstiff = 59000 cs_ncoh = 8000 cs_nfric = 0 & cs_sstiff = 384000 cs_scoh = 3054 cs_sfric = 0 cs_ngap = 0 struct prop 3073 cs_nstiff = 59000 cs_ncoh = 8000 cs_nfric = 0 & cs_sstiff = 384000 cs_scoh = 3054 cs_sfric = 0 cs_ngap = 0 struct prop 3074 cs_nstiff = 59000 cs_ncoh = 8000 cs_nfric = 0 & cs_sstiff = 384000 cs_scoh = 3054 cs_sfric = 0 cs_ngap = 0 struct prop 3075 cs_nstiff = 59000 cs_ncoh = 8000 cs_nfric = 0 & cs_sstiff = 384000 cs_scoh = 3054 cs_sfric = 0 cs_ngap = 0 struct prop 3076 cs_nstiff = 59000 cs_ncoh = 8000 cs_nfric = 0 & cs_sstiff = 384000 cs_scoh = 3054 cs_sfric = 0 cs_ngap = 0 struct prop 3077 cs_nstiff = 59000 cs_ncoh = 8000 cs_nfric = 0 & cs_sstiff = 384000 cs_scoh = 3054 cs_sfric = 0 cs_ngap = 0 struct prop 3078 cs_nstiff = 59000 cs_ncoh = 8000 cs_nfric = 0 & cs_sstiff = 384000 cs_scoh = 3054 cs_sfric = 0 cs_ngap = 0 struct prop 3079 cs_nstiff = 59000 cs_ncoh = 8000 cs_nfric = 0 & cs_sstiff = 384000 cs_scoh = 3054 cs_sfric = 0 cs_ngap = 0 struct prop 3080 cs_nstiff = 59000 cs_ncoh = 8000 cs_nfric = 0 & cs_sstiff = 384000 cs_scoh = 3054 cs_sfric = 0 cs_ngap = 0 struct prop 3081 cs_nstiff = 59000 cs_ncoh = 8000 cs_nfric = 0 & cs_sstiff = 384000 cs_scoh = 3054 cs_sfric = 0 cs_ngap = 0 struct prop 3082 cs_nstiff = 59000 cs_ncoh = 8000 cs_nfric = 0 & cs_sstiff = 384000 cs_scoh = 3054 cs_sfric = 0 cs_ngap = 0 struct prop 3083 cs_nstiff = 59000 cs_ncoh = 8000 cs_nfric = 0 & cs_sstiff = 384000 cs_scoh = 3054 cs_sfric = 0 cs_ngap = 0 struct prop 3084 cs_nstiff = 59000 cs_ncoh = 8000 cs_nfric = 0 & cs_sstiff = 384000 cs_scoh = 3054 cs_sfric = 0 cs_ngap = 0 struct prop 3085 cs_nstiff = 59000 cs_ncoh = 8000 cs_nfric = 0 & cs_sstiff = 384000 cs_scoh = 3054 cs_sfric = 0 cs_ngap = 0 struct prop 3086 cs_nstiff = 59000 cs_ncoh = 8000 cs_nfric = 0 & cs_sstiff = 384000 cs_scoh = 3054 cs_sfric = 0 cs_ngap = 0 struct prop 3087 cs_nstiff = 59000 cs_ncoh = 8000 cs_nfric = 0 & cs_sstiff = 384000 cs_scoh = 3054 cs_sfric = 0 cs_ngap = 0 struct prop 3088 cs_nstiff = 66000 cs_ncoh = 9000 cs_nfric = 0 & cs_sstiff = 432000 cs_scoh = 3430 cs_sfric = 0 cs_ngap = 0 struct prop 3089 cs_nstiff = 66000 cs_ncoh = 9000 cs_nfric = 0 & cs_sstiff = 432000 cs_scoh = 3430 cs_sfric = 0 cs_ngap = 0 struct prop 3090 cs_nstiff = 66000 cs_ncoh = 9000 cs_nfric = 0 & cs_sstiff = 432000 cs_scoh = 3430 cs_sfric = 0 cs_ngap = 0 struct prop 3091 cs_nstiff = 66000 cs_ncoh = 9000 cs_nfric = 0 & cs_sstiff = 432000 cs_scoh = 3430 cs_sfric = 0 cs_ngap = 0 struct prop 3092 cs_nstiff = 66000 cs_ncoh = 9000 cs_nfric = 0 & cs_sstiff = 432000 cs_scoh = 3430 cs_sfric = 0 cs_ngap = 0 struct prop 3093 cs_nstiff = 66000 cs_ncoh = 9000 cs_nfric = 0 & cs_sstiff = 432000 cs_scoh = 3430 cs_sfric = 0 cs_ngap = 0 struct prop 3094 cs_nstiff = 66000 cs_ncoh = 9000 cs_nfric = 0 & cs_sstiff = 432000 cs_scoh = 3430 cs_sfric = 0 cs_ngap = 0 struct prop 3095 cs_nstiff = 66000 cs_ncoh = 9000 cs_nfric = 0 & cs_sstiff = 432000 cs_scoh = 3430 cs_sfric = 0 cs_ngap = 0 struct prop 3096 cs_nstiff = 66000 cs_ncoh = 9000 cs_nfric = 0 & cs_sstiff = 432000 cs_scoh = 3430 cs_sfric = 0 cs_ngap = 0 struct prop 3097 cs_nstiff = 66000 cs_ncoh = 9000 cs_nfric = 0 & cs_sstiff = 432000 cs_scoh = 3430 cs_sfric = 0 cs_ngap = 0 struct prop 3098 cs_nstiff = 66000 cs_ncoh = 9000 cs_nfric = 0 & cs_sstiff = 432000 cs_scoh = 3430 cs_sfric = 0 cs_ngap = 0 struct prop 3099 cs_nstiff = 66000 cs_ncoh = 9000 cs_nfric = 0 & cs_sstiff = 432000 cs_scoh = 3430 cs_sfric = 0 cs_ngap = 0 struct prop 3100 cs_nstiff = 66000 cs_ncoh = 9000 cs_nfric = 0 & cs_sstiff = 432000 cs_scoh = 3430 cs_sfric = 0 cs_ngap = 0 struct prop 3101 cs_nstiff = 66000 cs_ncoh = 9000 cs_nfric = 0 & cs_sstiff = 432000 cs_scoh = 3430 cs_sfric = 0 cs_ngap = 0 struct prop 3102 cs_nstiff = 66000 cs_ncoh = 9000 cs_nfric = 0 & cs_sstiff = 432000 cs_scoh = 3430 cs_sfric = 0 cs_ngap = 0 struct prop 3103 cs_nstiff = 66000 cs_ncoh = 9000 cs_nfric = 0 & cs_sstiff = 432000 cs_scoh = 3430 cs_sfric = 0 cs_ngap = 0 struct prop 3104 cs_nstiff = 1080000 cs_ncoh = 36000 cs_nfric = 0 & cs_sstiff = 887000 cs_scoh = 7049 cs_sfric = 0 cs_ngap = 0 struct prop 3105 cs_nstiff = 1080000 cs_ncoh = 36000 cs_nfric = 0 & cs_sstiff = 887000 cs_scoh = 7049 cs_sfric = 0 cs_ngap = 0 struct prop 3106 cs_nstiff = 1080000 cs_ncoh = 36000 cs_nfric = 0 & cs_sstiff = 887000 cs_scoh = 7049 cs_sfric = 0 cs_ngap = 0 struct prop 3107 cs_nstiff = 1368000 cs_ncoh = 45000 cs_nfric = 0 & cs_sstiff = 1123000 cs_scoh = 8928 cs_sfric = 0 cs_ngap = 0 struct prop 3108 cs_nstiff = 1368000 cs_ncoh = 45000 cs_nfric = 0 & cs_sstiff = 1123000 cs_scoh = 8928 cs_sfric = 0 cs_ngap = 0 struct prop 3109 cs_nstiff = 1368000 cs_ncoh = 45000 cs_nfric = 0 & cs_sstiff = 1123000 cs_scoh = 8928 cs_sfric = 0 cs_ngap = 0 struct prop 3110 cs_nstiff = 1368000 cs_ncoh = 45000 cs_nfric = 1 & cs_sstiff = 6428000 cs_scoh = 53600 cs_sfric = 0 cs_ngap = 0 ; ;Third Pile - Undrained Coupling Spring Constants struct prop 3111 cs_nstiff = 2000000 cs_ncoh = 65000 cs_nfric = 0 & cs_sstiff = 2000000 cs_scoh = 20000 cs_sfric = 0 cs_ngap = 0 struct prop 3112 cs_nstiff = 52000 cs_ncoh = 7000 cs_nfric = 0 & cs_sstiff = 532000 cs_scoh = 4229 cs_sfric = 0 cs_ngap = 0 struct prop 3113 cs_nstiff = 56000 cs_ncoh = 7000 cs_nfric = 0 & cs_sstiff = 532000 cs_scoh = 4229 cs_sfric = 0 cs_ngap = 0 struct prop 3114 cs_nstiff = 45000 cs_ncoh = 6000 cs_nfric = 0 & cs_sstiff = 384000 cs_scoh = 3054 cs_sfric = 0 cs_ngap = 0 struct prop 3115 cs_nstiff = 48000 cs_ncoh = 6000 cs_nfric = 0 & cs_sstiff = 384000 cs_scoh = 3054 cs_sfric = 0 cs_ngap = 0 struct prop 3116 cs_nstiff = 51000 cs_ncoh = 7000 cs_nfric = 0 & cs_sstiff = 384000 cs_scoh = 3054 cs_sfric = 0 cs_ngap = 0 struct prop 3117 cs_nstiff = 53000 cs_ncoh = 7000 cs_nfric = 0 &

Page 86: Attachment D-6: FLAC Analysis · (FLAC) 7.0 by Itasca Consulting Group, Inc was used to complete the numerical analysis of the T-wall. Conventional LEM slope stability analysis and

cs_sstiff = 384000 cs_scoh = 3054 cs_sfric = 0 cs_ngap = 0 struct prop 3118 cs_nstiff = 56000 cs_ncoh = 7000 cs_nfric = 0 & cs_sstiff = 384000 cs_scoh = 3054 cs_sfric = 0 cs_ngap = 0 struct prop 3119 cs_nstiff = 59000 cs_ncoh = 8000 cs_nfric = 0 & cs_sstiff = 384000 cs_scoh = 3054 cs_sfric = 0 cs_ngap = 0 struct prop 3120 cs_nstiff = 59000 cs_ncoh = 8000 cs_nfric = 0 & cs_sstiff = 384000 cs_scoh = 3054 cs_sfric = 0 cs_ngap = 0 struct prop 3121 cs_nstiff = 59000 cs_ncoh = 8000 cs_nfric = 0 & cs_sstiff = 384000 cs_scoh = 3054 cs_sfric = 0 cs_ngap = 0 struct prop 3122 cs_nstiff = 59000 cs_ncoh = 8000 cs_nfric = 0 & cs_sstiff = 384000 cs_scoh = 3054 cs_sfric = 0 cs_ngap = 0 struct prop 3123 cs_nstiff = 59000 cs_ncoh = 8000 cs_nfric = 0 & cs_sstiff = 384000 cs_scoh = 3054 cs_sfric = 0 cs_ngap = 0 struct prop 3124 cs_nstiff = 59000 cs_ncoh = 8000 cs_nfric = 0 & cs_sstiff = 384000 cs_scoh = 3054 cs_sfric = 0 cs_ngap = 0 struct prop 3125 cs_nstiff = 59000 cs_ncoh = 8000 cs_nfric = 0 & cs_sstiff = 384000 cs_scoh = 3054 cs_sfric = 0 cs_ngap = 0 struct prop 3126 cs_nstiff = 59000 cs_ncoh = 8000 cs_nfric = 0 & cs_sstiff = 384000 cs_scoh = 3054 cs_sfric = 0 cs_ngap = 0 struct prop 3127 cs_nstiff = 59000 cs_ncoh = 8000 cs_nfric = 0 & cs_sstiff = 384000 cs_scoh = 3054 cs_sfric = 0 cs_ngap = 0 struct prop 3128 cs_nstiff = 59000 cs_ncoh = 8000 cs_nfric = 0 & cs_sstiff = 384000 cs_scoh = 3054 cs_sfric = 0 cs_ngap = 0 struct prop 3129 cs_nstiff = 59000 cs_ncoh = 8000 cs_nfric = 0 & cs_sstiff = 384000 cs_scoh = 3054 cs_sfric = 0 cs_ngap = 0 struct prop 3130 cs_nstiff = 59000 cs_ncoh = 8000 cs_nfric = 0 & cs_sstiff = 384000 cs_scoh = 3054 cs_sfric = 0 cs_ngap = 0 struct prop 3131 cs_nstiff = 59000 cs_ncoh = 8000 cs_nfric = 0 & cs_sstiff = 384000 cs_scoh = 3054 cs_sfric = 0 cs_ngap = 0 struct prop 3132 cs_nstiff = 59000 cs_ncoh = 8000 cs_nfric = 0 & cs_sstiff = 384000 cs_scoh = 3054 cs_sfric = 0 cs_ngap = 0 struct prop 3133 cs_nstiff = 59000 cs_ncoh = 8000 cs_nfric = 0 & cs_sstiff = 384000 cs_scoh = 3054 cs_sfric = 0 cs_ngap = 0 struct prop 3134 cs_nstiff = 59000 cs_ncoh = 8000 cs_nfric = 0 & cs_sstiff = 384000 cs_scoh = 3054 cs_sfric = 0 cs_ngap = 0 struct prop 3135 cs_nstiff = 59000 cs_ncoh = 8000 cs_nfric = 0 & cs_sstiff = 384000 cs_scoh = 3054 cs_sfric = 0 cs_ngap = 0 struct prop 3136 cs_nstiff = 59000 cs_ncoh = 8000 cs_nfric = 0 & cs_sstiff = 384000 cs_scoh = 3054 cs_sfric = 0 cs_ngap = 0 struct prop 3137 cs_nstiff = 59000 cs_ncoh = 8000 cs_nfric = 0 & cs_sstiff = 384000 cs_scoh = 3054 cs_sfric = 0 cs_ngap = 0 struct prop 3138 cs_nstiff = 59000 cs_ncoh = 8000 cs_nfric = 0 & cs_sstiff = 384000 cs_scoh = 3054 cs_sfric = 0 cs_ngap = 0 struct prop 3139 cs_nstiff = 59000 cs_ncoh = 8000 cs_nfric = 0 & cs_sstiff = 384000 cs_scoh = 3054 cs_sfric = 0 cs_ngap = 0 struct prop 3140 cs_nstiff = 59000 cs_ncoh = 8000 cs_nfric = 0 & cs_sstiff = 384000 cs_scoh = 3054 cs_sfric = 0 cs_ngap = 0 struct prop 3141 cs_nstiff = 59000 cs_ncoh = 8000 cs_nfric = 0 & cs_sstiff = 384000 cs_scoh = 3054 cs_sfric = 0 cs_ngap = 0 struct prop 3142 cs_nstiff = 59000 cs_ncoh = 8000 cs_nfric = 0 & cs_sstiff = 384000 cs_scoh = 3054 cs_sfric = 0 cs_ngap = 0 struct prop 3143 cs_nstiff = 66000 cs_ncoh = 9000 cs_nfric = 0 & cs_sstiff = 432000 cs_scoh = 3430 cs_sfric = 0 cs_ngap = 0 struct prop 3144 cs_nstiff = 66000 cs_ncoh = 9000 cs_nfric = 0 & cs_sstiff = 432000 cs_scoh = 3430 cs_sfric = 0 cs_ngap = 0 struct prop 3145 cs_nstiff = 66000 cs_ncoh = 9000 cs_nfric = 0 & cs_sstiff = 432000 cs_scoh = 3430 cs_sfric = 0 cs_ngap = 0 struct prop 3146 cs_nstiff = 66000 cs_ncoh = 9000 cs_nfric = 0 & cs_sstiff = 432000 cs_scoh = 3430 cs_sfric = 0 cs_ngap = 0 struct prop 3147 cs_nstiff = 66000 cs_ncoh = 9000 cs_nfric = 0 & cs_sstiff = 432000 cs_scoh = 3430 cs_sfric = 0 cs_ngap = 0 struct prop 3148 cs_nstiff = 66000 cs_ncoh = 9000 cs_nfric = 0 & cs_sstiff = 432000 cs_scoh = 3430 cs_sfric = 0 cs_ngap = 0 struct prop 3149 cs_nstiff = 66000 cs_ncoh = 9000 cs_nfric = 0 & cs_sstiff = 432000 cs_scoh = 3430 cs_sfric = 0 cs_ngap = 0 struct prop 3150 cs_nstiff = 66000 cs_ncoh = 9000 cs_nfric = 0 & cs_sstiff = 432000 cs_scoh = 3430 cs_sfric = 0 cs_ngap = 0 struct prop 3151 cs_nstiff = 66000 cs_ncoh = 9000 cs_nfric = 0 & cs_sstiff = 432000 cs_scoh = 3430 cs_sfric = 0 cs_ngap = 0 struct prop 3152 cs_nstiff = 66000 cs_ncoh = 9000 cs_nfric = 0 & cs_sstiff = 432000 cs_scoh = 3430 cs_sfric = 0 cs_ngap = 0 struct prop 3153 cs_nstiff = 66000 cs_ncoh = 9000 cs_nfric = 0 & cs_sstiff = 432000 cs_scoh = 3430 cs_sfric = 0 cs_ngap = 0 struct prop 3154 cs_nstiff = 66000 cs_ncoh = 9000 cs_nfric = 0 & cs_sstiff = 432000 cs_scoh = 3430 cs_sfric = 0 cs_ngap = 0 struct prop 3155 cs_nstiff = 66000 cs_ncoh = 9000 cs_nfric = 0 & cs_sstiff = 432000 cs_scoh = 3430 cs_sfric = 0 cs_ngap = 0 struct prop 3156 cs_nstiff = 66000 cs_ncoh = 9000 cs_nfric = 0 & cs_sstiff = 432000 cs_scoh = 3430 cs_sfric = 0 cs_ngap = 0 struct prop 3157 cs_nstiff = 66000 cs_ncoh = 9000 cs_nfric = 0 & cs_sstiff = 432000 cs_scoh = 3430 cs_sfric = 0 cs_ngap = 0 struct prop 3158 cs_nstiff = 66000 cs_ncoh = 9000 cs_nfric = 0 & cs_sstiff = 432000 cs_scoh = 3430 cs_sfric = 0 cs_ngap = 0 struct prop 3159 cs_nstiff = 1080000 cs_ncoh = 36000 cs_nfric = 0 & cs_sstiff = 887000 cs_scoh = 7049 cs_sfric = 0 cs_ngap = 0 struct prop 3160 cs_nstiff = 1080000 cs_ncoh = 36000 cs_nfric = 0 & cs_sstiff = 887000 cs_scoh = 7049 cs_sfric = 0 cs_ngap = 0 struct prop 3161 cs_nstiff = 1080000 cs_ncoh = 36000 cs_nfric = 0 & cs_sstiff = 887000 cs_scoh = 7049 cs_sfric = 0 cs_ngap = 0 struct prop 3162 cs_nstiff = 1368000 cs_ncoh = 45000 cs_nfric = 0 & cs_sstiff = 1123000 cs_scoh = 8928 cs_sfric = 0 cs_ngap = 0 struct prop 3163 cs_nstiff = 1368000 cs_ncoh = 45000 cs_nfric = 0 & cs_sstiff = 1123000 cs_scoh = 8928 cs_sfric = 0 cs_ngap = 0 struct prop 3164 cs_nstiff = 1368000 cs_ncoh = 45000 cs_nfric = 0 & cs_sstiff = 1123000 cs_scoh = 8928 cs_sfric = 0 cs_ngap = 0

Page 87: Attachment D-6: FLAC Analysis · (FLAC) 7.0 by Itasca Consulting Group, Inc was used to complete the numerical analysis of the T-wall. Conventional LEM slope stability analysis and

struct prop 3165 cs_nstiff = 1368000 cs_ncoh = 45000 cs_nfric = 1 & cs_sstiff = 6428000 cs_scoh = 53600 cs_sfric = 0 cs_ngap = 0 ; save 18_Undrained_Springs.sav ;Branch 1:19_Undrained_M-C.sav ;ENTER UNDRAINED MOHR-COULOMB SOIL PROPERTIES ;Friction is set to zero ;Cohesion is included ;Moduli values based on PM Testing (KAH on 28 SEP 2015) ;******************************************************************************* ; model mohr-coulomb group 'Sherack (Above GWT)' prop density = 3.571 bulk = 12910000 shear = 260000 friction = 0 & Cohesion = 900 group 'Sherack (Above GWT)' model mohr-coulomb group 'Sherack' prop density = 3.571 bulk = 12910000 shear = 260000 friction = 0 & Cohesion = 900 group 'Sherack' model mohr-coulomb group 'Brenna' prop density = 3.292 bulk = 10930000 shear = 220000 friction = 0 & Cohesion = 650 group 'Brenna' model mohr-coulomb group 'Argusville' prop density = 3.416 bulk = 12420000 shear = 250000 friction = 0 & Cohesion = 730 group 'Argusville' model mohr-coulomb group 'Weathered Till' prop density = 3.82 bulk = 149000000 shear = 3000000 friction = 0 & Cohesion = 3000 group 'Weathered Till' model mohr-coulomb group 'Intact Till' prop density = 3.82 bulk = 188730000 shear = 3800000 friction = 0 & Cohesion = 3800 group 'Intact Till' ; save 19_Undrained_M-C.sav ;Branch 2:20_Flood_Step.sav ;APPLY FLOOD LOAD ;Apply flood load in mutliple steps. ;CAUTION: Modify groundwater table as flood load steps are applied. ;Displacements and velocities prior to wall and piles being installed. ; ;Solve initial conditions with just wall constructed. set flow = off set = large history 999 unbalanced solve ; save 20_Flood_Step.sav ;Branch 3:20_Flood_Step_01.sav ;Step 1 - Flood Loading to 903 ft (DRAINED) ;apply flood loading pressure to ground surface and T-Wall apply pressure = 124.8 from 114,69 to 125,69 apply pressure = 124.8 from 126,69 to 223,69 apply pressure = 124.8 var 0.0 -124.8 from 114,69 to 114,70 ; ;input piezometric line table 606 delete table 607 -345,887.9 -145,887.9 -94,894.8 -53,900.9 0,900.9 & 14,903 351,903 water table 607 ; ;apply uplift pressure to T-Wall ;no uplift of pressures for undrained analysis ; ;EXECUTE EXCAVATION BY SOLVING set flow = off solve save 20_Flood_Step_01.sav ;Branch 4:20_Flood_Step_02.sav ;Step 2 - Flood Loading to 905 ft (DRAINED) ;apply flood loading pressure to ground surface and T-Wall apply pressure = 249.6 from 114,69 to 125,69 apply pressure = 249.6 from 126,69 to 223,69 apply pressure = 249.6 var 0.0 -249.6 from 114,69 to 114,71 ; ;input piezometric line table 607 delete table 608 -345,887.9 -145,887.9 -94,894.8 -53,900.9 0,900.9 & 14,905 351,905 water table 608 ; ;apply uplift pressure to T-Wall ;no uplift of pressures for undrained analysis ; ;EXECUTE EXCAVATION BY SOLVING set flow = off solve save 20_Flood_Step_02.sav ;Branch 5:20_Flood_Step_03.sav ;Step 3 - Flood Loading to 907 ft (DRAINED) ;apply flood loading pressure to ground surface and T-Wall apply pressure = 374.4 from 114,69 to 125,69 apply pressure = 374.4 from 126,69 to 223,69 apply pressure = 374.4 var 0.0 -374.4 from 114,69 to 114,72

Page 88: Attachment D-6: FLAC Analysis · (FLAC) 7.0 by Itasca Consulting Group, Inc was used to complete the numerical analysis of the T-wall. Conventional LEM slope stability analysis and

; ;input piezometric line table 608 delete table 609 -345,887.9 -145,887.9 -94,894.8 -53,900.9 0,900.9 & 14,907 351,907 water table 609 ; ;apply uplift pressure to T-Wall ;no uplift of pressures for undrained analysis ; ;EXECUTE EXCAVATION BY SOLVING set flow = off solve save 20_Flood_Step_03.sav ;Branch 6:20_Flood_Step_04.sav ;Step 4 - Flood Loading to 909 ft (DRAINED) ;remove previously applied pressures apply remove mech from 114,69 to 125,69 apply remove mech from 126,69 to 223,69 apply remove mech from 114,69 to 114,72 ; ;apply flood loading pressure to ground surface and T-Wall apply pressure = 499.2 from 114,69 to 125,69 apply pressure = 499.2 from 126,69 to 223,69 apply pressure = 499.2 var 0.0 -499.2 from 114,69 to 114,73 ; ;input piezometric line table 609 delete table 610 -345,887.9 -145,887.9 -94,894.8 -53,900.9 0,900.9 & 14,909 351,909 water table 610 ; ;apply uplift pressure to T-Wall ;no uplift of pressures for undrained analysis ; ;EXECUTE EXCAVATION BY SOLVING set flow = off solve save 20_Flood_Step_04.sav ;Branch 7:20_Flood_Step_05.sav ;Step 5 - Flood Loading to 911 ft (DRAINED) ;remove previously applied pressures apply remove mech from 114,69 to 125,69 apply remove mech from 126,69 to 223,69 apply remove mech from 114,69 to 114,73 ; ;apply flood loading pressure to ground surface and T-Wall apply pressure = 624 from 114,69 to 125,69 apply pressure = 624 from 126,69 to 223,69 apply pressure = 624 var 0.0 -624 from 114,69 to 114,74 ; ;input piezometric line table 610 delete table 611 -345,887.9 -145,887.9 -94,894.8 -53,900.9 0,900.9 & 14,911 351,911 water table 611 ; ;apply uplift pressure to T-Wall ;no uplift of pressures for undrained analysis ; ;EXECUTE EXCAVATION BY SOLVING set flow = off solve save 20_Flood_Step_05.sav ;Branch 8:20_Flood_Step_06.sav ;Step 6 - Flood Loading to 913 ft (DRAINED) ;remove previously applied pressures apply remove mech from 114,69 to 125,69 apply remove mech from 126,69 to 223,69 apply remove mech from 114,69 to 114,74 ; ;apply flood loading pressure to ground surface and T-Wall apply pressure = 748.8 from 114,69 to 125,69 apply pressure = 748.8 from 126,69 to 223,69 apply pressure = 748.8 var 0.0 -748.8 from 114,69 to 114,75 ; ;input piezometric line table 611 delete table 612 -345,887.9 -145,887.9 -94,894.8 -53,900.9 0,900.9 & 14,913 351,913 water table 612 ; ;apply uplift pressure to T-Wall ;no uplift of pressures for undrained analysis ; ;EXECUTE EXCAVATION BY SOLVING set flow = off solve save 20_Flood_Step_06.sav ;Branch 9:20_Flood_Step_07.sav ;Step 7 - Flood Loading to 915 ft (DRAINED)

Page 89: Attachment D-6: FLAC Analysis · (FLAC) 7.0 by Itasca Consulting Group, Inc was used to complete the numerical analysis of the T-wall. Conventional LEM slope stability analysis and

;remove previously applied pressures apply remove mech from 114,69 to 125,69 apply remove mech from 126,69 to 223,69 apply remove mech from 114,69 to 114,75 ; ;apply flood loading pressure to ground surface and T-Wall apply pressure = 873.6 from 114,69 to 125,69 apply pressure = 873.6 from 126,69 to 223,69 apply pressure = 873.6 var 0.0 -873.6 from 114,69 to 114,76 ; ;input piezometric line table 612 delete table 613 -345,887.9 -145,887.9 -94,894.8 -53,900.9 0,900.9 & 14,915 351,915 water table 613 ; ;apply uplift pressure to T-Wall ;no uplift of pressures for undrained analysis ; ;EXECUTE EXCAVATION BY SOLVING set flow = off solve save 20_Flood_Step_07.sav ;Branch 10:20_Flood_Step_08.sav ;Step 8 - Flood Loading to 917 ft (DRAINED) ;remove previously applied pressures apply remove mech from 114,69 to 125,69 apply remove mech from 126,69 to 223,69 apply remove mech from 114,69 to 114,76 ; ;apply flood loading pressure to ground surface and T-Wall apply pressure = 998.4 from 114,69 to 125,69 apply pressure = 998.4 from 126,69 to 223,69 apply pressure = 998.4 var 0.0 -998.4 from 114,69 to 113,77 ; ;input piezometric line table 613 delete table 614 -345,887.9 -145,887.9 -94,894.8 -53,900.9 0,900.9 & 14,917 351,917 water table 614 ; ;apply uplift pressure to T-Wall ;no uplift of pressures for undrained analysis ; ;EXECUTE EXCAVATION BY SOLVING set flow = off solve save 20_Flood_Step_08.sav ;Branch 11:20_Flood_Step_09.sav ;Step 9 - Flood Loading to 919 ft (DRAINED) ;remove previously applied pressures apply remove mech from 114,69 to 125,69 apply remove mech from 126,69 to 223,69 apply remove mech from 114,69 to 113,77 ; ;apply flood loading pressure to ground surface and T-Wall apply pressure = 1123.2 from 114,69 to 125,69 apply pressure = 1123.2 from 126,69 to 223,69 apply pressure = 1123.2 var 0.0 -1123.2 from 114,69 to 113,78 ; ;input piezometric line table 614 delete table 615 -345,887.9 -145,887.9 -94,894.8 -53,900.9 0,900.9 & 14,919 351,919 water table 615 ; ;apply uplift pressure to T-Wall ;no uplift of pressures for undrained analysis ; ;EXECUTE EXCAVATION BY SOLVING set flow = off solve save 20_Flood_Step_09.sav ;Branch 12:20_Flood_Step_10.sav ;Step 10 - Flood Loading to 921 ft (DRAINED) ;remove previously applied pressures apply remove mech from 114,69 to 125,69 apply remove mech from 126,69 to 223,69 apply remove mech from 114,69 to 113,78 ; ;apply flood loading pressure to ground surface and T-Wall apply pressure = 1248 from 114,69 to 125,69 apply pressure = 1248 from 126,69 to 223,69 apply pressure = 1248 var 0.0 -1248 from 114,69 to 113,79 ; ;input piezometric line table 615 delete table 616 -345,887.9 -145,887.9 -94,894.8 -53,900.9 0,900.9 & 14,921 351,921 water table 616 ; ;apply uplift pressure to T-Wall

Page 90: Attachment D-6: FLAC Analysis · (FLAC) 7.0 by Itasca Consulting Group, Inc was used to complete the numerical analysis of the T-wall. Conventional LEM slope stability analysis and

;no uplift of pressures for undrained analysis ; ;EXECUTE EXCAVATION BY SOLVING set flow = off solve save 20_Flood_Step_10.sav ;Branch 13:20_Flood_Step_11.sav ;Step 11 - Flood Loading to 922 ft (DRAINED) ;remove previously applied pressures apply remove mech from 114,69 to 125,69 apply remove mech from 126,69 to 223,69 apply remove mech from 114,69 to 113,79 ; ;apply flood loading pressure to ground surface and T-Wall apply pressure = 1310.4 from 114,69 to 125,69 apply pressure = 1310.4 from 126,69 to 223,69 apply pressure = 1310.4 var 0.0 -1310.4 from 114,69 to 113,79 ; ;input piezometric line table 616 delete table 617 -345,887.9 -145,887.9 -94,894.8 -53,900.9 0,900.9 & 14,922 351,922 water table 617 ; ;apply uplift pressure to T-Wall ;no uplift of pressures for undrained analysis ; ;EXECUTE EXCAVATION BY SOLVING set flow = off solve save 20_Flood_Step_11.sav ;Branch 14:20_Flood_Step_12.sav ;Step 12 - Tailwater Loading to 892 ft (UNDRAINED) ;apply tailwater loading pressure to ground surface ; apply pressure = 249.6 from 1,55 to 41,55 apply pressure = 249.6 var 0.0 -187.2 from 41,55 to 48,58 ; ;input piezometric line table 617 delete table 618 -345,892 -145,892 -118,892 -53,900.9 0,900.9 14,922 & 351,922 water table 618 ; ;apply uplift pressure to T-Wall ;no uplift of pressures for undrained analysis ; ;EXECUTE EXCAVATION BY SOLVING set flow = off solve save 20_Flood_Step_12.sav ;Branch 15:20_Flood_Step_13.sav ;Step 13 - Tailwater Loading to 896 ft (UNDRAINED) ;apply tailwater loading pressure to ground surface apply pressure = 499.2 from 1,55 to 41,55 apply pressure = 499.2 var 0.0 -436.8 from 41,55 to 57,62 apply pressure = 62.4 var 0.0 0 from 57,63 to 58,64 ; ;input piezometric line table 618 delete table 619 -345,896 -145,896 -89,896 -53,900.9 0,900.9 14,922 & 351,922 water table 619 ; ;EXECUTE EXCAVATION BY SOLVING set flow = off solve save 20_Flood_Step_13.sav ;Branch 16:20_Flood_Step_14.sav ;Step 14 - Tailwater Loading to 900 ft (UNDRAINED) ;apply tailwater loading pressure to ground surface apply pressure = 748.8 from 1,55 to 41,55 apply pressure = 748.8 var 0.0 -436.8 from 41,55 to 57,62 apply pressure = 312 var 0.0 -249.6 from 57,63 to 67,67 ; ;input piezometric line table 619 delete table 620 -345,900 -145,900 -61,900 -53,900.9 0,900.9 14,922 & 351,922 water table 620 ; ;EXECUTE EXCAVATION BY SOLVING set flow = off solve save 20_Flood_Step_14.sav ;Branch 17:20_Flood_Step_15.sav ;Step 15 - Tailwater Loading to 903 ft (UNDRAINED) ;apply tailwater loading pressure to ground surface apply pressure = 936 from 1,55 to 41,55 apply pressure = 936 var 0.0 -436.8 from 41,55 to 57,62

Page 91: Attachment D-6: FLAC Analysis · (FLAC) 7.0 by Itasca Consulting Group, Inc was used to complete the numerical analysis of the T-wall. Conventional LEM slope stability analysis and

apply pressure = 499.2 var 0.0 -374.4 from 57,63 to 71,69 apply pressure = 124.8 from 69,69 to 106,69 apply pressure = 124.8 from 107,69 to 111,69 apply pressure = 124.8 var 0.0 -124.8 from 111,69 to 111,70 ; ;input piezometric line table 620 delete table 621 -345,903 -145,903 -61,903 -53,903 0,903 14,922 & 351,922 water table 621 ; ;EXECUTE EXCAVATION BY SOLVING set flow = off solve save 20_Flood_Step_15.sav ;Branch 18:20_Flood_Step_16.sav ;Step 16 - Tailwater Loading to 907 ft (UNDRAINED) ;apply tailwater loading pressure to ground surface apply pressure = 1185.6 from 1,55 to 41,55 apply pressure = 1185.6 var 0.0 -436.8 from 41,55 to 57,62 apply pressure = 748.8 var 0.0 -374.4 from 57,63 to 69,69 apply pressure = 374.4 from 69,69 to 106,69 apply pressure = 374.4 from 107,69 to 111,69 apply pressure = 374.4 var 0.0 -374.4 from 111,69 to 111,72 ; ;input piezometric line table 621 delete table 622 -345,907 -145,907 -61,907 -53,907 0,907 14,922 & 351,922 water table 622 ; ;EXECUTE EXCAVATION BY SOLVING set flow = off solve save 20_Flood_Step_16.sav ;Branch 19:20_Flood_Step_17.sav ;Step 17 - Tailwater Loading to 910 ft (UNDRAINED) ;apply tailwater loading pressure to ground surface apply pressure = 1372.8 from 1,55 to 41,55 apply pressure = 1372.8 var 0.0 -436.8 from 41,55 to 57,62 apply pressure = 936 var 0.0 -374.4 from 57,63 to 69,69 apply pressure = 561.6 var 0.0 0 from 69,69 to 106,69 apply pressure = 561.6 var 0.0 0 from 107,69 to 111,69 apply pressure = 561.6 var 0.0 -499.2 from 111,69 to 111,73 ; ;input piezometric line table 622 delete table 623 -345,910 -145,910 -61,910 -53,910 0,910 14,922 & 351,922 water table 623 ; ;EXECUTE EXCAVATION BY SOLVING set flow = off solve save 20_Flood_Step_17.sav ;Branch 20:20_Flood_Step_18.sav ;Step 18 - Pool Increase to 926 ft (UNDRAINED) ;apply flood loading pressure to ground surface and T-Wall apply pressure = 1560 from 114,69 to 125,69 apply pressure = 1560 from 126,69 to 223,69 apply pressure = 1560 var 0.0 -1497.6 from 114,69 to 113,81 ; ;input piezometric line table 623 delete table 624 -345,910 -145,910 -61,910 -53,910 0,910 14,926 & 351,926 water table 624 ; ;EXECUTE EXCAVATION BY SOLVING set flow = off solve save 20_Flood_Step_18.sav restore '17_Histories_Wall_Displacement.sav' ;Branch 0:28_Drained_Springs.sav ;ENTER THE DRAINED COUPLING SPRING CONSTANTS FOR THE PILE ELEMENTS ;Enter the normal and shear spring constants ;End Bearing Shear Spring based on t & q combined (PLT) ;******************************************************************************* ;The normal spring constants do not change from the undrained. ;The shear spring constants are based on the drained (friction angle) parameters. ;The delta factor is taken as 0.6 the friction angle. ;This produces skin friction of 158 kips compared to the 140 kips the the Beta method produces. ;Delta of 0.55 would be required to produce 140 kip skin friction and is out of the typical range (0.67 to 0.83) ;No critical depth (i.e. 20B) or critical effective stress (i.e. 3500 psf) is used. ; ;First Pile - Drained Coupling Spring Constants struct prop 3001 cs_nstiff = 2000000 cs_ncoh = 65000 cs_nfric = 0 & cs_sstiff = 2000000 cs_scoh = 20000 cs_sfric = 0 cs_ngap = 0 struct prop 3002 cs_nstiff = 52000 cs_ncoh = 7000 cs_nfric = 0 & cs_sstiff = 61000 cs_scoh = 485 cs_sfric = 0 cs_ngap = 0 struct prop 3003 cs_nstiff = 56000 cs_ncoh = 7000 cs_nfric = 0 &

Page 92: Attachment D-6: FLAC Analysis · (FLAC) 7.0 by Itasca Consulting Group, Inc was used to complete the numerical analysis of the T-wall. Conventional LEM slope stability analysis and

cs_sstiff = 70000 cs_scoh = 560 cs_sfric = 0 cs_ngap = 0 struct prop 3004 cs_nstiff = 45000 cs_ncoh = 6000 cs_nfric = 0 & cs_sstiff = 67000 cs_scoh = 534 cs_sfric = 0 cs_ngap = 0 struct prop 3005 cs_nstiff = 48000 cs_ncoh = 6000 cs_nfric = 0 & cs_sstiff = 74000 cs_scoh = 587 cs_sfric = 0 cs_ngap = 0 struct prop 3006 cs_nstiff = 51000 cs_ncoh = 7000 cs_nfric = 0 & cs_sstiff = 80000 cs_scoh = 639 cs_sfric = 0 cs_ngap = 0 struct prop 3007 cs_nstiff = 53000 cs_ncoh = 7000 cs_nfric = 0 & cs_sstiff = 87000 cs_scoh = 692 cs_sfric = 0 cs_ngap = 0 struct prop 3008 cs_nstiff = 56000 cs_ncoh = 7000 cs_nfric = 0 & cs_sstiff = 94000 cs_scoh = 744 cs_sfric = 0 cs_ngap = 0 struct prop 3009 cs_nstiff = 59000 cs_ncoh = 8000 cs_nfric = 0 & cs_sstiff = 100000 cs_scoh = 797 cs_sfric = 0 cs_ngap = 0 struct prop 3010 cs_nstiff = 59000 cs_ncoh = 8000 cs_nfric = 0 & cs_sstiff = 107000 cs_scoh = 850 cs_sfric = 0 cs_ngap = 0 struct prop 3011 cs_nstiff = 59000 cs_ncoh = 8000 cs_nfric = 0 & cs_sstiff = 114000 cs_scoh = 902 cs_sfric = 0 cs_ngap = 0 struct prop 3012 cs_nstiff = 59000 cs_ncoh = 8000 cs_nfric = 0 & cs_sstiff = 120000 cs_scoh = 955 cs_sfric = 0 cs_ngap = 0 struct prop 3013 cs_nstiff = 59000 cs_ncoh = 8000 cs_nfric = 0 & cs_sstiff = 127000 cs_scoh = 1007 cs_sfric = 0 cs_ngap = 0 struct prop 3014 cs_nstiff = 59000 cs_ncoh = 8000 cs_nfric = 0 & cs_sstiff = 133000 cs_scoh = 1060 cs_sfric = 0 cs_ngap = 0 struct prop 3015 cs_nstiff = 59000 cs_ncoh = 8000 cs_nfric = 0 & cs_sstiff = 140000 cs_scoh = 1113 cs_sfric = 0 cs_ngap = 0 struct prop 3016 cs_nstiff = 59000 cs_ncoh = 8000 cs_nfric = 0 & cs_sstiff = 147000 cs_scoh = 1165 cs_sfric = 0 cs_ngap = 0 struct prop 3017 cs_nstiff = 59000 cs_ncoh = 8000 cs_nfric = 0 & cs_sstiff = 153000 cs_scoh = 1218 cs_sfric = 0 cs_ngap = 0 struct prop 3018 cs_nstiff = 59000 cs_ncoh = 8000 cs_nfric = 0 & cs_sstiff = 160000 cs_scoh = 1270 cs_sfric = 0 cs_ngap = 0 struct prop 3019 cs_nstiff = 59000 cs_ncoh = 8000 cs_nfric = 0 & cs_sstiff = 166000 cs_scoh = 1323 cs_sfric = 0 cs_ngap = 0 struct prop 3020 cs_nstiff = 59000 cs_ncoh = 8000 cs_nfric = 0 & cs_sstiff = 173000 cs_scoh = 1376 cs_sfric = 0 cs_ngap = 0 struct prop 3021 cs_nstiff = 59000 cs_ncoh = 8000 cs_nfric = 0 & cs_sstiff = 180000 cs_scoh = 1428 cs_sfric = 0 cs_ngap = 0 struct prop 3022 cs_nstiff = 59000 cs_ncoh = 8000 cs_nfric = 0 & cs_sstiff = 186000 cs_scoh = 1481 cs_sfric = 0 cs_ngap = 0 struct prop 3023 cs_nstiff = 59000 cs_ncoh = 8000 cs_nfric = 0 & cs_sstiff = 193000 cs_scoh = 1534 cs_sfric = 0 cs_ngap = 0 struct prop 3024 cs_nstiff = 59000 cs_ncoh = 8000 cs_nfric = 0 & cs_sstiff = 200000 cs_scoh = 1586 cs_sfric = 0 cs_ngap = 0 struct prop 3025 cs_nstiff = 59000 cs_ncoh = 8000 cs_nfric = 0 & cs_sstiff = 206000 cs_scoh = 1639 cs_sfric = 0 cs_ngap = 0 struct prop 3026 cs_nstiff = 59000 cs_ncoh = 8000 cs_nfric = 0 & cs_sstiff = 213000 cs_scoh = 1691 cs_sfric = 0 cs_ngap = 0 struct prop 3027 cs_nstiff = 59000 cs_ncoh = 8000 cs_nfric = 0 & cs_sstiff = 219000 cs_scoh = 1744 cs_sfric = 0 cs_ngap = 0 struct prop 3028 cs_nstiff = 59000 cs_ncoh = 8000 cs_nfric = 0 & cs_sstiff = 226000 cs_scoh = 1797 cs_sfric = 0 cs_ngap = 0 struct prop 3029 cs_nstiff = 59000 cs_ncoh = 8000 cs_nfric = 0 & cs_sstiff = 233000 cs_scoh = 1849 cs_sfric = 0 cs_ngap = 0 struct prop 3030 cs_nstiff = 59000 cs_ncoh = 8000 cs_nfric = 0 & cs_sstiff = 239000 cs_scoh = 1902 cs_sfric = 0 cs_ngap = 0 struct prop 3031 cs_nstiff = 59000 cs_ncoh = 8000 cs_nfric = 0 & cs_sstiff = 246000 cs_scoh = 1954 cs_sfric = 0 cs_ngap = 0 struct prop 3032 cs_nstiff = 59000 cs_ncoh = 8000 cs_nfric = 0 & cs_sstiff = 252000 cs_scoh = 2007 cs_sfric = 0 cs_ngap = 0 struct prop 3033 cs_nstiff = 66000 cs_ncoh = 9000 cs_nfric = 0 & cs_sstiff = 271000 cs_scoh = 2152 cs_sfric = 0 cs_ngap = 0 struct prop 3034 cs_nstiff = 66000 cs_ncoh = 9000 cs_nfric = 0 & cs_sstiff = 278000 cs_scoh = 2212 cs_sfric = 0 cs_ngap = 0 struct prop 3035 cs_nstiff = 66000 cs_ncoh = 9000 cs_nfric = 0 & cs_sstiff = 286000 cs_scoh = 2272 cs_sfric = 0 cs_ngap = 0 struct prop 3036 cs_nstiff = 66000 cs_ncoh = 9000 cs_nfric = 0 & cs_sstiff = 293000 cs_scoh = 2332 cs_sfric = 0 cs_ngap = 0 struct prop 3037 cs_nstiff = 66000 cs_ncoh = 9000 cs_nfric = 0 & cs_sstiff = 301000 cs_scoh = 2392 cs_sfric = 0 cs_ngap = 0 struct prop 3038 cs_nstiff = 66000 cs_ncoh = 9000 cs_nfric = 0 & cs_sstiff = 308000 cs_scoh = 2452 cs_sfric = 0 cs_ngap = 0 struct prop 3039 cs_nstiff = 66000 cs_ncoh = 9000 cs_nfric = 0 & cs_sstiff = 316000 cs_scoh = 2511 cs_sfric = 0 cs_ngap = 0 struct prop 3040 cs_nstiff = 66000 cs_ncoh = 9000 cs_nfric = 0 & cs_sstiff = 323000 cs_scoh = 2571 cs_sfric = 0 cs_ngap = 0 struct prop 3041 cs_nstiff = 66000 cs_ncoh = 9000 cs_nfric = 0 & cs_sstiff = 331000 cs_scoh = 2631 cs_sfric = 0 cs_ngap = 0 struct prop 3042 cs_nstiff = 66000 cs_ncoh = 9000 cs_nfric = 0 & cs_sstiff = 339000 cs_scoh = 2691 cs_sfric = 0 cs_ngap = 0 struct prop 3043 cs_nstiff = 66000 cs_ncoh = 9000 cs_nfric = 0 & cs_sstiff = 346000 cs_scoh = 2751 cs_sfric = 0 cs_ngap = 0 struct prop 3044 cs_nstiff = 66000 cs_ncoh = 9000 cs_nfric = 0 & cs_sstiff = 354000 cs_scoh = 2811 cs_sfric = 0 cs_ngap = 0 struct prop 3045 cs_nstiff = 66000 cs_ncoh = 9000 cs_nfric = 0 & cs_sstiff = 361000 cs_scoh = 2871 cs_sfric = 0 cs_ngap = 0 struct prop 3046 cs_nstiff = 66000 cs_ncoh = 9000 cs_nfric = 0 & cs_sstiff = 369000 cs_scoh = 2931 cs_sfric = 0 cs_ngap = 0 struct prop 3047 cs_nstiff = 66000 cs_ncoh = 9000 cs_nfric = 0 & cs_sstiff = 376000 cs_scoh = 2991 cs_sfric = 0 cs_ngap = 0 struct prop 3048 cs_nstiff = 66000 cs_ncoh = 9000 cs_nfric = 0 & cs_sstiff = 384000 cs_scoh = 3051 cs_sfric = 0 cs_ngap = 0 struct prop 3049 cs_nstiff = 1080000 cs_ncoh = 36000 cs_nfric = 0 & cs_sstiff = 551000 cs_scoh = 4382 cs_sfric = 0 cs_ngap = 0 struct prop 3050 cs_nstiff = 1080000 cs_ncoh = 36000 cs_nfric = 0 & cs_sstiff = 578000 cs_scoh = 4594 cs_sfric = 0 cs_ngap = 0

Page 93: Attachment D-6: FLAC Analysis · (FLAC) 7.0 by Itasca Consulting Group, Inc was used to complete the numerical analysis of the T-wall. Conventional LEM slope stability analysis and

struct prop 3051 cs_nstiff = 1080000 cs_ncoh = 36000 cs_nfric = 0 & cs_sstiff = 605000 cs_scoh = 4806 cs_sfric = 0 cs_ngap = 0 struct prop 3052 cs_nstiff = 1368000 cs_ncoh = 45000 cs_nfric = 0 & cs_sstiff = 713000 cs_scoh = 5671 cs_sfric = 0 cs_ngap = 0 struct prop 3053 cs_nstiff = 1368000 cs_ncoh = 45000 cs_nfric = 0 & cs_sstiff = 744000 cs_scoh = 5911 cs_sfric = 0 cs_ngap = 0 struct prop 3054 cs_nstiff = 1368000 cs_ncoh = 45000 cs_nfric = 0 & cs_sstiff = 774000 cs_scoh = 6150 cs_sfric = 0 cs_ngap = 0 struct prop 3055 cs_nstiff = 1368000 cs_ncoh = 45000 cs_nfric = 0 & cs_sstiff = 5226000 cs_scoh = 43600 cs_sfric = 0 cs_ngap = 0 ; ;Second Pile - Drained Coupling Spring Constants struct prop 3056 cs_nstiff = 2000000 cs_ncoh = 65000 cs_nfric = 0 & cs_sstiff = 2000000 cs_scoh = 20000 cs_sfric = 0 cs_ngap = 0 struct prop 3057 cs_nstiff = 52000 cs_ncoh = 7000 cs_nfric = 0 & cs_sstiff = 61000 cs_scoh = 485 cs_sfric = 0 cs_ngap = 0 struct prop 3058 cs_nstiff = 56000 cs_ncoh = 7000 cs_nfric = 0 & cs_sstiff = 70000 cs_scoh = 560 cs_sfric = 0 cs_ngap = 0 struct prop 3059 cs_nstiff = 45000 cs_ncoh = 6000 cs_nfric = 0 & cs_sstiff = 67000 cs_scoh = 534 cs_sfric = 0 cs_ngap = 0 struct prop 3060 cs_nstiff = 48000 cs_ncoh = 6000 cs_nfric = 0 & cs_sstiff = 74000 cs_scoh = 587 cs_sfric = 0 cs_ngap = 0 struct prop 3061 cs_nstiff = 51000 cs_ncoh = 7000 cs_nfric = 0 & cs_sstiff = 80000 cs_scoh = 639 cs_sfric = 0 cs_ngap = 0 struct prop 3062 cs_nstiff = 53000 cs_ncoh = 7000 cs_nfric = 0 & cs_sstiff = 87000 cs_scoh = 692 cs_sfric = 0 cs_ngap = 0 struct prop 3063 cs_nstiff = 56000 cs_ncoh = 7000 cs_nfric = 0 & cs_sstiff = 94000 cs_scoh = 744 cs_sfric = 0 cs_ngap = 0 struct prop 3064 cs_nstiff = 59000 cs_ncoh = 8000 cs_nfric = 0 & cs_sstiff = 100000 cs_scoh = 797 cs_sfric = 0 cs_ngap = 0 struct prop 3065 cs_nstiff = 59000 cs_ncoh = 8000 cs_nfric = 0 & cs_sstiff = 107000 cs_scoh = 850 cs_sfric = 0 cs_ngap = 0 struct prop 3066 cs_nstiff = 59000 cs_ncoh = 8000 cs_nfric = 0 & cs_sstiff = 114000 cs_scoh = 902 cs_sfric = 0 cs_ngap = 0 struct prop 3067 cs_nstiff = 59000 cs_ncoh = 8000 cs_nfric = 0 & cs_sstiff = 120000 cs_scoh = 955 cs_sfric = 0 cs_ngap = 0 struct prop 3068 cs_nstiff = 59000 cs_ncoh = 8000 cs_nfric = 0 & cs_sstiff = 127000 cs_scoh = 1007 cs_sfric = 0 cs_ngap = 0 struct prop 3069 cs_nstiff = 59000 cs_ncoh = 8000 cs_nfric = 0 & cs_sstiff = 133000 cs_scoh = 1060 cs_sfric = 0 cs_ngap = 0 struct prop 3070 cs_nstiff = 59000 cs_ncoh = 8000 cs_nfric = 0 & cs_sstiff = 140000 cs_scoh = 1113 cs_sfric = 0 cs_ngap = 0 struct prop 3071 cs_nstiff = 59000 cs_ncoh = 8000 cs_nfric = 0 & cs_sstiff = 147000 cs_scoh = 1165 cs_sfric = 0 cs_ngap = 0 struct prop 3072 cs_nstiff = 59000 cs_ncoh = 8000 cs_nfric = 0 & cs_sstiff = 153000 cs_scoh = 1218 cs_sfric = 0 cs_ngap = 0 struct prop 3073 cs_nstiff = 59000 cs_ncoh = 8000 cs_nfric = 0 & cs_sstiff = 160000 cs_scoh = 1270 cs_sfric = 0 cs_ngap = 0 struct prop 3074 cs_nstiff = 59000 cs_ncoh = 8000 cs_nfric = 0 & cs_sstiff = 166000 cs_scoh = 1323 cs_sfric = 0 cs_ngap = 0 struct prop 3075 cs_nstiff = 59000 cs_ncoh = 8000 cs_nfric = 0 & cs_sstiff = 173000 cs_scoh = 1376 cs_sfric = 0 cs_ngap = 0 struct prop 3076 cs_nstiff = 59000 cs_ncoh = 8000 cs_nfric = 0 & cs_sstiff = 180000 cs_scoh = 1428 cs_sfric = 0 cs_ngap = 0 struct prop 3077 cs_nstiff = 59000 cs_ncoh = 8000 cs_nfric = 0 & cs_sstiff = 186000 cs_scoh = 1481 cs_sfric = 0 cs_ngap = 0 struct prop 3078 cs_nstiff = 59000 cs_ncoh = 8000 cs_nfric = 0 & cs_sstiff = 193000 cs_scoh = 1534 cs_sfric = 0 cs_ngap = 0 struct prop 3079 cs_nstiff = 59000 cs_ncoh = 8000 cs_nfric = 0 & cs_sstiff = 200000 cs_scoh = 1586 cs_sfric = 0 cs_ngap = 0 struct prop 3080 cs_nstiff = 59000 cs_ncoh = 8000 cs_nfric = 0 & cs_sstiff = 206000 cs_scoh = 1639 cs_sfric = 0 cs_ngap = 0 struct prop 3081 cs_nstiff = 59000 cs_ncoh = 8000 cs_nfric = 0 & cs_sstiff = 213000 cs_scoh = 1691 cs_sfric = 0 cs_ngap = 0 struct prop 3082 cs_nstiff = 59000 cs_ncoh = 8000 cs_nfric = 0 & cs_sstiff = 219000 cs_scoh = 1744 cs_sfric = 0 cs_ngap = 0 struct prop 3083 cs_nstiff = 59000 cs_ncoh = 8000 cs_nfric = 0 & cs_sstiff = 226000 cs_scoh = 1797 cs_sfric = 0 cs_ngap = 0 struct prop 3084 cs_nstiff = 59000 cs_ncoh = 8000 cs_nfric = 0 & cs_sstiff = 233000 cs_scoh = 1849 cs_sfric = 0 cs_ngap = 0 struct prop 3085 cs_nstiff = 59000 cs_ncoh = 8000 cs_nfric = 0 & cs_sstiff = 239000 cs_scoh = 1902 cs_sfric = 0 cs_ngap = 0 struct prop 3086 cs_nstiff = 59000 cs_ncoh = 8000 cs_nfric = 0 & cs_sstiff = 246000 cs_scoh = 1954 cs_sfric = 0 cs_ngap = 0 struct prop 3087 cs_nstiff = 59000 cs_ncoh = 8000 cs_nfric = 0 & cs_sstiff = 252000 cs_scoh = 2007 cs_sfric = 0 cs_ngap = 0 struct prop 3088 cs_nstiff = 66000 cs_ncoh = 9000 cs_nfric = 0 & cs_sstiff = 271000 cs_scoh = 2152 cs_sfric = 0 cs_ngap = 0 struct prop 3089 cs_nstiff = 66000 cs_ncoh = 9000 cs_nfric = 0 & cs_sstiff = 278000 cs_scoh = 2212 cs_sfric = 0 cs_ngap = 0 struct prop 3090 cs_nstiff = 66000 cs_ncoh = 9000 cs_nfric = 0 & cs_sstiff = 286000 cs_scoh = 2272 cs_sfric = 0 cs_ngap = 0 struct prop 3091 cs_nstiff = 66000 cs_ncoh = 9000 cs_nfric = 0 & cs_sstiff = 293000 cs_scoh = 2332 cs_sfric = 0 cs_ngap = 0 struct prop 3092 cs_nstiff = 66000 cs_ncoh = 9000 cs_nfric = 0 & cs_sstiff = 301000 cs_scoh = 2392 cs_sfric = 0 cs_ngap = 0 struct prop 3093 cs_nstiff = 66000 cs_ncoh = 9000 cs_nfric = 0 & cs_sstiff = 308000 cs_scoh = 2452 cs_sfric = 0 cs_ngap = 0 struct prop 3094 cs_nstiff = 66000 cs_ncoh = 9000 cs_nfric = 0 & cs_sstiff = 316000 cs_scoh = 2511 cs_sfric = 0 cs_ngap = 0 struct prop 3095 cs_nstiff = 66000 cs_ncoh = 9000 cs_nfric = 0 & cs_sstiff = 323000 cs_scoh = 2571 cs_sfric = 0 cs_ngap = 0 struct prop 3096 cs_nstiff = 66000 cs_ncoh = 9000 cs_nfric = 0 & cs_sstiff = 331000 cs_scoh = 2631 cs_sfric = 0 cs_ngap = 0 struct prop 3097 cs_nstiff = 66000 cs_ncoh = 9000 cs_nfric = 0 &

Page 94: Attachment D-6: FLAC Analysis · (FLAC) 7.0 by Itasca Consulting Group, Inc was used to complete the numerical analysis of the T-wall. Conventional LEM slope stability analysis and

cs_sstiff = 339000 cs_scoh = 2691 cs_sfric = 0 cs_ngap = 0 struct prop 3098 cs_nstiff = 66000 cs_ncoh = 9000 cs_nfric = 0 & cs_sstiff = 346000 cs_scoh = 2751 cs_sfric = 0 cs_ngap = 0 struct prop 3099 cs_nstiff = 66000 cs_ncoh = 9000 cs_nfric = 0 & cs_sstiff = 354000 cs_scoh = 2811 cs_sfric = 0 cs_ngap = 0 struct prop 3100 cs_nstiff = 66000 cs_ncoh = 9000 cs_nfric = 0 & cs_sstiff = 361000 cs_scoh = 2871 cs_sfric = 0 cs_ngap = 0 struct prop 3101 cs_nstiff = 66000 cs_ncoh = 9000 cs_nfric = 0 & cs_sstiff = 369000 cs_scoh = 2931 cs_sfric = 0 cs_ngap = 0 struct prop 3102 cs_nstiff = 66000 cs_ncoh = 9000 cs_nfric = 0 & cs_sstiff = 376000 cs_scoh = 2991 cs_sfric = 0 cs_ngap = 0 struct prop 3103 cs_nstiff = 66000 cs_ncoh = 9000 cs_nfric = 0 & cs_sstiff = 384000 cs_scoh = 3051 cs_sfric = 0 cs_ngap = 0 struct prop 3104 cs_nstiff = 1080000 cs_ncoh = 36000 cs_nfric = 0 & cs_sstiff = 551000 cs_scoh = 4382 cs_sfric = 0 cs_ngap = 0 struct prop 3105 cs_nstiff = 1080000 cs_ncoh = 36000 cs_nfric = 0 & cs_sstiff = 578000 cs_scoh = 4594 cs_sfric = 0 cs_ngap = 0 struct prop 3106 cs_nstiff = 1080000 cs_ncoh = 36000 cs_nfric = 0 & cs_sstiff = 605000 cs_scoh = 4806 cs_sfric = 0 cs_ngap = 0 struct prop 3107 cs_nstiff = 1368000 cs_ncoh = 45000 cs_nfric = 0 & cs_sstiff = 713000 cs_scoh = 5671 cs_sfric = 0 cs_ngap = 0 struct prop 3108 cs_nstiff = 1368000 cs_ncoh = 45000 cs_nfric = 0 & cs_sstiff = 744000 cs_scoh = 5911 cs_sfric = 0 cs_ngap = 0 struct prop 3109 cs_nstiff = 1368000 cs_ncoh = 45000 cs_nfric = 0 & cs_sstiff = 774000 cs_scoh = 6150 cs_sfric = 0 cs_ngap = 0 struct prop 3110 cs_nstiff = 1368000 cs_ncoh = 45000 cs_nfric = 0 & cs_sstiff = 5226000 cs_scoh = 43600 cs_sfric = 0 cs_ngap = 0 ; ;Third Pile - Drained Coupling Spring Constants struct prop 3111 cs_nstiff = 2000000 cs_ncoh = 65000 cs_nfric = 0 & cs_sstiff = 2000000 cs_scoh = 20000 cs_sfric = 0 cs_ngap = 0 struct prop 3112 cs_nstiff = 52000 cs_ncoh = 7000 cs_nfric = 0 & cs_sstiff = 61000 cs_scoh = 485 cs_sfric = 0 cs_ngap = 0 struct prop 3113 cs_nstiff = 56000 cs_ncoh = 7000 cs_nfric = 0 & cs_sstiff = 70000 cs_scoh = 560 cs_sfric = 0 cs_ngap = 0 struct prop 3114 cs_nstiff = 45000 cs_ncoh = 6000 cs_nfric = 0 & cs_sstiff = 67000 cs_scoh = 534 cs_sfric = 0 cs_ngap = 0 struct prop 3115 cs_nstiff = 48000 cs_ncoh = 6000 cs_nfric = 0 & cs_sstiff = 74000 cs_scoh = 587 cs_sfric = 0 cs_ngap = 0 struct prop 3116 cs_nstiff = 51000 cs_ncoh = 7000 cs_nfric = 0 & cs_sstiff = 80000 cs_scoh = 639 cs_sfric = 0 cs_ngap = 0 struct prop 3117 cs_nstiff = 53000 cs_ncoh = 7000 cs_nfric = 0 & cs_sstiff = 87000 cs_scoh = 692 cs_sfric = 0 cs_ngap = 0 struct prop 3118 cs_nstiff = 56000 cs_ncoh = 7000 cs_nfric = 0 & cs_sstiff = 94000 cs_scoh = 744 cs_sfric = 0 cs_ngap = 0 struct prop 3119 cs_nstiff = 59000 cs_ncoh = 8000 cs_nfric = 0 & cs_sstiff = 100000 cs_scoh = 797 cs_sfric = 0 cs_ngap = 0 struct prop 3120 cs_nstiff = 59000 cs_ncoh = 8000 cs_nfric = 0 & cs_sstiff = 107000 cs_scoh = 850 cs_sfric = 0 cs_ngap = 0 struct prop 3121 cs_nstiff = 59000 cs_ncoh = 8000 cs_nfric = 0 & cs_sstiff = 114000 cs_scoh = 902 cs_sfric = 0 cs_ngap = 0 struct prop 3122 cs_nstiff = 59000 cs_ncoh = 8000 cs_nfric = 0 & cs_sstiff = 120000 cs_scoh = 955 cs_sfric = 0 cs_ngap = 0 struct prop 3123 cs_nstiff = 59000 cs_ncoh = 8000 cs_nfric = 0 & cs_sstiff = 127000 cs_scoh = 1007 cs_sfric = 0 cs_ngap = 0 struct prop 3124 cs_nstiff = 59000 cs_ncoh = 8000 cs_nfric = 0 & cs_sstiff = 133000 cs_scoh = 1060 cs_sfric = 0 cs_ngap = 0 struct prop 3125 cs_nstiff = 59000 cs_ncoh = 8000 cs_nfric = 0 & cs_sstiff = 140000 cs_scoh = 1113 cs_sfric = 0 cs_ngap = 0 struct prop 3126 cs_nstiff = 59000 cs_ncoh = 8000 cs_nfric = 0 & cs_sstiff = 147000 cs_scoh = 1165 cs_sfric = 0 cs_ngap = 0 struct prop 3127 cs_nstiff = 59000 cs_ncoh = 8000 cs_nfric = 0 & cs_sstiff = 153000 cs_scoh = 1218 cs_sfric = 0 cs_ngap = 0 struct prop 3128 cs_nstiff = 59000 cs_ncoh = 8000 cs_nfric = 0 & cs_sstiff = 160000 cs_scoh = 1270 cs_sfric = 0 cs_ngap = 0 struct prop 3129 cs_nstiff = 59000 cs_ncoh = 8000 cs_nfric = 0 & cs_sstiff = 166000 cs_scoh = 1323 cs_sfric = 0 cs_ngap = 0 struct prop 3130 cs_nstiff = 59000 cs_ncoh = 8000 cs_nfric = 0 & cs_sstiff = 173000 cs_scoh = 1376 cs_sfric = 0 cs_ngap = 0 struct prop 3131 cs_nstiff = 59000 cs_ncoh = 8000 cs_nfric = 0 & cs_sstiff = 180000 cs_scoh = 1428 cs_sfric = 0 cs_ngap = 0 struct prop 3132 cs_nstiff = 59000 cs_ncoh = 8000 cs_nfric = 0 & cs_sstiff = 186000 cs_scoh = 1481 cs_sfric = 0 cs_ngap = 0 struct prop 3133 cs_nstiff = 59000 cs_ncoh = 8000 cs_nfric = 0 & cs_sstiff = 193000 cs_scoh = 1534 cs_sfric = 0 cs_ngap = 0 struct prop 3134 cs_nstiff = 59000 cs_ncoh = 8000 cs_nfric = 0 & cs_sstiff = 200000 cs_scoh = 1586 cs_sfric = 0 cs_ngap = 0 struct prop 3135 cs_nstiff = 59000 cs_ncoh = 8000 cs_nfric = 0 & cs_sstiff = 206000 cs_scoh = 1639 cs_sfric = 0 cs_ngap = 0 struct prop 3136 cs_nstiff = 59000 cs_ncoh = 8000 cs_nfric = 0 & cs_sstiff = 213000 cs_scoh = 1691 cs_sfric = 0 cs_ngap = 0 struct prop 3137 cs_nstiff = 59000 cs_ncoh = 8000 cs_nfric = 0 & cs_sstiff = 219000 cs_scoh = 1744 cs_sfric = 0 cs_ngap = 0 struct prop 3138 cs_nstiff = 59000 cs_ncoh = 8000 cs_nfric = 0 & cs_sstiff = 226000 cs_scoh = 1797 cs_sfric = 0 cs_ngap = 0 struct prop 3139 cs_nstiff = 59000 cs_ncoh = 8000 cs_nfric = 0 & cs_sstiff = 233000 cs_scoh = 1849 cs_sfric = 0 cs_ngap = 0 struct prop 3140 cs_nstiff = 59000 cs_ncoh = 8000 cs_nfric = 0 & cs_sstiff = 239000 cs_scoh = 1902 cs_sfric = 0 cs_ngap = 0 struct prop 3141 cs_nstiff = 59000 cs_ncoh = 8000 cs_nfric = 0 & cs_sstiff = 246000 cs_scoh = 1954 cs_sfric = 0 cs_ngap = 0 struct prop 3142 cs_nstiff = 59000 cs_ncoh = 8000 cs_nfric = 0 & cs_sstiff = 252000 cs_scoh = 2007 cs_sfric = 0 cs_ngap = 0 struct prop 3143 cs_nstiff = 66000 cs_ncoh = 9000 cs_nfric = 0 & cs_sstiff = 271000 cs_scoh = 2152 cs_sfric = 0 cs_ngap = 0

Page 95: Attachment D-6: FLAC Analysis · (FLAC) 7.0 by Itasca Consulting Group, Inc was used to complete the numerical analysis of the T-wall. Conventional LEM slope stability analysis and

struct prop 3144 cs_nstiff = 66000 cs_ncoh = 9000 cs_nfric = 0 & cs_sstiff = 278000 cs_scoh = 2212 cs_sfric = 0 cs_ngap = 0 struct prop 3145 cs_nstiff = 66000 cs_ncoh = 9000 cs_nfric = 0 & cs_sstiff = 286000 cs_scoh = 2272 cs_sfric = 0 cs_ngap = 0 struct prop 3146 cs_nstiff = 66000 cs_ncoh = 9000 cs_nfric = 0 & cs_sstiff = 293000 cs_scoh = 2332 cs_sfric = 0 cs_ngap = 0 struct prop 3147 cs_nstiff = 66000 cs_ncoh = 9000 cs_nfric = 0 & cs_sstiff = 301000 cs_scoh = 2392 cs_sfric = 0 cs_ngap = 0 struct prop 3148 cs_nstiff = 66000 cs_ncoh = 9000 cs_nfric = 0 & cs_sstiff = 308000 cs_scoh = 2452 cs_sfric = 0 cs_ngap = 0 struct prop 3149 cs_nstiff = 66000 cs_ncoh = 9000 cs_nfric = 0 & cs_sstiff = 316000 cs_scoh = 2511 cs_sfric = 0 cs_ngap = 0 struct prop 3150 cs_nstiff = 66000 cs_ncoh = 9000 cs_nfric = 0 & cs_sstiff = 323000 cs_scoh = 2571 cs_sfric = 0 cs_ngap = 0 struct prop 3151 cs_nstiff = 66000 cs_ncoh = 9000 cs_nfric = 0 & cs_sstiff = 331000 cs_scoh = 2631 cs_sfric = 0 cs_ngap = 0 struct prop 3152 cs_nstiff = 66000 cs_ncoh = 9000 cs_nfric = 0 & cs_sstiff = 339000 cs_scoh = 2691 cs_sfric = 0 cs_ngap = 0 struct prop 3153 cs_nstiff = 66000 cs_ncoh = 9000 cs_nfric = 0 & cs_sstiff = 346000 cs_scoh = 2751 cs_sfric = 0 cs_ngap = 0 struct prop 3154 cs_nstiff = 66000 cs_ncoh = 9000 cs_nfric = 0 & cs_sstiff = 354000 cs_scoh = 2811 cs_sfric = 0 cs_ngap = 0 struct prop 3155 cs_nstiff = 66000 cs_ncoh = 9000 cs_nfric = 0 & cs_sstiff = 361000 cs_scoh = 2871 cs_sfric = 0 cs_ngap = 0 struct prop 3156 cs_nstiff = 66000 cs_ncoh = 9000 cs_nfric = 0 & cs_sstiff = 369000 cs_scoh = 2931 cs_sfric = 0 cs_ngap = 0 struct prop 3157 cs_nstiff = 66000 cs_ncoh = 9000 cs_nfric = 0 & cs_sstiff = 376000 cs_scoh = 2991 cs_sfric = 0 cs_ngap = 0 struct prop 3158 cs_nstiff = 66000 cs_ncoh = 9000 cs_nfric = 0 & cs_sstiff = 384000 cs_scoh = 3051 cs_sfric = 0 cs_ngap = 0 struct prop 3159 cs_nstiff = 1080000 cs_ncoh = 36000 cs_nfric = 0 & cs_sstiff = 551000 cs_scoh = 4382 cs_sfric = 0 cs_ngap = 0 struct prop 3160 cs_nstiff = 1080000 cs_ncoh = 36000 cs_nfric = 0 & cs_sstiff = 578000 cs_scoh = 4594 cs_sfric = 0 cs_ngap = 0 struct prop 3161 cs_nstiff = 1080000 cs_ncoh = 36000 cs_nfric = 0 & cs_sstiff = 605000 cs_scoh = 4806 cs_sfric = 0 cs_ngap = 0 struct prop 3162 cs_nstiff = 1368000 cs_ncoh = 45000 cs_nfric = 0 & cs_sstiff = 713000 cs_scoh = 5671 cs_sfric = 0 cs_ngap = 0 struct prop 3163 cs_nstiff = 1368000 cs_ncoh = 45000 cs_nfric = 0 & cs_sstiff = 744000 cs_scoh = 5911 cs_sfric = 0 cs_ngap = 0 struct prop 3164 cs_nstiff = 1368000 cs_ncoh = 45000 cs_nfric = 0 & cs_sstiff = 774000 cs_scoh = 6150 cs_sfric = 0 cs_ngap = 0 struct prop 3165 cs_nstiff = 1368000 cs_ncoh = 45000 cs_nfric = 0 & cs_sstiff = 5226000 cs_scoh = 43600 cs_sfric = 0 cs_ngap = 0 ; save 28_Drained_Springs.sav ;Branch 1:29_Drained_M-C.sav ;ENTER DRAINED MOHR-COULOMB SOIL PROPERTIES ;Friction is included ;Cohesion is set to zero ;Moduli values based on PM Testing (KAH on 28 SEP 2015) ;******************************************************************************* ; model mohr-coulomb group 'Sherack (Above GWT)' prop density = 3.571 bulk = 590000 shear = 200000 friction = 28 & Cohesion = 0 group 'Sherack (Above GWT)' model mohr-coulomb group 'Sherack' prop density = 3.571 bulk = 590000 shear = 200000 friction = 28 & Cohesion = 0 group 'Sherack' model mohr-coulomb group 'Brenna' prop density = 3.292 bulk = 610000 shear = 170000 friction = 24 & Cohesion = 0 group 'Brenna' model mohr-coulomb group 'Argusville' prop density = 3.416 bulk = 650000 shear = 190000 friction = 25 & Cohesion = 0 group 'Argusville' model mohr-coulomb group 'Weathered Till' prop density = 3.82 bulk = 5070000 shear = 2260000 friction = 34 & Cohesion = 0 group 'Weathered Till' model mohr-coulomb group 'Intact Till' prop density = 3.82 bulk = 5480000 shear = 2860000 friction = 38 & Cohesion = 0 group 'Intact Till' ; ;zones at ground surface downsteam of floodwall where given ;some cohesion (500 psf) due to issue with the zones ;expanding and giving a bad geometry error code prop cohesion 500 notnull i 105 110 j 65 67 ; ;Interface needs to be updated for drained analysis. ;Interface is based on drained material properties. Equivalent stiffness is based on soil, not concrete. ;Friction as 2/3 of the effective stress friction angle. ;Interface above the footing included (Modified by KAH 28 SEP 2015) ;******************************************************************************* ;Remove the existing interfaces interface 111 remove interface 112 remove interface 113 remove interface 114 remove interface 115 remove ; ;Attach grid points with unglued interface and equal to shear strength. ; ;Horizontal line beneath footing interface 121 aside from 125,62 to 107,62 bside from 125,63 to 107,63 interface 121 unglued kn = 8367000 ks = 8367000 cohesion = 0 &

Page 96: Attachment D-6: FLAC Analysis · (FLAC) 7.0 by Itasca Consulting Group, Inc was used to complete the numerical analysis of the T-wall. Conventional LEM slope stability analysis and

dilation = 0 friction = 16 tbond = 0 sbratio =100 bslip = off ; ;Left vertical line at footing interface 122 aside from 106,63 to 106,66 bside from 107,63 to 107,66 interface 122 unglued kn = 8367000 ks = 8367000 cohesion = 0 & dilation = 0 friction = 16 tbond = 0 sbratio =100 bslip = off ; ;Right vertical line at footing interface 123 aside from 126,66 to 126,63 bside from 125,66 to 125,63 interface 123 unglued kn = 8367000 ks = 8367000 cohesion = 0 & dilation = 0 friction = 16 tbond = 0 sbratio =100 bslip = off ; ;Left vertical line above footing interface 124 aside from 106,67 to 106,69 bside from 107,67 to 107,69 interface 124 unglued kn = 8567000 ks = 8567000 cohesion = 0 & dilation = 0 friction = 19 tbond = 0 sbratio =100 bslip = off ; ;Right vertical line above footing interface 125 aside from 126,67 to 126,69 bside from 125,67 to 125,69 interface 125 unglued kn = 8567000 ks = 8567000 cohesion = 0 & dilation = 0 friction = 19 tbond = 0 sbratio =100 bslip = off ; save 29_Drained_M-C.sav ;Branch 2:30_Flood_Step.sav ;APPLY FLOOD LOAD ;Apply flood load in mutliple steps. ;CAUTION: Modify groundwater table as flood load steps are applied. ;Displacements and velocities zeroed prior to wall and piles being installed. ; ;Solve initial conditions with just wall constructed. set flow = off set = large solve ; save 30_Flood_Step.sav ;Branch 3:30_Flood_Step_01.sav ;Step 1 - Flood Loading to 903 ft (DRAINED) ;apply flood loading pressure to ground surface and T-Wall apply pressure = 124.8 from 114,69 to 125,69 apply pressure = 124.8 from 126,69 to 223,69 apply pressure = 124.8 var 0.0 -124.8 from 114,69 to 114,70 ; ;input piezometric line table 606 delete table 650 -345,887.9 -145,887.9 -94,894.8 -53,900.9 0,900.9 & 14,903 351,903 water table 650 ; ;apply uplift pressure to T-Wall apply pressure 391 var 33 0.0 from 107,63 to 119,63 apply pressure 466 var 17 0.0 from 119,63 to 125,63 ; ;EXECUTE FLOOD LOADING TO EL 903 BY SOLVING set flow = off solve save 30_Flood_Step_01.sav ;Branch 4:30_Flood_Step_02.sav ;Step 2 - Flood Loading to 905 ft (DRAINED) ;apply flood loading pressure to ground surface and T-Wall apply pressure = 249.6 from 114,69 to 125,69 apply pressure = 249.6 from 126,69 to 223,69 apply pressure = 249.6 var 0.0 -249.6 from 114,69 to 114,71 ; ;input piezometric line table 650 delete table 651 -345,887.9 -145,887.9 -94,894.8 -53,900.9 0,900.9 & 14,905 351,905 water table 651 ; ;apply uplift pressure to T-Wall apply pressure 408 var 66 0.0 from 107,63 to 119,63 apply pressure 557 var 34 0.0 from 119,63 to 125,63 ; ;EXECUTE FLOOD LOADING TO EL 905 BY SOLVING set flow = off solve save 30_Flood_Step_02.sav ;Branch 5:30_Flood_Step_03.sav ;Step 3 - Flood Loading to 907 ft (DRAINED) ;apply flood loading pressure to ground surface and T-Wall apply pressure = 374.4 from 114,69 to 125,69 apply pressure = 374.4 from 126,69 to 223,69 apply pressure = 374.4 var 0.0 -374.4 from 114,69 to 114,72 ; ;input piezometric line table 651 delete table 652 -345,887.9 -145,887.9 -94,894.8 -53,900.9 0,900.9 & 14,907 351,907 water table 652 ; ;apply uplift pressure to T-Wall

Page 97: Attachment D-6: FLAC Analysis · (FLAC) 7.0 by Itasca Consulting Group, Inc was used to complete the numerical analysis of the T-wall. Conventional LEM slope stability analysis and

apply pressure 424 var 100 0.0 from 107,63 to 119,63 apply pressure 649 var 50 0.0 from 119,63 to 125,63 ; ; ;EXECUTE FLOOD LOADING TO EL 907 BY SOLVING set flow = off solve save 30_Flood_Step_03.sav ;Branch 6:30_Flood_Step_04.sav ;Step 4 - Flood Loading to 909 ft (DRAINED) ;apply flood loading pressure to ground surface and T-Wall apply pressure = 499.2 from 114,69 to 125,69 apply pressure = 499.2 from 126,69 to 223,69 apply pressure = 499.2 var 0.0 -499.2 from 114,69 to 114,73 ; ;input piezometric line table 652 delete table 653 -345,887.9 -145,887.9 -94,894.8 -53,900.9 0,900.9 & 14,909 351,909 water table 653 ; ;apply uplift pressure to T-Wall apply pressure 441 var 133 0.0 from 107,63 to 119,63 apply pressure 740 var 67 0.0 from 119,63 to 125,63 ; ;EXECUTE FLOOD LOADING TO EL 909 BY SOLVING set flow = off solve save 30_Flood_Step_04.sav ;Branch 7:30_Flood_Step_05.sav ;Step 5 - Flood Loading to 911 ft (DRAINED) ;apply flood loading pressure to ground surface and T-Wall apply pressure = 624 from 114,69 to 125,69 apply pressure = 624 from 126,69 to 223,69 apply pressure = 624 var 0.0 -624 from 114,69 to 114,74 ; ;input piezometric line table 653 delete table 654 -345,887.9 -145,887.9 -94,894.8 -53,900.9 0,900.9 & 14,911 351,911 water table 654 ; ;apply uplift pressure to T-Wall apply pressure 458 var 166 0.0 from 107,63 to 119,63 apply pressure 832 var 83 0.0 from 119,63 to 125,63 ; ;EXECUTE EXCAVATION BY SOLVING set flow = off solve save 30_Flood_Step_05.sav ;Branch 8:30_Flood_Step_06.sav ;Step 6 - Flood Loading to 913 ft (DRAINED) ;apply flood loading pressure to ground surface and T-Wall apply pressure = 748.8 from 114,69 to 125,69 apply pressure = 748.8 from 126,69 to 223,69 apply pressure = 748.8 var 0.0 -748.8 from 114,69 to 114,75 ; ;input piezometric line table 654 delete table 655 -345,887.9 -145,887.9 -94,894.8 -53,900.9 0,900.9 & 14,913 351,913 water table 655 ; ;apply uplift pressure to T-Wall apply pressure 474 var 200 0.0 from 107,63 to 119,63 apply pressure 924 var 99 0.0 from 119,63 to 125,63 ; ;EXECUTE EXCAVATION BY SOLVING set flow = off solve save 30_Flood_Step_06.sav ;Branch 9:30_Flood_Step_07.sav ;Step 7 - Flood Loading to 915 ft (DRAINED) ;apply flood loading pressure to ground surface and T-Wall apply pressure = 873.6 from 114,69 to 125,69 apply pressure = 873.6 from 126,69 to 223,69 apply pressure = 873.6 var 0.0 -873.6 from 114,69 to 114,76 ; ;input piezometric line table 655 delete table 656 -345,887.9 -145,887.9 -94,894.8 -53,900.9 0,900.9 & 14,915 351,915 water table 656 ; ;apply uplift pressure to T-Wall apply pressure 491 var 233 0.0 from 107,63 to 119,63 apply pressure 1015 var 117 0.0 from 119,63 to 125,63 ; ;EXECUTE EXCAVATION BY SOLVING set flow = off solve

Page 98: Attachment D-6: FLAC Analysis · (FLAC) 7.0 by Itasca Consulting Group, Inc was used to complete the numerical analysis of the T-wall. Conventional LEM slope stability analysis and

save 30_Flood_Step_07.sav ;Branch 10:30_Flood_Step_08.sav ;Step 8 - Flood Loading to 917 ft (DRAINED) ;apply flood loading pressure to ground surface and T-Wall apply pressure = 998.4 from 114,69 to 125,69 apply pressure = 998.4 from 126,69 to 223,69 apply pressure = 998.4 var 0.0 -998.4 from 114,69 to 113,77 ; ;input piezometric line table 656 delete table 657 -345,887.9 -145,887.9 -94,894.8 -53,900.9 0,900.9 & 14,917 351,917 water table 657 ; ;apply uplift pressure to T-Wall apply pressure 508 var 266 0.0 from 107,63 to 119,63 apply pressure 1107 var 133 0.0 from 119,63 to 125,63 ; ;EXECUTE EXCAVATION BY SOLVING set flow = off solve save 30_Flood_Step_08.sav ;Branch 11:30_Flood_Step_09.sav ;Step 9 - Flood Loading to 919 ft (DRAINED) ;apply flood loading pressure to ground surface and T-Wall apply pressure = 1123.2 from 114,69 to 125,69 apply pressure = 1123.2 from 126,69 to 223,69 apply pressure = 1123.2 var 0.0 -1123.2 from 114,69 to 113,78 ; ;input piezometric line table 657 delete table 658 -345,887.9 -145,887.9 -94,894.8 -53,900.9 0,900.9 & 14,919 351,919 water table 658 ; ;apply uplift pressure to T-Wall apply pressure 524 var 300 0.0 from 107,63 to 119,63 apply pressure 1198 var 150 0.0 from 119,63 to 125,63 ; ;EXECUTE EXCAVATION BY SOLVING set flow = off solve save 30_Flood_Step_09.sav ;Branch 12:30_Flood_Step_10.sav ;Step 10 - Flood Loading to 921 ft (DRAINED) ;apply flood loading pressure to ground surface and T-Wall apply pressure = 1248 from 114,69 to 125,69 apply pressure = 1248 from 126,69 to 223,69 apply pressure = 1248 var 0.0 -1248 from 114,69 to 113,79 ; ;input piezometric line table 658 delete table 659 -345,887.9 -145,887.9 -94,894.8 -53,900.9 0,900.9 & 14,921 351,921 water table 659 ; ;apply uplift pressure to T-Wall apply pressure 541 var 333 0.0 from 107,63 to 119,63 apply pressure 1290 var 166 0.0 from 119,63 to 125,63 ; ;EXECUTE EXCAVATION BY SOLVING set flow = off solve save 30_Flood_Step_10.sav ;Branch 13:30_Flood_Step_11.sav ;Step 11 - Flood Loading to 922 ft (DRAINED) ;apply flood loading pressure to ground surface and T-Wall apply pressure = 1310.4 from 114,69 to 125,69 apply pressure = 1310.4 from 126,69 to 223,69 apply pressure = 1310.4 var 0.0 -1310.4 from 114,69 to 113,79 ; ;input piezometric line table 659 delete table 660 -345,887.9 -145,887.9 -94,894.8 -53,900.9 0,900.9 & 14,922 351,922 water table 660 ; ;apply uplift pressure to T-Wall apply pressure 549 var 350 0.0 from 107,63 to 119,63 apply pressure 1335 var 175 0.0 from 119,63 to 125,63 ; ;EXECUTE EXCAVATION BY SOLVING set flow = off solve save 30_Flood_Step_11.sav ;Branch 14:30_Flood_Step_12.sav ;Step 12 - Tailwater Loading to 892 ft (DRAINED) ;apply tailwater loading pressure to ground surface apply pressure = 249.6 from 1,55 to 41,55 apply pressure = 249.6 var 0.0 -187.2 from 41,55 to 48,59

Page 99: Attachment D-6: FLAC Analysis · (FLAC) 7.0 by Itasca Consulting Group, Inc was used to complete the numerical analysis of the T-wall. Conventional LEM slope stability analysis and

; ; ;input piezometric line table 660 delete table 661 -345,892 -145,892 -115,892 -53,900.9 0,900.9 14,922 & 351,922 water table 661 ; ;apply uplift pressure to T-Wall ;no change to uplift pressures as tailwater is still below footing ; ;EXECUTE EXCAVATION BY SOLVING set flow = off solve save 30_Flood_Step_12.sav ;Branch 15:30_Flood_Step_13.sav ;Step 13 - Tailwater Loading to 896 ft (DRAINED) ;apply tailwater loading pressure to ground surface apply pressure = 499.2 from 1,55 to 41,55 apply pressure = 499.2 var 0.0 -436.8 from 41,55 to 57,62 apply pressure = 62.4 var 0.0 0 from 57,63 to 59,64 ; ;input piezometric line table 661 delete table 662 -345,896 -145,896 -89,896 -53,900.9 0,900.9 14,922 & 351,922 water table 662 ; ;apply uplift pressure to T-Wall ;no change to uplift pressures as tailwater is still below footing ; ;EXECUTE EXCAVATION BY SOLVING set flow = off solve save 30_Flood_Step_13.sav ;Branch 16:30_Flood_Step_14.sav ;Step 14 - Tailwater Loading to 900 ft (DRAINED) ;apply tailwater loading pressure to ground surface apply pressure = 748.8 from 1,55 to 41,55 apply pressure = 748.8 var 0.0 -436.8 from 41,55 to 57,62 apply pressure = 312 var 0.0 -249.6 from 57,63 to 68,68 ; ;input piezometric line table 662 delete table 663 -345,900 -145,900 -61,900 -53,900.9 0,900.9 14,922 & 351,922 water table 663 ; ;apply uplift pressure to T-Wall ;no change to uplift pressures as tailwater is still below footing ; ;EXECUTE EXCAVATION BY SOLVING set flow = off solve save 30_Flood_Step_14.sav ;Branch 17:30_Flood_Step_15.sav ;Step 15 - Tailwater Loading to 903 ft (DRAINED) ;apply tailwater loading pressure to ground surface apply pressure = 936 from 1,55 to 41,55 apply pressure = 936 var 0.0 -436.8 from 41,55 to 57,62 apply pressure = 499.2 var 0.0 -374.4 from 57,63 to 71,69 apply pressure = 124.8 from 69,69 to 106,69 apply pressure = 124.8 from 107,69 to 111,69 apply pressure = 124.8 var 0.0 -124.8 from 111,69 to 111,70 ; ;input piezometric line table 663 delete table 664 -345,903 -145,903 -61,903 -53,903 0,903 14,922 & 351,922 water table 664 ; ;apply uplift pressure to T-Wall apply pressure 657 var 316 0.0 from 107,63 to 119,63 apply pressure 1369 var 158 0.0 from 119,63 to 125,63 ; ;EXECUTE EXCAVATION BY SOLVING set flow = off solve save 30_Flood_Step_15.sav ;Branch 18:30_Flood_Step_16.sav ;Step 16 - Tailwater Loading to 907 ft (DRAINED) ;apply tailwater loading pressure to ground surface apply pressure = 1185.6 from 1,55 to 41,55 apply pressure = 1185.6 var 0.0 -436.8 from 41,55 to 57,62 apply pressure = 748.8 var 0.0 -374.4 from 57,63 to 71,69 apply pressure = 374.4 from 69,69 to 106,69 apply pressure = 374.4 from 107,69 to 111,69 apply pressure = 374.4 var 0.0 -374.4 from 111,69 to 111,72 ; ;input piezometric line table 664 delete

Page 100: Attachment D-6: FLAC Analysis · (FLAC) 7.0 by Itasca Consulting Group, Inc was used to complete the numerical analysis of the T-wall. Conventional LEM slope stability analysis and

table 665 -345,907 -145,907 -61,907 -53,907 0,907 14,922 & 351,922 water table 665 ; ;apply uplift pressure to T-Wall apply pressure 874 var 249 0.0 from 107,63 to 119,63 apply pressure 1435 var 125 0.0 from 119,63 to 125,63 ; ;EXECUTE EXCAVATION BY SOLVING set flow = off solve save 30_Flood_Step_16.sav ;Branch 19:30_Flood_Step_17.sav ;Step 17 - Tailwater Loading to 910 ft (DRAINED) ;apply tailwater loading pressure to ground surface apply pressure = 1372.8 from 1,55 to 41,55 apply pressure = 1372.8 var 0.0 -436.8 from 41,55 to 57,62 apply pressure = 936 var 0.0 -374.4 from 57,63 to 71,69 apply pressure = 561.6 var 0.0 0 from 69,69 to 106,69 apply pressure = 561.6 var 0.0 0 from 107,69 to 111,69 apply pressure = 561.6 var 0.0 -499.2 from 111,69 to 111,73 ; ;input piezometric line table 665 delete table 666 -345,910 -145,910 -61,910 -53,910 0,910 14,922 & 351,922 water table 666 ; ;apply uplift pressure to T-Wall apply pressure 1036 var 200 0.0 from 107,63 to 119,63 apply pressure 1485 var 100 0.0 from 119,63 to 125,63 ; ;EXECUTE EXCAVATION BY SOLVING set flow = off solve save 30_Flood_Step_17.sav ;Branch 20:30_Flood_Step_18.sav ;Step 18 - Pool increase to 926 ft (DRAINED) ;apply flood loading pressure to ground surface and T-Wall apply pressure = 1560 from 114,69 to 125,69 apply pressure = 1560 from 126,69 to 223,69 apply pressure = 1560 var 0.0 -1497.6 from 114,69 to 113,81 ; ;input piezometric line table 666 delete table 667 -345,910 -145,910 -61,910 -53,910 0,910 14,926 & 351,926 water table 667 ; ;apply uplift pressure to T-Wall apply pressure 1069 var 266 0.0 from 107,63 to 119,63 apply pressure 1668 var 133 0.0 from 119,63 to 125,63 ; ;EXECUTE EXCAVATION BY SOLVING set flow = off solve save 30_Flood_Step_18.sav ;*** plot commands *** ;plot name: Unbalanced plot hold history 999 ;plot name: Stratigraphy plot hold group ;plot name: Cohesion plot hold cohesion block ;plot name: Friction plot hold friction block ;plot name: Density plot hold density fill gray grid ;plot name: Bulk Modulus plot hold bulk_mod block ;plot name: Shear Modulus plot hold shear_mod block ;plot name: SYY plot hold syy fill int 1000.0 ;plot name: SXX plot hold sxx fill int 1000.0 ;plot name: ESyy plot hold esyy fill min -27000.0 max 2000.0 int 1000.0 grid white ;plot name: ESxx plot hold esxx fill min -50000.0 max 20000.0 int 2000.0 grid white ;plot name: Zero esyy plot hold esyy fill min 0.0 max 124.8 int 32.2 grid ;plot name: Grid Points plot hold grid magenta gnum ;plot name: Pore Pressure plot hold pp fill int 312.0 apply ;plot name: Applied plot hold grid apply blue ;plot name: GWT & Applied Loads plot hold grid apply red water blue ;plot name: Applied Magnified

Page 101: Attachment D-6: FLAC Analysis · (FLAC) 7.0 by Itasca Consulting Group, Inc was used to complete the numerical analysis of the T-wall. Conventional LEM slope stability analysis and

plot hold grid water blue apply max 1000.0 red ;plot name: Displacement plot hold displacement red grid struct pile location iwhite ;plot name: Grid Displaced plot hold grid magnify 10.0 red water blue grid lblue pile iwhite pile & magnify 10.0 blue ;plot name: Grid plot hold model grid iwhite ;plot name: Wall X-Displ plot hold history 220 color iwhite 222 color blue 224 color red ;plot name: Wall Y-Displ plot hold history 221 color iwhite 223 color blue 225 color red ;plot name: Y-Disp Channel plot hold history 204 208 212 ;plot name: Y-Displ Left plot hold history 201 205 209 213 ;plot name: Y-Displ Wall plot hold history 202 206 210 214 ;plot name: Y-Displ Right plot hold history 203 207 211 215 ;plot name: Y-Displ plot hold ydisp fill int 0.0050 struct pile location iwhite ;plot name: X-Displ plot hold xdisp fill int 0.0050 pile iwhite ;plot name: Pile plot hold struct pile element iwhite struct pile node red grid ;plot name: Displaced Pile plot hold grid pile iwhite pile magnify 5.0 red ;plot name: Pile Moment plot hold grid struct pile moment fill red pile iwhite ;plot name: Coupling Spring Normal Displ plot hold grid struct pile cs_ndisp fill blue pile iwhite ;plot name: Coupling Spring Normal Force plot hold struct pile cs_nforce fill pile ;plot name: Coupling Spring Shear Displacement plot hold struct pile cs_sdisp fill struct pile location iwhite struct & pile element iwhite ;plot name: Coupling Spring Shear Force plot hold struct pile location iwhite struct pile cs_sforce fill struct & pile element iwhite ;plot name: Pile Shear plot hold grid struct pile node iwhite struct pile shear fill cyan pile & iwhite ;plot name: Shear Displacement plot hold struct pile node iwhite struct pile location iwhite struct pile & sdisplacement ;plot name: Pile Axial Force plot hold grid struct pile axial fill brown pile iwhite ;plot name: Pile Skin Friction plot hold grid struct pile cs_sforce fill magenta pile iwhite ;plot name: Interface Normal Stress (Undrained) plot hold iface 111 nstress fill blue iface 112 nstress fill cyan iface & 113 nstress fill red iface 114 nstress fill lcyan iface 115 nstress fill & lred grid ;plot name: Interface Shear Displ (Undrained) plot hold iface 111 sdisp fill blue iface 112 sdisp fill cyan iface 113 & sdisp fill red iface 114 sdisp fill lcyan iface 115 sdisp fill lred grid ;plot name: Interface Normal Stress (Drained) plot hold iface 121 nstress fill blue iface 122 nstress fill cyan iface & 123 nstress fill red grid ;plot name: Interface Shear Displ (Drained) plot hold iface 121 shear fill blue iface 122 shear fill cyan iface 123 & shear fill red grid ;plot name: Shear Bond Strengths plot hold struct pile sbond red grid ;plot name: Normal Bond Strengths plot hold struct pile nbond grid ;plot name: SSI plot hold ssi fill grid ;plot name: Yield plot hold yield grid white ;plot name: Plasticity plot hold grid white plasticity no_past plasticity pile blue

Page 102: Attachment D-6: FLAC Analysis · (FLAC) 7.0 by Itasca Consulting Group, Inc was used to complete the numerical analysis of the T-wall. Conventional LEM slope stability analysis and

Fargo Moorhead Metropolitan Area Draft Design Documentation Report Flood Risk Management Project Inlet Diversion

Appendix D, Attachment 6: FLAC Analysis of Floodwall

Exhibit 2: Spring Calculations

Page 103: Attachment D-6: FLAC Analysis · (FLAC) 7.0 by Itasca Consulting Group, Inc was used to complete the numerical analysis of the T-wall. Conventional LEM slope stability analysis and

Project: Fargo Diversion Inlet StructureSubject: Undrained Normal Spring Constants for Diversion Channel Inlet Structure

Computed By: KAH Reviewed By:Date: Date:

Pile Type HP 14 x 73Pile Diameter equivilant, dequiv 15.89781 inch

1.324818 ft

y ^1/3y50

Second Matlock Spring coefficient, K2,PU 9

γ' * z J * zc b

pu = (K1,PU or K2,PU) * c * b

Depth (ft) Elev. (ft) Depth, z GW depth

(ft)Formation γsat (pcf) σv (psf) u (psf) σ'vo (psf) c ε50 J K1,pu Pu

pct (Stiff Clay)

y50 cs_nstiff cs_ncoh

(psf) (lb/ft) (ft) (lbs) (lb/ft)0 901 0 0 Sherack 115 0 0 0 900 0.02 0.5

0.5 900.5 0.5 0.5 Sherack 115 57.5 31.2 26.3 900 0.02 0.5 3.2 3837 3693 0.066241 28,961 3,8371 900 1 1 Sherack 115 115 62.4 52.6 900 0.02 0.5 3.4 4097 5001 0.066241 30,923 4,097

1.5 899.5 1.5 1.5 Sherack 115 172.5 93.6 78.9 900 0.02 0.5 3.7 4357 6310 0.066241 32,884 4,3572 899 2 2 Sherack 115 230 124.8 105.2 900 0.02 0.5 3.9 4616 7618 0.066241 34,845 4,616

2.5 898.5 2.5 2.5 Sherack 115 287.5 156 131.5 900 0.02 0.5 4.1 4876 8926 0.066241 36,807 4,8763 898 3 3 Sherack 115 345 187.2 157.8 900 0.02 0.5 4.3 5136 10235 0.066241 38,768 5,136

3.5 897.5 3.5 3.5 Sherack 115 402.5 218.4 184.1 900 0.02 0.5 4.5 5396 11543 0.066241 40,729 5,3964 897 4 4 Sherack 115 460 249.6 210.4 900 0.02 0.5 4.7 5656 12851 0.066241 42,691 5,656

4.5 896.5 4.5 4.5 Sherack 115 517.5 280.8 236.7 900 0.02 0.5 5.0 5916 14160 0.066241 44,652 5,9165 896 5 5 Sherack 115 575 312 263 900 0.02 0.5 5.2 6175 15468 0.066241 46,613 6,175

5.5 895.5 5.5 5.5 Sherack 115 632.5 343.2 289.3 900 0.02 0.5 5.4 6435 16776 0.066241 48,575 6,4356 895 6 6 Sherack 115 690 374.4 315.6 900 0.02 0.5 5.6 6695 18085 0.066241 50,536 6,695

6.5 894.5 6.5 6.5 Sherack 115 747.5 405.6 341.9 900 0.02 0.5 5.8 6955 19393 0.066241 52,498 6,9557 894 7 7 Sherack 115 805 436.8 368.2 900 0.02 0.5 6.1 7215 20701 0.066241 54,459 7,215

7.5 893.5 7.5 7.5 Sherack 115 862.5 468 394.5 900 0.02 0.5 6.3 7475 22010 0.066241 56,420 7,4758 893 8 8 Sherack 115 920 499.2 420.8 900 0.02 0.5 6.5 7734 23318 0.066241 58,382 7,734

8.5 892.5 8.5 8.5 Brenna 106 973 530.4 442.6 650 0.02 0.5 6.9 5932 17944 0.066241 44,778 5,9329 892 9 9 Brenna 106 1026 561.6 464.4 650 0.02 0.5 7.1 6124 18893 0.066241 46,223 6,124

9.5 891.5 9.5 9.5 Brenna 106 1079 592.8 486.2 650 0.02 0.5 7.3 6315 19842 0.066241 47,667 6,31510 891 10 10 Brenna 106 1132 624 508 650 0.02 0.5 7.6 6506 20790 0.066241 49,112 6,506

10.5 890.5 10.5 10.5 Brenna 106 1185 655.2 529.8 650 0.02 0.5 7.8 6698 21739 0.066241 50,556 6,69811 890 11 11 Brenna 106 1238 686.4 551.6 650 0.02 0.5 8.0 6889 22688 0.066241 52,001 6,889

11.5 889.5 11.5 11.5 Brenna 106 1291 717.6 573.4 650 0.02 0.5 8.2 7081 23636 0.066241 53,445 7,08112 889 12 12 Brenna 106 1344 748.8 595.2 650 0.02 0.5 8.4 7272 24585 0.066241 54,890 7,272

12.5 888.5 12.5 12.5 Brenna 106 1397 780 617 650 0.02 0.5 8.7 7463 25533 0.066241 56,335 7,46313 888 13 13 Brenna 106 1450 811.2 638.8 650 0.02 0.5 8.9 7655 26482 0.066241 57,779 7,655

13.5 887.5 13.5 13.5 Brenna 106 1503 842.4 660.6 650 0.02 0.5 9.1 7750 27431 0.066241 58,500 7,75014 887 14 14 Brenna 106 1556 873.6 682.4 650 0.02 0.5 9.3 7750 28379 0.066241 58,500 7,750

14.5 886.5 14.5 14.5 Brenna 106 1609 904.8 704.2 650 0.02 0.5 9.6 7750 29328 0.066241 58,500 7,75015 886 15 15 Brenna 106 1662 936 726 650 0.02 0.5 9.8 7750 30277 0.066241 58,500 7,750

15.5 885.5 15.5 15.5 Brenna 106 1715 967.2 747.8 650 0.02 0.5 10.0 7750 31225 0.066241 58,500 7,75016 885 16 16 Brenna 106 1768 998.4 769.6 650 0.02 0.5 10.2 7750 32174 0.066241 58,500 7,750

16.5 884.5 16.5 16.5 Brenna 106 1821 1029.6 791.4 650 0.02 0.5 10.4 7750 33122 0.066241 58,500 7,75017 884 17 17 Brenna 106 1874 1060.8 813.2 650 0.02 0.5 10.7 7750 34071 0.066241 58,500 7,750

17.5 883.5 17.5 17.5 Brenna 106 1927 1092 835 650 0.02 0.5 10.9 7750 35020 0.066241 58,500 7,75018 883 18 18 Brenna 106 1980 1123.2 856.8 650 0.02 0.5 11.1 7750 35968 0.066241 58,500 7,750

18.5 882.5 18.5 18.5 Brenna 106 2033 1154.4 878.6 650 0.02 0.5 11.3 7750 36917 0.066241 58,500 7,75019 882 19 19 Brenna 106 2086 1185.6 900.4 650 0.02 0.5 11.6 7750 37866 0.066241 58,500 7,750

19.5 881.5 19.5 19.5 Brenna 106 2139 1216.8 922.2 650 0.02 0.5 11.8 7750 38814 0.066241 58,500 7,75020 881 20 20 Brenna 106 2192 1248 944 650 0.02 0.5 12.0 7750 39763 0.066241 58,500 7,750

20.5 880.5 20.5 20.5 Brenna 106 2245 1279.2 965.8 650 0.02 0.5 12.2 7750 40712 0.066241 58,500 7,75021 880 21 21 Brenna 106 2298 1310.4 987.6 650 0.02 0.5 12.4 7750 41660 0.066241 58,500 7,750

21.5 879.5 21.5 21.5 Brenna 106 2351 1341.6 1009.4 650 0.02 0.5 12.7 7750 42609 0.066241 58,500 7,75022 879 22 22 Brenna 106 2404 1372.8 1031.2 650 0.02 0.5 12.9 7750 43557 0.066241 58,500 7,750

22.5 878.5 22.5 22.5 Brenna 106 2457 1404 1053 650 0.02 0.5 13.1 7750 44506 0.066241 58,500 7,75023 878 23 23 Brenna 106 2510 1435.2 1074.8 650 0.02 0.5 13.3 7750 45455 0.066241 58,500 7,750

23.5 877.5 23.5 23.5 Brenna 106 2563 1466.4 1096.6 650 0.02 0.5 13.6 7750 46403 0.066241 58,500 7,75024 877 24 24 Brenna 106 2616 1497.6 1118.4 650 0.02 0.5 13.8 7750 47352 0.066241 58,500 7,750

24.5 876.5 24.5 24.5 Brenna 106 2669 1528.8 1140.2 650 0.02 0.5 14.0 7750 48301 0.066241 58,500 7,75025 876 25 25 Brenna 106 2722 1560 1162 650 0.02 0.5 14.2 7750 49249 0.066241 58,500 7,750

25.5 875.5 25.5 25.5 Brenna 106 2775 1591.2 1183.8 650 0.02 0.5 14.4 7750 50198 0.066241 58,500 7,75026 875 26 26 Brenna 106 2828 1622.4 1205.6 650 0.02 0.5 14.7 7750 51146 0.066241 58,500 7,750

26.5 874.5 26.5 26.5 Brenna 106 2881 1653.6 1227.4 650 0.02 0.5 14.9 7750 52095 0.066241 58,500 7,75027 874 27 27 Brenna 106 2934 1684.8 1249.2 650 0.02 0.5 15.1 7750 53044 0.066241 58,500 7,750

27.5 873.5 27.5 27.5 Brenna 106 2987 1716 1271 650 0.02 0.5 15.3 7750 53992 0.066241 58,500 7,75028 873 28 28 Brenna 106 3040 1747.2 1292.8 650 0.02 0.5 15.6 7750 54941 0.066241 58,500 7,750

28.5 872.5 28.5 28.5 Brenna 106 3093 1778.4 1314.6 650 0.02 0.5 15.8 7750 55890 0.066241 58,500 7,75029 872 29 29 Brenna 106 3146 1809.6 1336.4 650 0.02 0.5 16.0 7750 56838 0.066241 58,500 7,750

29.5 871.5 29.5 29.5 Brenna 106 3199 1840.8 1358.2 650 0.02 0.5 16.2 7750 57787 0.066241 58,500 7,75030 871 30 30 Brenna 106 3252 1872 1380 650 0.02 0.5 16.4 7750 58736 0.066241 58,500 7,750

30.5 870.5 30.5 30.5 Brenna 106 3305 1903.2 1401.8 650 0.02 0.5 16.7 7750 59684 0.066241 58,500 7,75031 870 31 31 Brenna 106 3358 1934.4 1423.6 650 0.02 0.5 16.9 7750 60633 0.066241 58,500 7,750

31.5 869.5 31.5 31.5 Brenna 106 3411 1965.6 1445.4 650 0.02 0.5 17.1 7750 61581 0.066241 58,500 7,75032 869 32 32 Brenna 106 3464 1996.8 1467.2 650 0.02 0.5 17.3 7750 62530 0.066241 58,500 7,750

32.5 868.5 32.5 32.5 Brenna 106 3517 2028 1489 650 0.02 0.5 17.6 7750 63479 0.066241 58,500 7,75033 868 33 33 Brenna 106 3570 2059.2 1510.8 650 0.02 0.5 17.8 7750 64427 0.066241 58,500 7,750

33.5 867.5 33.5 33.5 Brenna 106 3623 2090.4 1532.6 650 0.02 0.5 18.0 7750 65376 0.066241 58,500 7,75034 867 34 34 Brenna 106 3676 2121.6 1554.4 650 0.02 0.5 18.2 7750 66325 0.066241 58,500 7,750

34.5 866.5 34.5 34.5 Brenna 106 3729 2152.8 1576.2 650 0.02 0.5 18.4 7750 67273 0.066241 58,500 7,75035 866 35 35 Brenna 106 3782 2184 1598 650 0.02 0.5 18.7 7750 68222 0.066241 58,500 7,750

35.5 865.5 35.5 35.5 Brenna 106 3835 2215.2 1619.8 650 0.02 0.5 18.9 7750 69170 0.066241 58,500 7,75036 865 36 36 Brenna 106 3888 2246.4 1641.6 650 0.02 0.5 19.1 7750 70119 0.066241 58,500 7,750

36.5 864.5 36.5 36.5 Brenna 106 3941 2277.6 1663.4 650 0.02 0.5 19.3 7750 71068 0.066241 58,500 7,75037 864 37 37 Brenna 106 3994 2308.8 1685.2 650 0.02 0.5 19.6 7750 72016 0.066241 58,500 7,750

37.5 863.5 37.5 37.5 Argusville 110 4049 2340 1709 730 0.02 0.5 19.5 8704 81670 0.066241 65,700 8,70438 863 38 38 Argusville 110 4104 2371.2 1732.8 730 0.02 0.5 19.7 8704 82734 0.066241 65,700 8,704

38.5 862.5 38.5 38.5 Argusville 110 4159 2402.4 1756.6 730 0.02 0.5 19.9 8704 83799 0.066241 65,700 8,70439 862 39 39 Argusville 110 4214 2433.6 1780.4 730 0.02 0.5 20.2 8704 84863 0.066241 65,700 8,704

39.5 861.5 39.5 39.5 Argusville 110 4269 2464.8 1804.2 730 0.02 0.5 20.4 8704 85928 0.066241 65,700 8,70440 861 40 40 Argusville 110 4324 2496 1828 730 0.02 0.5 20.6 8704 86992 0.066241 65,700 8,704

40.5 860.5 40.5 40.5 Argusville 110 4379 2527.2 1851.8 730 0.02 0.5 20.8 8704 88056 0.066241 65,700 8,704

+

0.5 pu x p =

3 + K1,PU =

6/24/2015

0

20

40

60

80

100

0 2000 4000 6000 8000 10000

dept

h (ft

)

Stress (psf)

sv (psf)

u (psf)

s'vo (psf)

Page 104: Attachment D-6: FLAC Analysis · (FLAC) 7.0 by Itasca Consulting Group, Inc was used to complete the numerical analysis of the T-wall. Conventional LEM slope stability analysis and

41 860 41 41 Argusville 110 4434 2558.4 1875.6 730 0.02 0.5 21.0 8704 89121 0.066241 65,700 8,70441.5 859.5 41.5 41.5 Argusville 110 4489 2589.6 1899.4 730 0.02 0.5 21.3 8704 90185 0.066241 65,700 8,70442 859 42 42 Argusville 110 4544 2620.8 1923.2 730 0.02 0.5 21.5 8704 91250 0.066241 65,700 8,704

42.5 858.5 42.5 42.5 Argusville 110 4599 2652 1947 730 0.02 0.5 21.7 8704 92314 0.066241 65,700 8,70443 858 43 43 Argusville 110 4654 2683.2 1970.8 730 0.02 0.5 21.9 8704 93379 0.066241 65,700 8,704

43.5 857.5 43.5 43.5 Argusville 110 4709 2714.4 1994.6 730 0.02 0.5 22.1 8704 94443 0.066241 65,700 8,70444 857 44 44 Argusville 110 4764 2745.6 2018.4 730 0.02 0.5 22.4 8704 95508 0.066241 65,700 8,704

44.5 856.5 44.5 44.5 Argusville 110 4819 2776.8 2042.2 730 0.02 0.5 22.6 8704 96572 0.066241 65,700 8,70445 856 45 45 Argusville 110 4874 2808 2066 730 0.02 0.5 22.8 8704 97637 0.066241 65,700 8,704

45.5 855.5 45.5 45.5 Argusville 110 4929 2839.2 2089.8 730 0.02 0.5 23.0 8704 98701 0.066241 65,700 8,70446 855 46 46 Argusville 110 4984 2870.4 2113.6 730 0.02 0.5 23.3 8704 99766 0.066241 65,700 8,704

46.5 854.5 46.5 46.5 Argusville 110 5039 2901.6 2137.4 730 0.02 0.5 23.5 8704 100830 0.066241 65,700 8,70447 854 47 47 Argusville 110 5094 2932.8 2161.2 730 0.02 0.5 23.7 8704 101895 0.066241 65,700 8,704

47.5 853.5 47.5 47.5 Argusville 110 5149 2964 2185 730 0.02 0.5 23.9 8704 102959 0.066241 65,700 8,70448 853 48 48 Argusville 110 5204 2995.2 2208.8 730 0.02 0.5 24.1 8704 104024 0.066241 65,700 8,704

48.5 852.5 48.5 48.5 Argusville 110 5259 3026.4 2232.6 730 0.02 0.5 24.4 8704 105088 0.066241 65,700 8,70449 852 49 49 Argusville 110 5314 3057.6 2256.4 730 0.02 0.5 24.6 8704 106153 0.066241 65,700 8,704

49.5 851.5 49.5 49.5 Argusville 110 5369 3088.8 2280.2 730 0.02 0.5 24.8 8704 107217 0.066241 65,700 8,70450 851 50 50 Argusville 110 5424 3120 2304 730 0.02 0.5 25.0 8704 108282 0.066241 65,700 8,704

50.5 850.5 50.5 50.5 Argusville 110 5479 3151.2 2327.8 730 0.02 0.5 25.2 8704 109346 0.066241 65,700 8,70451 850 51 51 Argusville 110 5534 3182.4 2351.6 730 0.02 0.5 25.5 8704 110411 0.066241 65,700 8,704

51.5 849.5 51.5 51.5 Argusville 110 5589 3213.6 2375.4 730 0.02 0.5 25.7 8704 111475 0.066241 65,700 8,70452 849 52 52 Argusville 110 5644 3244.8 2399.2 730 0.02 0.5 25.9 8704 112540 0.066241 65,700 8,704

52.5 848.5 52.5 52.5 Argusville 110 5699 3276 2423 730 0.02 0.5 26.1 8704 113604 0.066241 65,700 8,70453 848 53 53 Argusville 110 5754 3307.2 2446.8 730 0.02 0.5 26.4 8704 114668 0.066241 65,700 8,704

53.5 847.5 53.5 53.5 Weathered Till 123 5815.5 3338.4 2477.1 3000 0.005 0.25 13.9 35770 465446 0.01656 1,080,000 35,77054 847 54 54 Weathered Till 123 5877 3369.6 2507.4 3000 0.005 0.25 14.0 35770 469731 0.01656 1,080,000 35,770

54.5 846.5 54.5 54.5 Weathered Till 123 5938.5 3400.8 2537.7 3000 0.005 0.25 14.1 35770 474016 0.01656 1,080,000 35,77055 846 55 55 Weathered Till 123 6000 3432 2568 3000 0.005 0.25 14.2 35770 478301 0.01656 1,080,000 35,770

55.5 845.5 55.5 55.5 Weathered Till 123 6061.5 3463.2 2598.3 3000 0.005 0.25 14.3 35770 482586 0.01656 1,080,000 35,77056 845 56 56 Weathered Till 123 6123 3494.4 2628.6 3000 0.005 0.25 14.4 35770 486871 0.01656 1,080,000 35,770

56.5 844.5 56.5 56.5 Weathered Till 123 6184.5 3525.6 2658.9 3000 0.005 0.25 14.5 35770 491156 0.01656 1,080,000 35,77057 844 57 57 Weathered Till 123 6246 3556.8 2689.2 3000 0.005 0.25 14.7 35770 495442 0.01656 1,080,000 35,770

57.5 843.5 57.5 57.5 Weathered Till 123 6307.5 3588 2719.5 3000 0.005 0.25 14.8 35770 499727 0.01656 1,080,000 35,77058 843 58 58 Weathered Till 123 6369 3619.2 2749.8 3000 0.005 0.25 14.9 35770 504012 0.01656 1,080,000 35,770

58.5 842.5 58.5 58.5 Weathered Till 123 6430.5 3650.4 2780.1 3000 0.005 0.25 15.0 35770 508297 0.01656 1,080,000 35,77059 842 59 59 Weathered Till 123 6492 3681.6 2810.4 3000 0.005 0.25 15.1 35770 512582 0.01656 1,080,000 35,770

59.5 841.5 59.5 59.5 Intact Till 123 6553.5 3712.8 2840.7 3800 0.005 0.25 15.0 45309 653695 0.01656 1,368,000 45,30960 841 60 60 Intact Till 123 6615 3744 2871 3800 0.005 0.25 15.1 45309 659112 0.01656 1,368,000 45,309

60.5 840.5 60.5 60.5 Intact Till 123 6676.5 3775.2 2901.3 3800 0.005 0.25 15.2 45309 664529 0.01656 1,368,000 45,30961 840 61 61 Intact Till 123 6738 3806.4 2931.6 3800 0.005 0.25 15.3 45309 669946 0.01656 1,368,000 45,309

61.5 839.5 61.5 61.5 Intact Till 123 6799.5 3837.6 2961.9 3800 0.005 0.25 15.4 45309 675364 0.01656 1,368,000 45,30962 839 62 62 Intact Till 123 6861 3868.8 2992.2 3800 0.005 0.25 15.5 45309 680781 0.01656 1,368,000 45,309

62.5 838.5 62.5 62.5 Intact Till 123 6922.5 3900 3022.5 3800 0.005 0.25 15.6 45309 686198 0.01656 1,368,000 45,30963 838 63 63 Intact Till 123 6984 3931.2 3052.8 3800 0.005 0.25 15.7 45309 691615 0.01656 1,368,000 45,309

63.5 837.5 63.5 63.5 Intact Till 123 7045.5 3962.4 3083.1 3800 0.005 0.25 15.8 45309 697032 0.01656 1,368,000 45,30964 837 64 64 Intact Till 123 7107 3993.6 3113.4 3800 0.005 0.25 15.9 45309 702449 0.01656 1,368,000 45,309

64.5 836.5 64.5 64.5 Intact Till 123 7168.5 4024.8 3143.7 3800 0.005 0.25 16.0 45309 707866 0.01656 1,368,000 45,30965 836 65 65 Intact Till 123 7230 4056 3174 3800 0.005 0.25 16.1 45309 713284 0.01656 1,368,000 45,309

65.5 835.5 65.5 65.5 Intact Till 123 7291.5 4087.2 3204.3 3800 0.005 0.25 16.2 45309 718701 0.01656 1,368,000 45,30966 835 66 66 Intact Till 123 7353 4118.4 3234.6 3800 0.005 0.25 16.3 45309 724118 0.01656 1,368,000 45,309

66.5 834.5 66.5 66.5 Intact Till 123 7414.5 4149.6 3264.9 3800 0.005 0.25 16.4 45309 729535 0.01656 1,368,000 45,30967 834 67 67 Intact Till 123 7476 4180.8 3295.2 3800 0.005 0.25 16.5 45309 734952 0.01656 1,368,000 45,309

67.5 833.5 67.5 67.5 Intact Till 123 7537.5 4212 3325.5 3800 0.005 0.25 16.6 45309 740369 0.01656 1,368,000 45,30968 833 68 68 Intact Till 123 7599 4243.2 3355.8 3800 0.005 0.25 16.7 45309 745786 0.01656 1,368,000 45,309

68.5 832.5 68.5 68.5 Intact Till 123 7660.5 4274.4 3386.1 3800 0.005 0.25 16.8 45309 751204 0.01656 1,368,000 45,30969 832 69 69 Intact Till 123 7722 4305.6 3416.4 3800 0.005 0.25 16.9 45309 756621 0.01656 1,368,000 45,309

69.5 831.5 69.5 69.5 Intact Till 123 7783.5 4336.8 3446.7 3800 0.005 0.25 17.0 45309 762038 0.01656 1,368,000 45,30970 831 70 70 Intact Till 123 7845 4368 3477 3800 0.005 0.25 17.1 45309 767455 0.01656 1,368,000 45,309

70.5 830.5 70.5 70.5 Intact Till 123 7906.5 4399.2 3507.3 3800 0.005 0.25 17.2 45309 772872 0.01656 1,368,000 45,30971 830 71 71 Intact Till 123 7968 4430.4 3537.6 3800 0.005 0.25 17.3 45309 778289 0.01656 1,368,000 45,309

71.5 829.5 71.5 71.5 Intact Till 123 8029.5 4461.6 3567.9 3800 0.005 0.25 17.4 45309 783706 0.01656 1,368,000 45,30972 829 72 72 Intact Till 123 8091 4492.8 3598.2 3800 0.005 0.25 17.5 45309 789124 0.01656 1,368,000 45,309

72.5 828.5 72.5 72.5 Intact Till 123 8152.5 4524 3628.5 3800 0.005 0.25 17.6 45309 794541 0.01656 1,368,000 45,30973 828 73 73 Intact Till 123 8214 4555.2 3658.8 3800 0.005 0.25 17.7 45309 799958 0.01656 1,368,000 45,309

73.5 827.5 73.5 73.5 Intact Till 123 8275.5 4586.4 3689.1 3800 0.005 0.25 17.8 45309 805375 0.01656 1,368,000 45,30974 827 74 74 Intact Till 123 8337 4617.6 3719.4 3800 0.005 0.25 17.9 45309 810792 0.01656 1,368,000 45,309

74.5 826.5 74.5 74.5 Intact Till 123 8398.5 4648.8 3749.7 3800 0.005 0.25 18.0 45309 816209 0.01656 1,368,000 45,30975 826 75 75 Intact Till 123 8460 4680 3780 3800 0.005 0.25 18.1 45309 821626 0.01656 1,368,000 45,309

Page 105: Attachment D-6: FLAC Analysis · (FLAC) 7.0 by Itasca Consulting Group, Inc was used to complete the numerical analysis of the T-wall. Conventional LEM slope stability analysis and

Project: Fargo Diversion Inlet StructureSubject: Undrained Shear Spring Constants for Diversion Channel Inlet Structure

Computed By: KAH Reviewed By:Date: Date:

Pile Type HP 14 x 73Pile Diameter equivilant, dequiv 15.90 inch

1.32 ftPile Perimeter 56.39 inch

4.7 ftDisplacement Increment 0.025 inch

critical displacement, zc 0.25 inchNeutral Plane -1 ft

adhesion factor, α 0.5 at 1500

Top of Pile 892Tip Elevation 836 ftSkin Friction 238 kips

taken from "normal spring" worksheet

Depth (ft) Elev. (ft) Depth, z GW depth

(ft)Formation γsat (pcf) σv (psf) u (psf) σ'vo (psf) c Cα Kneutral_plane tmax cs_sstiff cs_scoh

Skin Friction

(psf) (psf) (lb/ft) (lbs) (lb/ft) (lbs)0 901 0 0 Sherack 115 0 0 0 900 900 1 0 0

0.5 900.5 0.5 0.5 Sherack 115 57.5 31.2 26.3 900 900 1 4,229 532,055 4,229 01 900 1 1 Sherack 115 115 62.4 52.6 900 900 1 4,229 532,055 4,229 0

1.5 899.5 1.5 1.5 Sherack 115 172.5 93.6 78.9 900 900 1 4,229 532,055 4,229 02 899 2 2 Sherack 115 230 124.8 105.2 900 900 1 4,229 532,055 4,229 0

2.5 898.5 2.5 2.5 Sherack 115 287.5 156 131.5 900 900 1 4,229 532,055 4,229 03 898 3 3 Sherack 115 345 187.2 157.8 900 900 1 4,229 532,055 4,229 0

3.5 897.5 3.5 3.5 Sherack 115 402.5 218.4 184.1 900 900 1 4,229 532,055 4,229 04 897 4 4 Sherack 115 460 249.6 210.4 900 900 1 4,229 532,055 4,229 0

4.5 896.5 4.5 4.5 Sherack 115 517.5 280.8 236.7 900 900 1 4,229 532,055 4,229 05 896 5 5 Sherack 115 575 312 263 900 900 1 4,229 532,055 4,229 0

5.5 895.5 5.5 5.5 Sherack 115 632.5 343.2 289.3 900 900 1 4,229 532,055 4,229 06 895 6 6 Sherack 115 690 374.4 315.6 900 900 1 4,229 532,055 4,229 0

6.5 894.5 6.5 6.5 Sherack 115 747.5 405.6 341.9 900 900 1 4,229 532,055 4,229 07 894 7 7 Sherack 115 805 436.8 368.2 900 900 1 4,229 532,055 4,229 0

7.5 893.5 7.5 7.5 Sherack 115 862.5 468 394.5 900 900 1 4,229 532,055 4,229 08 893 8 8 Sherack 115 920 499.2 420.8 900 900 1 4,229 532,055 4,229 0

8.5 892.5 8.5 8.5 Brenna 106 973 530.4 442.6 650 650 1 3,054 384,262 3,054 09 892 9 9 Brenna 106 1026 561.6 464.4 650 650 1 3,054 384,262 3,054 1,527

9.5 891.5 9.5 9.5 Brenna 106 1079 592.8 486.2 650 650 1 3,054 384,262 3,054 1,52710 891 10 10 Brenna 106 1132 624 508 650 650 1 3,054 384,262 3,054 1,527

10.5 890.5 10.5 10.5 Brenna 106 1185 655.2 529.8 650 650 1 3,054 384,262 3,054 1,52711 890 11 11 Brenna 106 1238 686.4 551.6 650 650 1 3,054 384,262 3,054 1,527

11.5 889.5 11.5 11.5 Brenna 106 1291 717.6 573.4 650 650 1 3,054 384,262 3,054 1,52712 889 12 12 Brenna 106 1344 748.8 595.2 650 650 1 3,054 384,262 3,054 1,527

12.5 888.5 12.5 12.5 Brenna 106 1397 780 617 650 650 1 3,054 384,262 3,054 1,52713 888 13 13 Brenna 106 1450 811.2 638.8 650 650 1 3,054 384,262 3,054 1,527

13.5 887.5 13.5 13.5 Brenna 106 1503 842.4 660.6 650 650 1 3,054 384,262 3,054 1,52714 887 14 14 Brenna 106 1556 873.6 682.4 650 650 1 3,054 384,262 3,054 1,527

14.5 886.5 14.5 14.5 Brenna 106 1609 904.8 704.2 650 650 1 3,054 384,262 3,054 1,52715 886 15 15 Brenna 106 1662 936 726 650 650 1 3,054 384,262 3,054 1,527

15.5 885.5 15.5 15.5 Brenna 106 1715 967.2 747.8 650 650 1 3,054 384,262 3,054 1,52716 885 16 16 Brenna 106 1768 998.4 769.6 650 650 1 3,054 384,262 3,054 1,527

16.5 884.5 16.5 16.5 Brenna 106 1821 1029.6 791.4 650 650 1 3,054 384,262 3,054 1,52717 884 17 17 Brenna 106 1874 1060.8 813.2 650 650 1 3,054 384,262 3,054 1,527

17.5 883.5 17.5 17.5 Brenna 106 1927 1092 835 650 650 1 3,054 384,262 3,054 1,52718 883 18 18 Brenna 106 1980 1123.2 856.8 650 650 1 3,054 384,262 3,054 1,527

18.5 882.5 18.5 18.5 Brenna 106 2033 1154.4 878.6 650 650 1 3,054 384,262 3,054 1,52719 882 19 19 Brenna 106 2086 1185.6 900.4 650 650 1 3,054 384,262 3,054 1,527

19.5 881.5 19.5 19.5 Brenna 106 2139 1216.8 922.2 650 650 1 3,054 384,262 3,054 1,52720 881 20 20 Brenna 106 2192 1248 944 650 650 1 3,054 384,262 3,054 1,527

20.5 880.5 20.5 20.5 Brenna 106 2245 1279.2 965.8 650 650 1 3,054 384,262 3,054 1,52721 880 21 21 Brenna 106 2298 1310.4 987.6 650 650 1 3,054 384,262 3,054 1,527

21.5 879.5 21.5 21.5 Brenna 106 2351 1341.6 1009.4 650 650 1 3,054 384,262 3,054 1,52722 879 22 22 Brenna 106 2404 1372.8 1031.2 650 650 1 3,054 384,262 3,054 1,527

22.5 878.5 22.5 22.5 Brenna 106 2457 1404 1053 650 650 1 3,054 384,262 3,054 1,52723 878 23 23 Brenna 106 2510 1435.2 1074.8 650 650 1 3,054 384,262 3,054 1,527

23.5 877.5 23.5 23.5 Brenna 106 2563 1466.4 1096.6 650 650 1 3,054 384,262 3,054 1,52724 877 24 24 Brenna 106 2616 1497.6 1118.4 650 650 1 3,054 384,262 3,054 1,527

24.5 876.5 24.5 24.5 Brenna 106 2669 1528.8 1140.2 650 650 1 3,054 384,262 3,054 1,52725 876 25 25 Brenna 106 2722 1560 1162 650 650 1 3,054 384,262 3,054 1,527

25.5 875.5 25.5 25.5 Brenna 106 2775 1591.2 1183.8 650 650 1 3,054 384,262 3,054 1,52726 875 26 26 Brenna 106 2828 1622.4 1205.6 650 650 1 3,054 384,262 3,054 1,527

26.5 874.5 26.5 26.5 Brenna 106 2881 1653.6 1227.4 650 650 1 3,054 384,262 3,054 1,52727 874 27 27 Brenna 106 2934 1684.8 1249.2 650 650 1 3,054 384,262 3,054 1,527

27.5 873.5 27.5 27.5 Brenna 106 2987 1716 1271 650 650 1 3,054 384,262 3,054 1,52728 873 28 28 Brenna 106 3040 1747.2 1292.8 650 650 1 3,054 384,262 3,054 1,527

28.5 872.5 28.5 28.5 Brenna 106 3093 1778.4 1314.6 650 650 1 3,054 384,262 3,054 1,52729 872 29 29 Brenna 106 3146 1809.6 1336.4 650 650 1 3,054 384,262 3,054 1,527

29.5 871.5 29.5 29.5 Brenna 106 3199 1840.8 1358.2 650 650 1 3,054 384,262 3,054 1,52730 871 30 30 Brenna 106 3252 1872 1380 650 650 1 3,054 384,262 3,054 1,527

30.5 870.5 30.5 30.5 Brenna 106 3305 1903.2 1401.8 650 650 1 3,054 384,262 3,054 1,52731 870 31 31 Brenna 106 3358 1934.4 1423.6 650 650 1 3,054 384,262 3,054 1,527

31.5 869.5 31.5 31.5 Brenna 106 3411 1965.6 1445.4 650 650 1 3,054 384,262 3,054 1,52732 869 32 32 Brenna 106 3464 1996.8 1467.2 650 650 1 3,054 384,262 3,054 1,527

7/8/2015

Spreadsheet gives 217; factored strengths 358

0

20

40

60

80

100

0 1000 2000 3000 4000

dept

h (ft

)

Stress (psf)

s'vo (psf)

0

10000

20000

30000

40000

50000

60000

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8

t (lb

/ft)

Displacement, z (inches)

t-z curves

72345566400065teq (Table 4.4)t & q combined (Table 4.4)teq (PLT)t & q combined (PLT)teq (V&M)

Page 106: Attachment D-6: FLAC Analysis · (FLAC) 7.0 by Itasca Consulting Group, Inc was used to complete the numerical analysis of the T-wall. Conventional LEM slope stability analysis and

32.5 868.5 32.5 32.5 Brenna 106 3517 2028 1489 650 650 1 3,054 384,262 3,054 1,52733 868 33 33 Brenna 106 3570 2059.2 1510.8 650 650 1 3,054 384,262 3,054 1,527

33.5 867.5 33.5 33.5 Brenna 106 3623 2090.4 1532.6 650 650 1 3,054 384,262 3,054 1,52734 867 34 34 Brenna 106 3676 2121.6 1554.4 650 650 1 3,054 384,262 3,054 1,527

34.5 866.5 34.5 34.5 Brenna 106 3729 2152.8 1576.2 650 650 1 3,054 384,262 3,054 1,52735 866 35 35 Brenna 106 3782 2184 1598 650 650 1 3,054 384,262 3,054 1,527

35.5 865.5 35.5 35.5 Brenna 106 3835 2215.2 1619.8 650 650 1 3,054 384,262 3,054 1,52736 865 36 36 Brenna 106 3888 2246.4 1641.6 650 650 1 3,054 384,262 3,054 1,527

36.5 864.5 36.5 36.5 Brenna 106 3941 2277.6 1663.4 650 650 1 3,054 384,262 3,054 1,52737 864 37 37 Brenna 106 3994 2308.8 1685.2 650 650 1 3,054 384,262 3,054 1,527

37.5 863.5 37.5 37.5 Argusville 110 4049 2340 1709 730 730 1 3,430 431,556 3,430 1,71538 863 38 38 Argusville 110 4104 2371.2 1732.8 730 730 1 3,430 431,556 3,430 1,715

38.5 862.5 38.5 38.5 Argusville 110 4159 2402.4 1756.6 730 730 1 3,430 431,556 3,430 1,71539 862 39 39 Argusville 110 4214 2433.6 1780.4 730 730 1 3,430 431,556 3,430 1,715

39.5 861.5 39.5 39.5 Argusville 110 4269 2464.8 1804.2 730 730 1 3,430 431,556 3,430 1,71540 861 40 40 Argusville 110 4324 2496 1828 730 730 1 3,430 431,556 3,430 1,715

40.5 860.5 40.5 40.5 Argusville 110 4379 2527.2 1851.8 730 730 1 3,430 431,556 3,430 1,71541 860 41 41 Argusville 110 4434 2558.4 1875.6 730 730 1 3,430 431,556 3,430 1,715

41.5 859.5 41.5 41.5 Argusville 110 4489 2589.6 1899.4 730 730 1 3,430 431,556 3,430 1,71542 859 42 42 Argusville 110 4544 2620.8 1923.2 730 730 1 3,430 431,556 3,430 1,715

42.5 858.5 42.5 42.5 Argusville 110 4599 2652 1947 730 730 1 3,430 431,556 3,430 1,71543 858 43 43 Argusville 110 4654 2683.2 1970.8 730 730 1 3,430 431,556 3,430 1,715

43.5 857.5 43.5 43.5 Argusville 110 4709 2714.4 1994.6 730 730 1 3,430 431,556 3,430 1,71544 857 44 44 Argusville 110 4764 2745.6 2018.4 730 730 1 3,430 431,556 3,430 1,715

44.5 856.5 44.5 44.5 Argusville 110 4819 2776.8 2042.2 730 730 1 3,430 431,556 3,430 1,71545 856 45 45 Argusville 110 4874 2808 2066 730 730 1 3,430 431,556 3,430 1,715

45.5 855.5 45.5 45.5 Argusville 110 4929 2839.2 2089.8 730 730 1 3,430 431,556 3,430 1,71546 855 46 46 Argusville 110 4984 2870.4 2113.6 730 730 1 3,430 431,556 3,430 1,715

46.5 854.5 46.5 46.5 Argusville 110 5039 2901.6 2137.4 730 730 1 3,430 431,556 3,430 1,71547 854 47 47 Argusville 110 5094 2932.8 2161.2 730 730 1 3,430 431,556 3,430 1,715

47.5 853.5 47.5 47.5 Argusville 110 5149 2964 2185 730 730 1 3,430 431,556 3,430 1,71548 853 48 48 Argusville 110 5204 2995.2 2208.8 730 730 1 3,430 431,556 3,430 1,715

48.5 852.5 48.5 48.5 Argusville 110 5259 3026.4 2232.6 730 730 1 3,430 431,556 3,430 1,71549 852 49 49 Argusville 110 5314 3057.6 2256.4 730 730 1 3,430 431,556 3,430 1,715

49.5 851.5 49.5 49.5 Argusville 110 5369 3088.8 2280.2 730 730 1 3,430 431,556 3,430 1,71550 851 50 50 Argusville 110 5424 3120 2304 730 730 1 3,430 431,556 3,430 1,715

50.5 850.5 50.5 50.5 Argusville 110 5479 3151.2 2327.8 730 730 1 3,430 431,556 3,430 1,71551 850 51 51 Argusville 110 5534 3182.4 2351.6 730 730 1 3,430 431,556 3,430 1,715

51.5 849.5 51.5 51.5 Argusville 110 5589 3213.6 2375.4 730 730 1 3,430 431,556 3,430 1,71552 849 52 52 Argusville 110 5644 3244.8 2399.2 730 730 1 3,430 431,556 3,430 1,715

52.5 848.5 52.5 52.5 Argusville 110 5699 3276 2423 730 730 1 3,430 431,556 3,430 1,71553 848 53 53 Argusville 110 5754 3307.2 2446.8 730 730 1 3,430 431,556 3,430 1,715

53.5 847.5 53.5 53.5 Weathered Till 123 5815.5 3338.4 2477.1 3000 1500 1 7,049 886,758 7,049 3,52454 847 54 54 Weathered Till 123 5877 3369.6 2507.4 3000 1500 1 7,049 886,758 7,049 3,524

54.5 846.5 54.5 54.5 Weathered Till 123 5938.5 3400.8 2537.7 3000 1500 1 7,049 886,758 7,049 3,52455 846 55 55 Weathered Till 123 6000 3432 2568 3000 1500 1 7,049 886,758 7,049 3,524

55.5 845.5 55.5 55.5 Weathered Till 123 6061.5 3463.2 2598.3 3000 1500 1 7,049 886,758 7,049 3,52456 845 56 56 Weathered Till 123 6123 3494.4 2628.6 3000 1500 1 7,049 886,758 7,049 3,524

56.5 844.5 56.5 56.5 Weathered Till 123 6184.5 3525.6 2658.9 3000 1500 1 7,049 886,758 7,049 3,52457 844 57 57 Weathered Till 123 6246 3556.8 2689.2 3000 1500 1 7,049 886,758 7,049 3,524

57.5 843.5 57.5 57.5 Weathered Till 123 6307.5 3588 2719.5 3000 1500 1 7,049 886,758 7,049 3,52458 843 58 58 Weathered Till 123 6369 3619.2 2749.8 3000 1500 1 7,049 886,758 7,049 3,524

58.5 842.5 58.5 58.5 Weathered Till 123 6430.5 3650.4 2780.1 3000 1500 1 7,049 886,758 7,049 3,52459 842 59 59 Weathered Till 123 6492 3681.6 2810.4 3000 1500 1 7,049 886,758 7,049 3,524

59.5 841.5 59.5 59.5 Intact Till 123 6553.5 3712.8 2840.7 3800 1900 1 8,928 1,123,227 8,928 4,46460 841 60 60 Intact Till 123 6615 3744 2871 3800 1900 1 8,928 1,123,227 8,928 4,464

60.5 840.5 60.5 60.5 Intact Till 123 6676.5 3775.2 2901.3 3800 1900 1 8,928 1,123,227 8,928 4,46461 840 61 61 Intact Till 123 6738 3806.4 2931.6 3800 1900 1 8,928 1,123,227 8,928 4,464

61.5 839.5 61.5 61.5 Intact Till 123 6799.5 3837.6 2961.9 3800 1900 1 8,928 1,123,227 8,928 4,46462 839 62 62 Intact Till 123 6861 3868.8 2992.2 3800 1900 1 8,928 1,123,227 8,928 4,464

62.5 838.5 62.5 62.5 Intact Till 123 6922.5 3900 3022.5 3800 1900 1 8,928 1,123,227 8,928 4,46463 838 63 63 Intact Till 123 6984 3931.2 3052.8 3800 1900 1 8,928 1,123,227 8,928 4,464

63.5 837.5 63.5 63.5 Intact Till 123 7045.5 3962.4 3083.1 3800 1900 1 8,928 1,123,227 8,928 4,46464 837 64 64 Intact Till 123 7107 3993.6 3113.4 3800 1900 1 8,928 1,123,227 8,928 4,464

64.5 836.5 64.5 64.5 Intact Till 123 7168.5 4024.8 3143.7 3800 1900 1 8,928 1,123,227 8,928 4,46465 836 65 65 Intact Till 123 7230 4056 3174 3800 1900 1 8,928 1,123,227 8,928 4,464

65.5 835.5 65.5 65.5 Intact Till 123 7291.5 4087.2 3204.3 3800 1900 1 8,928 1,123,227 8,928 066 835 66 66 Intact Till 123 7353 4118.4 3234.6 3800 1900 1 8,928 1,123,227 8,928 0

66.5 834.5 66.5 66.5 Intact Till 123 7414.5 4149.6 3264.9 3800 1900 1 8,928 1,123,227 8,928 067 834 67 67 Intact Till 123 7476 4180.8 3295.2 3800 1900 1 8,928 1,123,227 8,928 0

67.5 833.5 67.5 67.5 Intact Till 123 7537.5 4212 3325.5 3800 1900 1 8,928 1,123,227 8,928 068 833 68 68 Intact Till 123 7599 4243.2 3355.8 3800 1900 1 8,928 1,123,227 8,928 0

68.5 832.5 68.5 68.5 Intact Till 123 7660.5 4274.4 3386.1 3800 1900 1 8,928 1,123,227 8,928 069 832 69 69 Intact Till 123 7722 4305.6 3416.4 3800 1900 1 8,928 1,123,227 8,928 0

69.5 831.5 69.5 69.5 Intact Till 123 7783.5 4336.8 3446.7 3800 1900 1 8,928 1,123,227 8,928 070 831 70 70 Intact Till 123 7845 4368 3477 3800 1900 1 8,928 1,123,227 8,928 0

70.5 830.5 70.5 70.5 Intact Till 123 7906.5 4399.2 3507.3 3800 1900 1 8,928 1,123,227 8,928 071 830 71 71 Intact Till 123 7968 4430.4 3537.6 3800 1900 1 8,928 1,123,227 8,928 0

71.5 829.5 71.5 71.5 Intact Till 123 8029.5 4461.6 3567.9 3800 1900 1 8,928 1,123,227 8,928 072 829 72 72 Intact Till 123 8091 4492.8 3598.2 3800 1900 1 8,928 1,123,227 8,928 0

72.5 828.5 72.5 72.5 Intact Till 123 8152.5 4524 3628.5 3800 1900 1 8,928 1,123,227 8,928 073 828 73 73 Intact Till 123 8214 4555.2 3658.8 3800 1900 1 8,928 1,123,227 8,928 0

73.5 827.5 73.5 73.5 Intact Till 123 8275.5 4586.4 3689.1 3800 1900 1 8,928 1,123,227 8,928 074 827 74 74 Intact Till 123 8337 4617.6 3719.4 3800 1900 1 8,928 1,123,227 8,928 0

74.5 826.5 74.5 74.5 Intact Till 123 8398.5 4648.8 3749.7 3800 1900 1 8,928 1,123,227 8,928 075 826 75 75 Intact Till 123 8460 4680 3780 3800 1900 1 8,928 1,123,227 8,928 0

Page 107: Attachment D-6: FLAC Analysis · (FLAC) 7.0 by Itasca Consulting Group, Inc was used to complete the numerical analysis of the T-wall. Conventional LEM slope stability analysis and

End Bearing, Qt or Qmax Equivalent end bearing t-z springQt or Qmax = Atip x q teq = Q/Leff teq,max = Qmax/Leff

Tip Elevation 836 ft effective length, Leff 1.06 ft

Depth 65 ftAtip 198.5019 sq in (box end area) teq,max 44,635 lb/ftNq 9Su 3,800 psf

qmax 34,200 psfQt or Qmax 47,144 lbs

Page 108: Attachment D-6: FLAC Analysis · (FLAC) 7.0 by Itasca Consulting Group, Inc was used to complete the numerical analysis of the T-wall. Conventional LEM slope stability analysis and

0

1,000

2,000

3,000

4,000

5,000

6,000

7,000

8,000

9,000

10,000

0 1 2 3 4 5 6 7 8

p-fo

rce

(lb/f

t)

Deflection, y (inches)

Undrained Simplified p-y curves (bi-linear)

7

23

45

Simplified 7

Simplified 23

Simplified 45

Sherack

Brenna

Argusville

Page 109: Attachment D-6: FLAC Analysis · (FLAC) 7.0 by Itasca Consulting Group, Inc was used to complete the numerical analysis of the T-wall. Conventional LEM slope stability analysis and

0

5,000

10,000

15,000

20,000

25,000

30,000

35,000

40,000

45,000

50,000

0 1 2 3 4 5 6 7 8

p-fo

rce

(lb/f

t)

Deflection, y (inches)

Undrained Simplified p-y curves (bi-linear)

56

64

Simplified 56

Simplified 64

"Weathered" Till

"Intact" Till

Page 110: Attachment D-6: FLAC Analysis · (FLAC) 7.0 by Itasca Consulting Group, Inc was used to complete the numerical analysis of the T-wall. Conventional LEM slope stability analysis and

0

1,000

2,000

3,000

4,000

5,000

6,000

7,000

8,000

9,000

10,000

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4

t (lb

/ft)

Deflection, z (inches)

Simplified Undrained t-z curves (bi-linear)

7

23

45

56

64

Simplified 7

Simplified 23

Simplified 45

Simplified 56

Simplified 64

t-z curves based on Vijayvergiya (1977)

Sherack

Brenna

Argusville

"Weathered" Till

"Intact" Till

Page 111: Attachment D-6: FLAC Analysis · (FLAC) 7.0 by Itasca Consulting Group, Inc was used to complete the numerical analysis of the T-wall. Conventional LEM slope stability analysis and

0

5,000

10,000

15,000

20,000

25,000

30,000

35,000

40,000

45,000

50,000

55,000

60,000

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8

t (lb

/ft)

Deflection, z (inches)

Simplified combined Undrained t-z/q-z curves (bi-linear)

65

teq (PLT)

t & q combined (PLT)

Simplified t & q combined (PLT)

t-z curve

end-bearing curve

combined t-z and end-bearing curve

simplified curve

Page 112: Attachment D-6: FLAC Analysis · (FLAC) 7.0 by Itasca Consulting Group, Inc was used to complete the numerical analysis of the T-wall. Conventional LEM slope stability analysis and

Project: Fargo Diversion Inlet StructureSubject: Drained Shear Spring Constants for Diversion Channel Inlet Structure

Computed By: KAH Reviewed By:Date: Date:

Pile Type HP 14 x 73Pile Diameter equivilant, dequiv 15.90 inch

1.32 ftPile Perimeter 56.39 inch

4.7 ftDisplacement Increment 0.025 inch

critical displacement, zc 0.25 inchNeutral Plane -1 ft

soil/pile friction angle modifier 0.60

Top of Pile 892Tip Elevation 836 ftSkin Friction 142 kips

taken from "normal spring" worksheet

Depth (ft) Elev. (ft) Depth, z GW depth

(ft)Formation γsat (pcf) σv (psf) u (psf) σ'vo (psf) φ' δ Kneutral_plane tmax cs_sstiff cs_scoh

Skin Friction

(degree) (psf) (lb/ft) (lbs) (lb/ft) (lbs)0 901 0 0 Sherack 115 0 0 0 28 17 1 0 0

0.5 900.5 0.5 0.5 Sherack 115 57.5 31.2 26.3 28 17 1 37 4,694 37 01 900 1 1 Sherack 115 115 62.4 52.6 28 17 1 75 9,388 75 0

1.5 899.5 1.5 1.5 Sherack 115 172.5 93.6 78.9 28 17 1 112 14,082 112 02 899 2 2 Sherack 115 230 124.8 105.2 28 17 1 149 18,777 149 0

2.5 898.5 2.5 2.5 Sherack 115 287.5 156 131.5 28 17 1 187 23,471 187 03 898 3 3 Sherack 115 345 187.2 157.8 28 17 1 224 28,165 224 0

3.5 897.5 3.5 3.5 Sherack 115 402.5 218.4 184.1 28 17 1 261 32,859 261 04 897 4 4 Sherack 115 460 249.6 210.4 28 17 1 299 37,553 299 0

4.5 896.5 4.5 4.5 Sherack 115 517.5 280.8 236.7 28 17 1 336 42,247 336 05 896 5 5 Sherack 115 575 312 263 28 17 1 373 46,942 373 0

5.5 895.5 5.5 5.5 Sherack 115 632.5 343.2 289.3 28 17 1 410 51,636 410 06 895 6 6 Sherack 115 690 374.4 315.6 28 17 1 448 56,330 448 0

6.5 894.5 6.5 6.5 Sherack 115 747.5 405.6 341.9 28 17 1 485 61,024 485 07 894 7 7 Sherack 115 805 436.8 368.2 28 17 1 522 65,718 522 0

7.5 893.5 7.5 7.5 Sherack 115 862.5 468 394.5 28 17 1 560 70,412 560 08 893 8 8 Sherack 115 920 499.2 420.8 28 17 1 597 75,107 597 0

8.5 892.5 8.5 8.5 Brenna 106 973 530.4 442.6 24 14 1 534 67,181 534 09 892 9 9 Brenna 106 1026 561.6 464.4 24 14 1 560 70,490 560 280

9.5 891.5 9.5 9.5 Brenna 106 1079 592.8 486.2 24 14 1 587 73,799 587 29310 891 10 10 Brenna 106 1132 624 508 24 14 1 613 77,108 613 306

10.5 890.5 10.5 10.5 Brenna 106 1185 655.2 529.8 24 14 1 639 80,417 639 32011 890 11 11 Brenna 106 1238 686.4 551.6 24 14 1 666 83,726 666 333

11.5 889.5 11.5 11.5 Brenna 106 1291 717.6 573.4 24 14 1 692 87,035 692 34612 889 12 12 Brenna 106 1344 748.8 595.2 24 14 1 718 90,344 718 359

12.5 888.5 12.5 12.5 Brenna 106 1397 780 617 24 14 1 744 93,653 744 37213 888 13 13 Brenna 106 1450 811.2 638.8 24 14 1 771 96,962 771 385

13.5 887.5 13.5 13.5 Brenna 106 1503 842.4 660.6 24 14 1 797 100,271 797 39914 887 14 14 Brenna 106 1556 873.6 682.4 24 14 1 823 103,580 823 412

14.5 886.5 14.5 14.5 Brenna 106 1609 904.8 704.2 24 14 1 850 106,889 850 42515 886 15 15 Brenna 106 1662 936 726 24 14 1 876 110,197 876 438

15.5 885.5 15.5 15.5 Brenna 106 1715 967.2 747.8 24 14 1 902 113,506 902 45116 885 16 16 Brenna 106 1768 998.4 769.6 24 14 1 929 116,815 929 464

16.5 884.5 16.5 16.5 Brenna 106 1821 1029.6 791.4 24 14 1 955 120,124 955 47717 884 17 17 Brenna 106 1874 1060.8 813.2 24 14 1 981 123,433 981 491

17.5 883.5 17.5 17.5 Brenna 106 1927 1092 835 24 14 1 1,007 126,742 1,007 50418 883 18 18 Brenna 106 1980 1123.2 856.8 24 14 1 1,034 130,051 1,034 517

18.5 882.5 18.5 18.5 Brenna 106 2033 1154.4 878.6 24 14 1 1,060 133,360 1,060 53019 882 19 19 Brenna 106 2086 1185.6 900.4 24 14 1 1,086 136,669 1,086 543

19.5 881.5 19.5 19.5 Brenna 106 2139 1216.8 922.2 24 14 1 1,113 139,978 1,113 55620 881 20 20 Brenna 106 2192 1248 944 24 14 1 1,139 143,287 1,139 569

20.5 880.5 20.5 20.5 Brenna 106 2245 1279.2 965.8 24 14 1 1,165 146,596 1,165 58321 880 21 21 Brenna 106 2298 1310.4 987.6 24 14 1 1,192 149,905 1,192 596

21.5 879.5 21.5 21.5 Brenna 106 2351 1341.6 1009.4 24 14 1 1,218 153,214 1,218 60922 879 22 22 Brenna 106 2404 1372.8 1031.2 24 14 1 1,244 156,523 1,244 622

22.5 878.5 22.5 22.5 Brenna 106 2457 1404 1053 24 14 1 1,270 159,832 1,270 63523 878 23 23 Brenna 106 2510 1435.2 1074.8 24 14 1 1,297 163,141 1,297 648

23.5 877.5 23.5 23.5 Brenna 106 2563 1466.4 1096.6 24 14 1 1,323 166,450 1,323 66224 877 24 24 Brenna 106 2616 1497.6 1118.4 24 14 1 1,349 169,759 1,349 675

24.5 876.5 24.5 24.5 Brenna 106 2669 1528.8 1140.2 24 14 1 1,376 173,068 1,376 68825 876 25 25 Brenna 106 2722 1560 1162 24 14 1 1,402 176,377 1,402 701

25.5 875.5 25.5 25.5 Brenna 106 2775 1591.2 1183.8 24 14 1 1,428 179,686 1,428 71426 875 26 26 Brenna 106 2828 1622.4 1205.6 24 14 1 1,455 182,995 1,455 727

26.5 874.5 26.5 26.5 Brenna 106 2881 1653.6 1227.4 24 14 1 1,481 186,304 1,481 74027 874 27 27 Brenna 106 2934 1684.8 1249.2 24 14 1 1,507 189,613 1,507 754

27.5 873.5 27.5 27.5 Brenna 106 2987 1716 1271 24 14 1 1,534 192,921 1,534 76728 873 28 28 Brenna 106 3040 1747.2 1292.8 24 14 1 1,560 196,230 1,560 780

28.5 872.5 28.5 28.5 Brenna 106 3093 1778.4 1314.6 24 14 1 1,586 199,539 1,586 79329 872 29 29 Brenna 106 3146 1809.6 1336.4 24 14 1 1,612 202,848 1,612 806

29.5 871.5 29.5 29.5 Brenna 106 3199 1840.8 1358.2 24 14 1 1,639 206,157 1,639 81930 871 30 30 Brenna 106 3252 1872 1380 24 14 1 1,665 209,466 1,665 833

30.5 870.5 30.5 30.5 Brenna 106 3305 1903.2 1401.8 24 14 1 1,691 212,775 1,691 84631 870 31 31 Brenna 106 3358 1934.4 1423.6 24 14 1 1,718 216,084 1,718 859

31.5 869.5 31.5 31.5 Brenna 106 3411 1965.6 1445.4 24 14 1 1,744 219,393 1,744 87232 869 32 32 Brenna 106 3464 1996.8 1467.2 24 14 1 1,770 222,702 1,770 885

7/10/2015

Beta method = 140 kips (beta factor is smaller than tan δ)

0

20

40

60

80

100

0 1000 2000 3000 4000

dept

h (ft

)

Stress (psf)

s'vo (psf)

0

5000

10000

15000

20000

25000

30000

35000

40000

45000

50000

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8

t (lb

/ft)

Displacement, z (inches)

t-z curves

72345566400065teq (Table 4.4)t & q combined (Table 4.4)teq (PLT)t & q combined (PLT)teq (V&M)

Page 113: Attachment D-6: FLAC Analysis · (FLAC) 7.0 by Itasca Consulting Group, Inc was used to complete the numerical analysis of the T-wall. Conventional LEM slope stability analysis and

32.5 868.5 32.5 32.5 Brenna 106 3517 2028 1489 24 14 1 1,797 226,011 1,797 89833 868 33 33 Brenna 106 3570 2059.2 1510.8 24 14 1 1,823 229,320 1,823 911

33.5 867.5 33.5 33.5 Brenna 106 3623 2090.4 1532.6 24 14 1 1,849 232,629 1,849 92534 867 34 34 Brenna 106 3676 2121.6 1554.4 24 14 1 1,875 235,938 1,875 938

34.5 866.5 34.5 34.5 Brenna 106 3729 2152.8 1576.2 24 14 1 1,902 239,247 1,902 95135 866 35 35 Brenna 106 3782 2184 1598 24 14 1 1,928 242,556 1,928 964

35.5 865.5 35.5 35.5 Brenna 106 3835 2215.2 1619.8 24 14 1 1,954 245,865 1,954 97736 865 36 36 Brenna 106 3888 2246.4 1641.6 24 14 1 1,981 249,174 1,981 990

36.5 864.5 36.5 36.5 Brenna 106 3941 2277.6 1663.4 24 14 1 2,007 252,483 2,007 1,00337 864 37 37 Brenna 106 3994 2308.8 1685.2 24 14 1 2,033 255,792 2,033 1,017

37.5 863.5 37.5 37.5 Argusville 110 4049 2340 1709 25 15 1 2,152 270,713 2,152 1,07638 863 38 38 Argusville 110 4104 2371.2 1732.8 25 15 1 2,182 274,483 2,182 1,091

38.5 862.5 38.5 38.5 Argusville 110 4159 2402.4 1756.6 25 15 1 2,212 278,253 2,212 1,10639 862 39 39 Argusville 110 4214 2433.6 1780.4 25 15 1 2,242 282,023 2,242 1,121

39.5 861.5 39.5 39.5 Argusville 110 4269 2464.8 1804.2 25 15 1 2,272 285,793 2,272 1,13640 861 40 40 Argusville 110 4324 2496 1828 25 15 1 2,302 289,563 2,302 1,151

40.5 860.5 40.5 40.5 Argusville 110 4379 2527.2 1851.8 25 15 1 2,332 293,333 2,332 1,16641 860 41 41 Argusville 110 4434 2558.4 1875.6 25 15 1 2,362 297,103 2,362 1,181

41.5 859.5 41.5 41.5 Argusville 110 4489 2589.6 1899.4 25 15 1 2,392 300,873 2,392 1,19642 859 42 42 Argusville 110 4544 2620.8 1923.2 25 15 1 2,422 304,643 2,422 1,211

42.5 858.5 42.5 42.5 Argusville 110 4599 2652 1947 25 15 1 2,452 308,413 2,452 1,22643 858 43 43 Argusville 110 4654 2683.2 1970.8 25 15 1 2,482 312,183 2,482 1,241

43.5 857.5 43.5 43.5 Argusville 110 4709 2714.4 1994.6 25 15 1 2,511 315,953 2,511 1,25644 857 44 44 Argusville 110 4764 2745.6 2018.4 25 15 1 2,541 319,723 2,541 1,271

44.5 856.5 44.5 44.5 Argusville 110 4819 2776.8 2042.2 25 15 1 2,571 323,493 2,571 1,28645 856 45 45 Argusville 110 4874 2808 2066 25 15 1 2,601 327,263 2,601 1,301

45.5 855.5 45.5 45.5 Argusville 110 4929 2839.2 2089.8 25 15 1 2,631 331,033 2,631 1,31646 855 46 46 Argusville 110 4984 2870.4 2113.6 25 15 1 2,661 334,803 2,661 1,331

46.5 854.5 46.5 46.5 Argusville 110 5039 2901.6 2137.4 25 15 1 2,691 338,573 2,691 1,34647 854 47 47 Argusville 110 5094 2932.8 2161.2 25 15 1 2,721 342,343 2,721 1,361

47.5 853.5 47.5 47.5 Argusville 110 5149 2964 2185 25 15 1 2,751 346,113 2,751 1,37648 853 48 48 Argusville 110 5204 2995.2 2208.8 25 15 1 2,781 349,883 2,781 1,391

48.5 852.5 48.5 48.5 Argusville 110 5259 3026.4 2232.6 25 15 1 2,811 353,653 2,811 1,40649 852 49 49 Argusville 110 5314 3057.6 2256.4 25 15 1 2,841 357,423 2,841 1,421

49.5 851.5 49.5 49.5 Argusville 110 5369 3088.8 2280.2 25 15 1 2,871 361,193 2,871 1,43650 851 50 50 Argusville 110 5424 3120 2304 25 15 1 2,901 364,963 2,901 1,451

50.5 850.5 50.5 50.5 Argusville 110 5479 3151.2 2327.8 25 15 1 2,931 368,733 2,931 1,46651 850 51 51 Argusville 110 5534 3182.4 2351.6 25 15 1 2,961 372,503 2,961 1,480

51.5 849.5 51.5 51.5 Argusville 110 5589 3213.6 2375.4 25 15 1 2,991 376,273 2,991 1,49552 849 52 52 Argusville 110 5644 3244.8 2399.2 25 15 1 3,021 380,043 3,021 1,510

52.5 848.5 52.5 52.5 Argusville 110 5699 3276 2423 25 15 1 3,051 383,813 3,051 1,52553 848 53 53 Argusville 110 5754 3307.2 2446.8 25 15 1 3,081 387,583 3,081 1,540

53.5 847.5 53.5 53.5 Weathered Till 123 5815.5 3338.4 2477.1 34 20 1 4,329 544,603 4,329 2,16454 847 54 54 Weathered Till 123 5877 3369.6 2507.4 34 20 1 4,382 551,264 4,382 2,191

54.5 846.5 54.5 54.5 Weathered Till 123 5938.5 3400.8 2537.7 34 20 1 4,435 557,926 4,435 2,21755 846 55 55 Weathered Till 123 6000 3432 2568 34 20 1 4,488 564,587 4,488 2,244

55.5 845.5 55.5 55.5 Weathered Till 123 6061.5 3463.2 2598.3 34 20 1 4,541 571,249 4,541 2,27056 845 56 56 Weathered Till 123 6123 3494.4 2628.6 34 20 1 4,594 577,911 4,594 2,297

56.5 844.5 56.5 56.5 Weathered Till 123 6184.5 3525.6 2658.9 34 20 1 4,647 584,572 4,647 2,32357 844 57 57 Weathered Till 123 6246 3556.8 2689.2 34 20 1 4,700 591,234 4,700 2,350

57.5 843.5 57.5 57.5 Weathered Till 123 6307.5 3588 2719.5 34 20 1 4,753 597,895 4,753 2,37658 843 58 58 Weathered Till 123 6369 3619.2 2749.8 34 20 1 4,806 604,557 4,806 2,403

58.5 842.5 58.5 58.5 Weathered Till 123 6430.5 3650.4 2780.1 34 20 1 4,859 611,219 4,859 2,42959 842 59 59 Weathered Till 123 6492 3681.6 2810.4 34 20 1 4,911 617,880 4,911 2,456

59.5 841.5 59.5 59.5 Intact Till 123 6553.5 3712.8 2840.7 38 23 1 5,611 705,930 5,611 2,80660 841 60 60 Intact Till 123 6615 3744 2871 38 23 1 5,671 713,460 5,671 2,836

60.5 840.5 60.5 60.5 Intact Till 123 6676.5 3775.2 2901.3 38 23 1 5,731 720,990 5,731 2,86661 840 61 61 Intact Till 123 6738 3806.4 2931.6 38 23 1 5,791 728,520 5,791 2,895

61.5 839.5 61.5 61.5 Intact Till 123 6799.5 3837.6 2961.9 38 23 1 5,851 736,049 5,851 2,92562 839 62 62 Intact Till 123 6861 3868.8 2992.2 38 23 1 5,911 743,579 5,911 2,955

62.5 838.5 62.5 62.5 Intact Till 123 6922.5 3900 3022.5 38 23 1 5,970 751,109 5,970 2,98563 838 63 63 Intact Till 123 6984 3931.2 3052.8 38 23 1 6,030 758,639 6,030 3,015

63.5 837.5 63.5 63.5 Intact Till 123 7045.5 3962.4 3083.1 38 23 1 6,090 766,168 6,090 3,04564 837 64 64 Intact Till 123 7107 3993.6 3113.4 38 23 1 6,150 773,698 6,150 3,075

64.5 836.5 64.5 64.5 Intact Till 123 7168.5 4024.8 3143.7 38 23 1 6,210 781,228 6,210 3,10565 836 65 65 Intact Till 123 7230 4056 3174 38 23 1 6,270 788,757 6,270 3,135

65.5 835.5 65.5 65.5 Intact Till 123 7291.5 4087.2 3204.3 38 23 1 6,330 796,287 6,330 066 835 66 66 Intact Till 123 7353 4118.4 3234.6 38 23 1 6,389 803,817 6,389 0

66.5 834.5 66.5 66.5 Intact Till 123 7414.5 4149.6 3264.9 38 23 1 6,449 811,347 6,449 067 834 67 67 Intact Till 123 7476 4180.8 3295.2 38 23 1 6,509 818,876 6,509 0

67.5 833.5 67.5 67.5 Intact Till 123 7537.5 4212 3325.5 38 23 1 6,569 826,406 6,569 068 833 68 68 Intact Till 123 7599 4243.2 3355.8 38 23 1 6,629 833,936 6,629 0

68.5 832.5 68.5 68.5 Intact Till 123 7660.5 4274.4 3386.1 38 23 1 6,689 841,465 6,689 069 832 69 69 Intact Till 123 7722 4305.6 3416.4 38 23 1 6,749 848,995 6,749 0

69.5 831.5 69.5 69.5 Intact Till 123 7783.5 4336.8 3446.7 38 23 1 6,808 856,525 6,808 070 831 70 70 Intact Till 123 7845 4368 3477 38 23 1 6,868 864,055 6,868 0

70.5 830.5 70.5 70.5 Intact Till 123 7906.5 4399.2 3507.3 38 23 1 6,928 871,584 6,928 071 830 71 71 Intact Till 123 7968 4430.4 3537.6 38 23 1 6,988 879,114 6,988 0

71.5 829.5 71.5 71.5 Intact Till 123 8029.5 4461.6 3567.9 38 23 1 7,048 886,644 7,048 072 829 72 72 Intact Till 123 8091 4492.8 3598.2 38 23 1 7,108 894,174 7,108 0

72.5 828.5 72.5 72.5 Intact Till 123 8152.5 4524 3628.5 38 23 1 7,168 901,703 7,168 073 828 73 73 Intact Till 123 8214 4555.2 3658.8 38 23 1 7,227 909,233 7,227 0

73.5 827.5 73.5 73.5 Intact Till 123 8275.5 4586.4 3689.1 38 23 1 7,287 916,763 7,287 074 827 74 74 Intact Till 123 8337 4617.6 3719.4 38 23 1 7,347 924,292 7,347 0

74.5 826.5 74.5 74.5 Intact Till 123 8398.5 4648.8 3749.7 38 23 1 7,407 931,822 7,407 075 826 75 75 Intact Till 123 8460 4680 3780 38 23 1 7,467 939,352 7,467 0

Page 114: Attachment D-6: FLAC Analysis · (FLAC) 7.0 by Itasca Consulting Group, Inc was used to complete the numerical analysis of the T-wall. Conventional LEM slope stability analysis and

End Bearing, Qt or Qmax Equivalent end bearing t-z springQt or Qmax = Atip x q teq = Q/Leff teq,max = Qmax/Leff

Tip Elevation 836 ft effective length, Leff 1.06 ft

Depth 65 ftAtip 198.5019 sq in (box end area) teq,max 37,282 lb/ftNq 9σv' 3,174 psf

qmax 28,566 psfQt or Qmax 39,378 lbs

Page 115: Attachment D-6: FLAC Analysis · (FLAC) 7.0 by Itasca Consulting Group, Inc was used to complete the numerical analysis of the T-wall. Conventional LEM slope stability analysis and

0

1,000

2,000

3,000

4,000

5,000

6,000

7,000

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4

t (lb

/ft)

Deflection, z (inches)

Simplified Drained t-z curves (bi-linear)

7

23

45

56

64

Simplified 7

Simplified 23

Simplified 45

Simplified 56

Simplified 64

Sherack

Brenna

Argusville

"Weathered" Till

"Intact" Till

Page 116: Attachment D-6: FLAC Analysis · (FLAC) 7.0 by Itasca Consulting Group, Inc was used to complete the numerical analysis of the T-wall. Conventional LEM slope stability analysis and

0

5,000

10,000

15,000

20,000

25,000

30,000

35,000

40,000

45,000

50,000

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8

t (lb

/ft)

Deflection, z (inches)

Simplified combined t-z/q-z curves (bi-linear)

65

teq (PLT)

Simplified t & q combined (PLT)

t & q combined (PLT)

t-z curve

end-bearing curve

combined t-z and end-bearing curve

simplified curve

Page 117: Attachment D-6: FLAC Analysis · (FLAC) 7.0 by Itasca Consulting Group, Inc was used to complete the numerical analysis of the T-wall. Conventional LEM slope stability analysis and

Fargo Moorhead Metropolitan Area Draft Design Documentation Report Flood Risk Management Project Inlet Diversion

Appendix D, Attachment 6: FLAC Analysis of Floodwall

Exhibit 3: Results of FINAL FLAC Model

Page 118: Attachment D-6: FLAC Analysis · (FLAC) 7.0 by Itasca Consulting Group, Inc was used to complete the numerical analysis of the T-wall. Conventional LEM slope stability analysis and

Pile Graphs File: DIS_T-Wall_FINAL_updated Bending Moment: Axial Force:Save State: 20_Flood_Step_11.sav Positive Bending Moment indicates U/S side of pile is in compression and D/S side is in tension Positive axial force indicates compression

UPDATED FINAL - 922 U Negative Bending Moment indicates D/S side is in compression and U/S side is in tension.

830

835

840

845

850

855

860

865

870

875

880

885

890

895

900

-0.06 -0.05 -0.04 -0.03 -0.02 -0.01 0.00

Elev

atio

n

Displacement (ft)

X-Displacement

Pile 1 (UPDATED FINAL - 922 U) X-DisPile 2 (UPDATED FINAL - 922 U) X-DisPile 3 (UPDATED FINAL - 922 U) X-Dis

830

835

840

845

850

855

860

865

870

875

880

885

890

895

900

-0.01 -0.01 0.00 0.01 0.01

Elev

atio

nDisplacement (ft)

Y-Displacement

Pile 1 (UPDATED FINAL - 922 U) Y-DisPile 2 (UPDATED FINAL - 922 U) Y-DisPile 3 (UPDATED FINAL - 922 U) Y-Dis

830

835

840

845

850

855

860

865

870

875

880

885

890

895

900

-20,000 -10,000 0 10,000 20,000 30,000

Elev

atio

n

Moment (lb-ft)

Moment

Pile 1 (UPDATED FINAL - 922 U) MomPile 2 (UPDATED FINAL - 922 U) MomPile 3 (UPDATED FINAL - 922 U) Mom

830

835

840

845

850

855

860

865

870

875

880

885

890

895

900

-100,000 0 100,000

Elev

atio

n

Axial Force (lbs)

Axial Force

Pile 1 (UPDATED FINAL - 922 U) Axial ForcePile 2 (UPDATED FINAL - 922 U) Axial ForcePile 3 (UPDATED FINAL - 922 U) Axial Force

830

835

840

845

850

855

860

865

870

875

880

885

890

895

900

-3,000 -2,000 -1,000 0 1,000 2,000 3,000

Elev

atio

n

Shear (lbs)

Shear

Pile 1 (UPDATED FINAL - 922 U) ShearPile 2 (UPDATED FINAL - 922 U) ShearPile 3 (UPDATED FINAL - 922 U) Shear

830

835

840

845

850

855

860

865

870

875

880

885

890

895

900

-25 -20 -15 -10 -5 0 5 10 15 20 25 30

Elev

atio

n

Displacement (ft)

Pile Locations

Pile 1 (UPDATED FINAL - 922 U)

Pile 2 (UPDATED FINAL - 922 U)

Pile 3 (UPDATED FINAL - 922 U)

First Pile - Segments

Second Pile - Segments

Third Pile - Segments

X-Location magnified 10.00

830

835

840

845

850

855

860

865

870

875

880

885

890

895

900

-0.70 -0.60 -0.50 -0.40 -0.30 -0.20 -0.10 0.00

Elev

atio

n

Displacement (inches)

X-Displacement

Pile 1 (UPDATED FINAL - 922 U) X-Dis (inches)Pile 2 (UPDATED FINAL - 922 U) X-Dis (inches)Pile 3 (UPDATED FINAL - 922 U) X-Dis (inches)

Page 119: Attachment D-6: FLAC Analysis · (FLAC) 7.0 by Itasca Consulting Group, Inc was used to complete the numerical analysis of the T-wall. Conventional LEM slope stability analysis and

Pile Graphs File: DIS_T-Wall_FINAL_updated Bending Moment: Axial Force:Save State: 20_Flood_Step_18.sav Positive Bending Moment indicates U/S side of pile is in compression and D/S side is in tension Positive axial force indicates compression

UPDATED FINAL - 926 U Negative Bending Moment indicates D/S side is in compression and U/S side is in tension.

830

835

840

845

850

855

860

865

870

875

880

885

890

895

900

-0.04 -0.03 -0.03 -0.02 -0.02 -0.01 -0.01 0.00

Elev

atio

n

Displacement (ft)

X-Displacement

Pile 1 (UPDATED FINAL - 926 U) X-DisPile 2 (UPDATED FINAL - 926 U) X-DisPile 3 (UPDATED FINAL - 926 U) X-Dis

830

835

840

845

850

855

860

865

870

875

880

885

890

895

900

0.00 0.00 0.00 0.00 0.00

Elev

atio

nDisplacement (ft)

Y-Displacement

Pile 1 (UPDATED FINAL - 926 U) Y-DisPile 2 (UPDATED FINAL - 926 U) Y-DisPile 3 (UPDATED FINAL - 926 U) Y-Dis

830

835

840

845

850

855

860

865

870

875

880

885

890

895

900

-15,000 -10,000 -5,000 0 5,000 10,000

Elev

atio

n

Moment (lb-ft)

Moment

Pile 1 (UPDATED FINAL - 926 U) MomPile 2 (UPDATED FINAL - 926 U) MomPile 3 (UPDATED FINAL - 926 U) Mom

830

835

840

845

850

855

860

865

870

875

880

885

890

895

900

-100,000 0 100,000

Elev

atio

n

Axial Force (lbs)

Axial Force

Pile 1 (UPDATED FINAL - 926 U) Axial ForcePile 2 (UPDATED FINAL - 926 U) Axial ForcePile 3 (UPDATED FINAL - 926 U) Axial Force

830

835

840

845

850

855

860

865

870

875

880

885

890

895

900

-1,500 -1,000 -500 0 500 1,000 1,500 2,000

Elev

atio

n

Shear (lbs)

Shear

Pile 1 (UPDATED FINAL - 926 U) ShearPile 2 (UPDATED FINAL - 926 U) ShearPile 3 (UPDATED FINAL - 926 U) Shear

830

835

840

845

850

855

860

865

870

875

880

885

890

895

900

-25 -20 -15 -10 -5 0 5 10 15 20 25 30

Elev

atio

n

Displacement (ft)

Pile Locations

Pile 1 (UPDATED FINAL - 926 U)

Pile 2 (UPDATED FINAL - 926 U)

Pile 3 (UPDATED FINAL - 926 U)

First Pile - Segments

Second Pile - Segments

Third Pile - Segments

X-Location magnified 10.00

Page 120: Attachment D-6: FLAC Analysis · (FLAC) 7.0 by Itasca Consulting Group, Inc was used to complete the numerical analysis of the T-wall. Conventional LEM slope stability analysis and

Pile Graphs File: DIS_T-Wall_FINAL_updated Bending Moment: Axial Force:Save State: 30_Flood_Step_11.sav Positive Bending Moment indicates U/S side of pile is in compression and D/S side is in tension Positive axial force indicates compression

UPDATED FINAL - 922 D Negative Bending Moment indicates D/S side is in compression and U/S side is in tension.

830

835

840

845

850

855

860

865

870

875

880

885

890

895

900

-0.08 -0.06 -0.04 -0.02 0.00

Elev

atio

n

Displacement (ft)

X-Displacement

Pile 1 (UPDATED FINAL - 922 D) X-DisPile 2 (UPDATED FINAL - 922 D) X-DisPile 3 (UPDATED FINAL - 922 D) X-Dis

830

835

840

845

850

855

860

865

870

875

880

885

890

895

900

-0.01 -0.01 0.00 0.01 0.01 0.02

Elev

atio

nDisplacement (ft)

Y-Displacement

Pile 1 (UPDATED FINAL - 922 D) Y-DisPile 2 (UPDATED FINAL - 922 D) Y-DisPile 3 (UPDATED FINAL - 922 D) Y-Dis

830

835

840

845

850

855

860

865

870

875

880

885

890

895

900

-30,000 -20,000 -10,000 0 10,000 20,000 30,000

Elev

atio

n

Moment (lb-ft)

Moment

Pile 1 (UPDATED FINAL - 922 D) MomPile 2 (UPDATED FINAL - 922 D) MomPile 3 (UPDATED FINAL - 922 D) Mom

830

835

840

845

850

855

860

865

870

875

880

885

890

895

900

-200,000 -100,000 0 100,000

Elev

atio

n

Axial Force (lbs)

Axial Force

Pile 1 (UPDATED FINAL - 922 D) Axial ForcePile 2 (UPDATED FINAL - 922 D) Axial ForcePile 3 (UPDATED FINAL - 922 D) Axial Force

830

835

840

845

850

855

860

865

870

875

880

885

890

895

900

-4,000 -3,000 -2,000 -1,000 0 1,000 2,000 3,000 4,000

Elev

atio

n

Shear (lbs)

Shear

Pile 1 (UPDATED FINAL - 922 D) ShearPile 2 (UPDATED FINAL - 922 D) ShearPile 3 (UPDATED FINAL - 922 D) Shear

Page 121: Attachment D-6: FLAC Analysis · (FLAC) 7.0 by Itasca Consulting Group, Inc was used to complete the numerical analysis of the T-wall. Conventional LEM slope stability analysis and

830

835

840

845

850

855

860

865

870

875

880

885

890

895

900

-0.08 -0.06 -0.04 -0.02 0.00

Elev

atio

n

Displacement (ft)

X-Displacement

Pile 1 (UPDATED FINAL - 922 D) X-DisPile 2 (UPDATED FINAL - 922 D) X-DisPile 3 (UPDATED FINAL - 922 D) X-DisPile 1 (UPDATED FINAL - 922 U) X-DisPile 2 (UPDATED FINAL - 922 U) X-DisPile 3 (UPDATED FINAL - 922 U) X-Dis

830

835

840

845

850

855

860

865

870

875

880

885

890

895

900

-0.01 -0.01 0.00 0.01 0.01 0.02

Elev

atio

n

Displacement (ft)

Y-Displacement

Pile 1 (UPDATED FINAL - 922 D) Y-DisPile 2 (UPDATED FINAL - 922 D) Y-DisPile 3 (UPDATED FINAL - 922 D) Y-DisPile 1 (UPDATED FINAL - 922 U) Y-DisPile 2 (UPDATED FINAL - 922 U) Y-DisPile 3 (UPDATED FINAL - 922 U) Y-Dis

830

835

840

845

850

855

860

865

870

875

880

885

890

895

900

-30,000 -20,000 -10,000 0 10,000 20,000 30,000

Elev

atio

n

Moment (lb-ft)

Moment

Pile 1 (UPDATED FINAL - 922 D) MomPile 2 (UPDATED FINAL - 922 D) MomPile 3 (UPDATED FINAL - 922 D) MomPile 1 (UPDATED FINAL - 922 U) MomPile 2 (UPDATED FINAL - 922 U) MomPile 3 (UPDATED FINAL - 922 U) Mom

830

835

840

845

850

855

860

865

870

875

880

885

890

895

900

-200,000 -100,000 0 100,000 200,000

Elev

atio

n

Axial Force (lbs)

Axial Force

Pile 1 (UPDATED FINAL - 922 D) Axial ForcePile 2 (UPDATED FINAL - 922 D) Axial ForcePile 3 (UPDATED FINAL - 922 D) Axial ForcePile 1 (UPDATED FINAL - 922 U) Axial ForcePile 2 (UPDATED FINAL - 922 U) Axial ForcePile 3 (UPDATED FINAL - 922 U) Axial Force

830

835

840

845

850

855

860

865

870

875

880

885

890

895

900

-4,000 -3,000 -2,000 -1,000 0 1,000 2,000 3,000 4,000

Elev

atio

n

Shear (lbs)

Shear

Pile 1 (UPDATED FINAL - 922 D) ShearPile 2 (UPDATED FINAL - 922 D) ShearPile 3 (UPDATED FINAL - 922 D) ShearPile 1 (UPDATED FINAL - 922 U) ShearPile 2 (UPDATED FINAL - 922 U) ShearPile 3 (UPDATED FINAL - 922 U) Shear

Page 122: Attachment D-6: FLAC Analysis · (FLAC) 7.0 by Itasca Consulting Group, Inc was used to complete the numerical analysis of the T-wall. Conventional LEM slope stability analysis and

830

835

840

845

850

855

860

865

870

875

880

885

890

895

900

-25 -20 -15 -10 -5 0 5 10 15 20 25 30

Elev

atio

n

Displacement (ft)

Pile Locations

Pile 1 (UPDATED FINAL - 922 D)

Pile 2 (UPDATED FINAL - 922 D)

Pile 3 (UPDATED FINAL - 922 D)

Pile 1 (UPDATED FINAL - 922 U)

Pile 2 (UPDATED FINAL - 922 U)

Pile 3 (UPDATED FINAL - 922 U)

First Pile - Segments

Second Pile - Segments

Third Pile - Segments

X-Location magnified 10.00

830

835

840

845

850

855

860

865

870

875

880

885

890

895

900

-1.00 -0.80 -0.60 -0.40 -0.20 0.00

Elev

atio

n

Displacement (inches)

X-Displacement

Pile 1 (UPDATED FINAL - 922 D) X-Dis (inches)Pile 2 (UPDATED FINAL - 922 D) X-Dis (inches)Pile 3 (UPDATED FINAL - 922 D) X-Dis (inches)

Page 123: Attachment D-6: FLAC Analysis · (FLAC) 7.0 by Itasca Consulting Group, Inc was used to complete the numerical analysis of the T-wall. Conventional LEM slope stability analysis and

Pile Graphs File: DIS_T-Wall_FINAL_updated Bending Moment: Axial Force:Save State: 30_Flood_Step_18.sav Positive Bending Moment indicates U/S side of pile is in compression and D/S side is in tension Positive axial force indicates compression

UPDATED FINAL - 926 D Negative Bending Moment indicates D/S side is in compression and U/S side is in tension.

830

835

840

845

850

855

860

865

870

875

880

885

890

895

900

-0.06 -0.05 -0.04 -0.03 -0.02 -0.01 0.00

Elev

atio

n

Displacement (ft)

X-Displacement

Pile 1 (UPDATED FINAL - 926 D) X-DisPile 2 (UPDATED FINAL - 926 D) X-DisPile 3 (UPDATED FINAL - 926 D) X-Dis

830

835

840

845

850

855

860

865

870

875

880

885

890

895

900

-0.01 -0.01 0.00 0.01 0.01 0.02

Elev

atio

nDisplacement (ft)

Y-Displacement

Pile 1 (UPDATED FINAL - 926 D) Y-DisPile 2 (UPDATED FINAL - 926 D) Y-DisPile 3 (UPDATED FINAL - 926 D) Y-Dis

830

835

840

845

850

855

860

865

870

875

880

885

890

895

900

-20,000 -15,000 -10,000 -5,000 0 5,000 10,000

Elev

atio

n

Moment (lb-ft)

Moment

Pile 1 (UPDATED FINAL - 926 D) MomPile 2 (UPDATED FINAL - 926 D) MomPile 3 (UPDATED FINAL - 926 D) Mom

830

835

840

845

850

855

860

865

870

875

880

885

890

895

900

-200,000 -100,000 0 100,000

Elev

atio

n

Axial Force (lbs)

Axial Force

Pile 1 (UPDATED FINAL - 926 D) Axial ForcePile 2 (UPDATED FINAL - 926 D) Axial ForcePile 3 (UPDATED FINAL - 926 D) Axial Force

830

835

840

845

850

855

860

865

870

875

880

885

890

895

900

-3,000 -2,000 -1,000 0 1,000 2,000 3,000

Elev

atio

n

Shear (lbs)

Shear

Pile 1 (UPDATED FINAL - 926 D) ShearPile 2 (UPDATED FINAL - 926 D) ShearPile 3 (UPDATED FINAL - 926 D) Shear

Page 124: Attachment D-6: FLAC Analysis · (FLAC) 7.0 by Itasca Consulting Group, Inc was used to complete the numerical analysis of the T-wall. Conventional LEM slope stability analysis and

830

835

840

845

850

855

860

865

870

875

880

885

890

895

900

-0.08 -0.06 -0.04 -0.02 0.00

Elev

atio

n

Displacement (ft)

X-Displacement

Pile 1 (UPDATED FINAL - 926 D) X-DisPile 2 (UPDATED FINAL - 926 D) X-DisPile 3 (UPDATED FINAL - 926 D) X-DisPile 1 (UPDATED FINAL - 922 D) X-DisPile 2 (UPDATED FINAL - 922 D) X-DisPile 3 (UPDATED FINAL - 922 D) X-Dis

830

835

840

845

850

855

860

865

870

875

880

885

890

895

900

-0.01 -0.01 0.00 0.01 0.01 0.02

Elev

atio

n

Displacement (ft)

Y-Displacement

Pile 1 (UPDATED FINAL - 926 D) Y-DisPile 2 (UPDATED FINAL - 926 D) Y-DisPile 3 (UPDATED FINAL - 926 D) Y-DisPile 1 (UPDATED FINAL - 922 D) Y-DisPile 2 (UPDATED FINAL - 922 D) Y-DisPile 3 (UPDATED FINAL - 922 D) Y-Dis

830

835

840

845

850

855

860

865

870

875

880

885

890

895

900

-30,000 -20,000 -10,000 0 10,000 20,000 30,000

Elev

atio

n

Moment (lb-ft)

Moment

Pile 1 (UPDATED FINAL - 926 D) MomPile 2 (UPDATED FINAL - 926 D) MomPile 3 (UPDATED FINAL - 926 D) MomPile 1 (UPDATED FINAL - 922 D) MomPile 2 (UPDATED FINAL - 922 D) MomPile 3 (UPDATED FINAL - 922 D) Mom

830

835

840

845

850

855

860

865

870

875

880

885

890

895

900

-200,000 -100,000 0 100,000

Elev

atio

n

Axial Force (lbs)

Axial Force

Pile 1 (UPDATED FINAL - 926 D) Axial ForcePile 2 (UPDATED FINAL - 926 D) Axial ForcePile 3 (UPDATED FINAL - 926 D) Axial ForcePile 1 (UPDATED FINAL - 922 D) Axial ForcePile 2 (UPDATED FINAL - 922 D) Axial ForcePile 3 (UPDATED FINAL - 922 D) Axial Force

830

835

840

845

850

855

860

865

870

875

880

885

890

895

900

-4,000 -3,000 -2,000 -1,000 0 1,000 2,000 3,000 4,000

Elev

atio

n

Shear (lbs)

Shear

Pile 1 (UPDATED FINAL - 926 D) ShearPile 2 (UPDATED FINAL - 926 D) ShearPile 3 (UPDATED FINAL - 926 D) ShearPile 1 (UPDATED FINAL - 922 D) ShearPile 2 (UPDATED FINAL - 922 D) ShearPile 3 (UPDATED FINAL - 922 D) Shear

Page 125: Attachment D-6: FLAC Analysis · (FLAC) 7.0 by Itasca Consulting Group, Inc was used to complete the numerical analysis of the T-wall. Conventional LEM slope stability analysis and

830

835

840

845

850

855

860

865

870

875

880

885

890

895

900

-25 -20 -15 -10 -5 0 5 10 15 20 25 30

Elev

atio

n

Displacement (ft)

Pile Locations

Pile 1 (UPDATED FINAL - 926 D)

Pile 2 (UPDATED FINAL - 926 D)

Pile 3 (UPDATED FINAL - 926 D)

Pile 1 (UPDATED FINAL - 922 D)

Pile 2 (UPDATED FINAL - 922 D)

Pile 3 (UPDATED FINAL - 922 D)

First Pile - Segments

Second Pile - Segments

Third Pile - Segments

X-Location magnified 10.00

Page 126: Attachment D-6: FLAC Analysis · (FLAC) 7.0 by Itasca Consulting Group, Inc was used to complete the numerical analysis of the T-wall. Conventional LEM slope stability analysis and

Fargo Moorhead Metropolitan Area Draft Design Documentation Report Flood Risk Management Project Inlet Diversion

Appendix D, Attachment 6: FLAC Analysis of Floodwall

Exhibit 4: Results of “Softer” FLAC Model

Page 127: Attachment D-6: FLAC Analysis · (FLAC) 7.0 by Itasca Consulting Group, Inc was used to complete the numerical analysis of the T-wall. Conventional LEM slope stability analysis and

Pile Graphs File: DIS_T-Wall_FINAL_Softer Bending Moment: Axial Force:Save State: 20_Flood_Step_11.sav Positive Bending Moment indicates U/S side of pile is in compression and D/S side is in tension Positive axial force indicates compression

FINAL (Soft) - 922 U Negative Bending Moment indicates D/S side is in compression and U/S side is in tension.

830

835

840

845

850

855

860

865

870

875

880

885

890

895

900

-0.20 -0.15 -0.10 -0.05 0.00

Elev

atio

n

Displacement (ft)

X-Displacement

Pile 1 (FINAL (Soft) - 922 U) X-Dis Pile 2 (FINAL (Soft) - 922 U) X-Dis Pile 3 (FINAL (Soft) - 922 U) X-Dis

830

835

840

845

850

855

860

865

870

875

880

885

890

895

900

-0.04 -0.02 0.00 0.02 0.04 0.06

Elev

atio

n Displacement (ft)

Y-Displacement

Pile 1 (FINAL (Soft) - 922 U) Y-Dis Pile 2 (FINAL (Soft) - 922 U) Y-Dis Pile 3 (FINAL (Soft) - 922 U) Y-Dis

830

835

840

845

850

855

860

865

870

875

880

885

890

895

900

-80,000 -60,000 -40,000 -20,000 0 20,000 40,000 60,000 80,000

Elev

atio

n

Moment (lb-ft)

Moment

Pile 1 (FINAL (Soft) - 922 U) Mom Pile 2 (FINAL (Soft) - 922 U) Mom Pile 3 (FINAL (Soft) - 922 U) Mom

830

835

840

845

850

855

860

865

870

875

880

885

890

895

900

-200,000 -100,000 0 100,000 200,000 300,000

Elev

atio

n

Axial Force (lbs)

Axial Force

Pile 1 (FINAL (Soft) - 922 U) Axial Force Pile 2 (FINAL (Soft) - 922 U) Axial Force Pile 3 (FINAL (Soft) - 922 U) Axial Force

830

835

840

845

850

855

860

865

870

875

880

885

890

895

900

-10,000 -5,000 0 5,000 10,000

Elev

atio

n

Shear (lbs)

Shear

Pile 1 (FINAL (Soft) - 922 U) Shear Pile 2 (FINAL (Soft) - 922 U) Shear Pile 3 (FINAL (Soft) - 922 U) Shear

830

835

840

845

850

855

860

865

870

875

880

885

890

895

900

-25 -20 -15 -10 -5 0 5 10 15 20 25 30

Elev

atio

n

Displacement (ft)

Pile Locations

Pile 1 (FINAL (Soft) - 922 U)

Pile 2 (FINAL (Soft) - 922 U)

Pile 3 (FINAL (Soft) - 922 U)

First Pile - Segments

Second Pile - Segments

Third Pile - Segments

X-Location magnified 10.00

830

835

840

845

850

855

860

865

870

875

880

885

890

895

900

-2.50 -2.00 -1.50 -1.00 -0.50 0.00

Elev

atio

n

Displacement (inches)

X-Displacement

Pile 1 (FINAL (Soft) - 922 U) X-Dis (inches)

Pile 2 (FINAL (Soft) - 922 U) X-Dis (inches)

Pile 3 (FINAL (Soft) - 922 U) X-Dis (inches)

Page 128: Attachment D-6: FLAC Analysis · (FLAC) 7.0 by Itasca Consulting Group, Inc was used to complete the numerical analysis of the T-wall. Conventional LEM slope stability analysis and

Pile Graphs File: DIS_T-Wall_FINAL_Softer Bending Moment: Axial Force:Save State: 20_Flood_Step_18.sav Positive Bending Moment indicates U/S side of pile is in compression and D/S side is in tension Positive axial force indicates compression

FINAL (Soft) - 926 U Negative Bending Moment indicates D/S side is in compression and U/S side is in tension.

830

835

840

845

850

855

860

865

870

875

880

885

890

895

900

-0.14 -0.12 -0.10 -0.08 -0.06 -0.04 -0.02 0.00

Elev

atio

n

Displacement (ft)

X-Displacement

Pile 1 (FINAL (Soft) - 926 U) X-Dis Pile 2 (FINAL (Soft) - 926 U) X-Dis Pile 3 (FINAL (Soft) - 926 U) X-Dis

830

835

840

845

850

855

860

865

870

875

880

885

890

895

900

-0.02 -0.01 0.00 0.01 0.02 0.03

Elev

atio

n Displacement (ft)

Y-Displacement

Pile 1 (FINAL (Soft) - 926 U) Y-Dis Pile 2 (FINAL (Soft) - 926 U) Y-Dis Pile 3 (FINAL (Soft) - 926 U) Y-Dis

830

835

840

845

850

855

860

865

870

875

880

885

890

895

900

-60,000 -40,000 -20,000 0 20,000 40,000

Elev

atio

n

Moment (lb-ft)

Moment

Pile 1 (FINAL (Soft) - 926 U) Mom Pile 2 (FINAL (Soft) - 926 U) Mom Pile 3 (FINAL (Soft) - 926 U) Mom

830

835

840

845

850

855

860

865

870

875

880

885

890

895

900

-200,000 -100,000 0 100,000 200,000

Elev

atio

n

Axial Force (lbs)

Axial Force

Pile 1 (FINAL (Soft) - 926 U) Axial Force Pile 2 (FINAL (Soft) - 926 U) Axial Force Pile 3 (FINAL (Soft) - 926 U) Axial Force

830

835

840

845

850

855

860

865

870

875

880

885

890

895

900

-6,000 -4,000 -2,000 0 2,000 4,000 6,000 8,000

Elev

atio

n

Shear (lbs)

Shear

Pile 1 (FINAL (Soft) - 926 U) Shear Pile 2 (FINAL (Soft) - 926 U) Shear Pile 3 (FINAL (Soft) - 926 U) Shear

830

835

840

845

850

855

860

865

870

875

880

885

890

895

900

-25 -20 -15 -10 -5 0 5 10 15 20 25 30

Elev

atio

n

Displacement (ft)

Pile Locations

Pile 1 (FINAL (Soft) - 926 U)

Pile 2 (FINAL (Soft) - 926 U)

Pile 3 (FINAL (Soft) - 926 U)

First Pile - Segments

Second Pile - Segments

Third Pile - Segments

X-Location magnified 10.00

830

835

840

845

850

855

860

865

870

875

880

885

890

895

900

-1.50 -1.00 -0.50 0.00

Elev

atio

n

Displacement (inches)

X-Displacement

Pile 1 (FINAL (Soft) - 926 U) X-Dis (inches)

Pile 2 (FINAL (Soft) - 926 U) X-Dis (inches)

Pile 3 (FINAL (Soft) - 926 U) X-Dis (inches)

Page 129: Attachment D-6: FLAC Analysis · (FLAC) 7.0 by Itasca Consulting Group, Inc was used to complete the numerical analysis of the T-wall. Conventional LEM slope stability analysis and

Pile Graphs File: DIS_T-Wall_FINAL_Softer Bending Moment: Axial Force:Save State: 30_Flood_Step_11.sav Positive Bending Moment indicates U/S side of pile is in compression and D/S side is in tension Positive axial force indicates compression

FINAL (Softer) - 922 D Negative Bending Moment indicates D/S side is in compression and U/S side is in tension.

830

835

840

845

850

855

860

865

870

875

880

885

890

895

900

-0.35 -0.30 -0.25 -0.20 -0.15 -0.10 -0.05 0.00

Elev

atio

n

Displacement (ft)

X-Displacement

Pile 1 (FINAL (Softer) - 922 D) X-Dis Pile 2 (FINAL (Softer) - 922 D) X-Dis Pile 3 (FINAL (Softer) - 922 D) X-Dis

830

835

840

845

850

855

860

865

870

875

880

885

890

895

900

-0.04 -0.02 0.00 0.02 0.04 0.06 0.08

Elev

atio

n

Displacement (ft)

Y-Displacement

Pile 1 (FINAL (Softer) - 922 D) Y-Dis Pile 2 (FINAL (Softer) - 922 D) Y-Dis Pile 3 (FINAL (Softer) - 922 D) Y-Dis

830

835

840

845

850

855

860

865

870

875

880

885

890

895

900

-100,000 -50,000 0 50,000 100,000 150,000

Elev

atio

n

Moment (lb-ft)

Moment

Pile 1 (FINAL (Softer) - 922 D) Mom Pile 2 (FINAL (Softer) - 922 D) Mom Pile 3 (FINAL (Softer) - 922 D) Mom

830

835

840

845

850

855

860

865

870

875

880

885

890

895

900

-200,000 -100,000 0 100,000 200,000

Elev

atio

n

Axial Force (lbs)

Axial Force

Pile 1 (FINAL (Softer) - 922 D) Axial Force Pile 2 (FINAL (Softer) - 922 D) Axial Force Pile 3 (FINAL (Softer) - 922 D) Axial Force

830

835

840

845

850

855

860

865

870

875

880

885

890

895

900

-10,000 -5,000 0 5,000 10,000 15,000

Elev

atio

n

Shear (lbs)

Shear

Pile 1 (FINAL (Softer) - 922 D) Shear Pile 2 (FINAL (Softer) - 922 D) Shear Pile 3 (FINAL (Softer) - 922 D) Shear

Page 130: Attachment D-6: FLAC Analysis · (FLAC) 7.0 by Itasca Consulting Group, Inc was used to complete the numerical analysis of the T-wall. Conventional LEM slope stability analysis and

830

835

840

845

850

855

860

865

870

875

880

885

890

895

900

-0.35 -0.30 -0.25 -0.20 -0.15 -0.10 -0.05 0.00

Elev

atio

n

Displacement (ft)

X-Displacement

Pile 1 (FINAL (Softer) - 922 D) X-Dis Pile 2 (FINAL (Softer) - 922 D) X-Dis Pile 3 (FINAL (Softer) - 922 D) X-Dis Pile 1 (FINAL - 922 U) X-Dis Pile 2 (FINAL - 922 U) X-Dis Pile 3 (FINAL - 922 U) X-Dis

830

835

840

845

850

855

860

865

870

875

880

885

890

895

900

-0.04 -0.02 0.00 0.02 0.04 0.06 0.08

Elev

atio

n

Displacement (ft)

Y-Displacement

Pile 1 (FINAL (Softer) - 922 D) Y-Dis Pile 2 (FINAL (Softer) - 922 D) Y-Dis Pile 3 (FINAL (Softer) - 922 D) Y-Dis Pile 1 (FINAL - 922 U) Y-Dis Pile 2 (FINAL - 922 U) Y-Dis Pile 3 (FINAL - 922 U) Y-Dis

830

835

840

845

850

855

860

865

870

875

880

885

890

895

900

-100,000 -50,000 0 50,000 100,000 150,000

Elev

atio

n

Moment (lb-ft)

Moment

Pile 1 (FINAL (Softer) - 922 D) Mom Pile 2 (FINAL (Softer) - 922 D) Mom Pile 3 (FINAL (Softer) - 922 D) Mom Pile 1 (FINAL - 922 U) Mom Pile 2 (FINAL - 922 U) Mom Pile 3 (FINAL - 922 U) Mom

830

835

840

845

850

855

860

865

870

875

880

885

890

895

900

-200,000 -100,000 0 100,000 200,000

Elev

atio

n

Axial Force (lbs)

Axial Force

Pile 1 (FINAL (Softer) - 922 D) Axial Force Pile 2 (FINAL (Softer) - 922 D) Axial Force Pile 3 (FINAL (Softer) - 922 D) Axial Force Pile 1 (FINAL - 922 U) Axial Force Pile 2 (FINAL - 922 U) Axial Force Pile 3 (FINAL - 922 U) Axial Force

830

835

840

845

850

855

860

865

870

875

880

885

890

895

900

-10,000 -5,000 0 5,000 10,000 15,000

Elev

atio

n

Shear (lbs)

Shear

Pile 1 (FINAL (Softer) - 922 D) Shear Pile 2 (FINAL (Softer) - 922 D) Shear Pile 3 (FINAL (Softer) - 922 D) Shear Pile 1 (FINAL - 922 U) Shear Pile 2 (FINAL - 922 U) Shear Pile 3 (FINAL - 922 U) Shear

Page 131: Attachment D-6: FLAC Analysis · (FLAC) 7.0 by Itasca Consulting Group, Inc was used to complete the numerical analysis of the T-wall. Conventional LEM slope stability analysis and

830

835

840

845

850

855

860

865

870

875

880

885

890

895

900

-25 -20 -15 -10 -5 0 5 10 15 20 25 30

Elev

atio

n

Displacement (ft)

Pile Locations

Pile 1 (FINAL (Softer) - 922 D)

Pile 2 (FINAL (Softer) - 922 D)

Pile 3 (FINAL (Softer) - 922 D)

Pile 1 (FINAL - 922 U)

Pile 2 (FINAL - 922 U)

Pile 3 (FINAL - 922 U)

First Pile - Segments

Second Pile - Segments

Third Pile - Segments

X-Location magnified 10.00

830

835

840

845

850

855

860

865

870

875

880

885

890

895

900

-4.00 -3.50 -3.00 -2.50 -2.00 -1.50 -1.00 -0.50 0.00

Elev

atio

n

Displacement (inches)

X-Displacement

Pile 1 (FINAL (Softer) - 922 D) X-Dis (inches) Pile 2 (FINAL (Softer) - 922 D) X-Dis (inches) Pile 3 (FINAL (Softer) - 922 D) X-Dis (inches)

Page 132: Attachment D-6: FLAC Analysis · (FLAC) 7.0 by Itasca Consulting Group, Inc was used to complete the numerical analysis of the T-wall. Conventional LEM slope stability analysis and

Pile Graphs File: DIS_T-Wall_FINAL_Softer Bending Moment: Axial Force:Save State: 30_Flood_Step_18.sav Positive Bending Moment indicates U/S side of pile is in compression and D/S side is in tension Positive axial force indicates compression

FINAL (Softer) - 926 D Negative Bending Moment indicates D/S side is in compression and U/S side is in tension.

830

835

840

845

850

855

860

865

870

875

880

885

890

895

900

-0.25 -0.20 -0.15 -0.10 -0.05 0.00

Elev

atio

n

Displacement (ft)

X-Displacement

Pile 1 (FINAL (Softer) - 926 D) X-Dis Pile 2 (FINAL (Softer) - 926 D) X-Dis Pile 3 (FINAL (Softer) - 926 D) X-Dis

830

835

840

845

850

855

860

865

870

875

880

885

890

895

900

-0.04 -0.02 0.00 0.02 0.04 0.06 0.08

Elev

atio

n Displacement (ft)

Y-Displacement

Pile 1 (FINAL (Softer) - 926 D) Y-Dis Pile 2 (FINAL (Softer) - 926 D) Y-Dis Pile 3 (FINAL (Softer) - 926 D) Y-Dis

830

835

840

845

850

855

860

865

870

875

880

885

890

895

900

-80,000 -60,000 -40,000 -20,000 0 20,000 40,000 60,000

Elev

atio

n

Moment (lb-ft)

Moment

Pile 1 (FINAL (Softer) - 926 D) Mom Pile 2 (FINAL (Softer) - 926 D) Mom Pile 3 (FINAL (Softer) - 926 D) Mom

830

835

840

845

850

855

860

865

870

875

880

885

890

895

900

-300,000 -200,000 -100,000 0 100,000 200,000

Elev

atio

n

Axial Force (lbs)

Axial Force

Pile 1 (FINAL (Softer) - 926 D) Axial Force Pile 2 (FINAL (Softer) - 926 D) Axial Force Pile 3 (FINAL (Softer) - 926 D) Axial Force

830

835

840

845

850

855

860

865

870

875

880

885

890

895

900

-10,000 -5,000 0 5,000 10,000

Elev

atio

n

Shear (lbs)

Shear

Pile 1 (FINAL (Softer) - 926 D) Shear Pile 2 (FINAL (Softer) - 926 D) Shear Pile 3 (FINAL (Softer) - 926 D) Shear

Page 133: Attachment D-6: FLAC Analysis · (FLAC) 7.0 by Itasca Consulting Group, Inc was used to complete the numerical analysis of the T-wall. Conventional LEM slope stability analysis and

830

835

840

845

850

855

860

865

870

875

880

885

890

895

900

-25 -20 -15 -10 -5 0 5 10 15 20 25 30

Elev

atio

n

Displacement (ft)

Pile Locations

Pile 1 (FINAL (Softer) - 926 D)

Pile 2 (FINAL (Softer) - 926 D)

Pile 3 (FINAL (Softer) - 926 D)

Pile 1 (FINAL - 922 U)

Pile 2 (FINAL - 922 U)

Pile 3 (FINAL - 922 U)

First Pile - Segments

Second Pile - Segments

Third Pile - Segments

X-Location magnified 10.00

830

835

840

845

850

855

860

865

870

875

880

885

890

895

900

-3.00 -2.50 -2.00 -1.50 -1.00 -0.50 0.00

Elev

atio

n

Displacement (inches)

X-Displacement

Pile 1 (FINAL (Softer) - 926 D) X-Dis (inches)

Pile 2 (FINAL (Softer) - 926 D) X-Dis (inches)

Pile 3 (FINAL (Softer) - 926 D) X-Dis (inches)

Page 134: Attachment D-6: FLAC Analysis · (FLAC) 7.0 by Itasca Consulting Group, Inc was used to complete the numerical analysis of the T-wall. Conventional LEM slope stability analysis and

Fargo Moorhead Metropolitan Area Draft Design Documentation Report Flood Risk Management Project Inlet Diversion

Appendix D, Attachment 6: FLAC Analysis of Floodwall

Exhibit 5: Results of “Wall Load Only” FLAC Model

Page 135: Attachment D-6: FLAC Analysis · (FLAC) 7.0 by Itasca Consulting Group, Inc was used to complete the numerical analysis of the T-wall. Conventional LEM slope stability analysis and

Pile Graphs File: T-Wall_FINAL_WLO Bending Moment: Axial Force:Save State: 20_Flood_Step_11_b.sav Positive Bending Moment indicates U/S side of pile is in compression and D/S side is in tension Positive axial force indicates compression

FINAL WLO - 922 U Negative Bending Moment indicates D/S side is in compression and U/S side is in tension.

830

835

840

845

850

855

860

865

870

875

880

885

890

895

900

-0.02 -0.02 -0.01 -0.01 0.00

Elev

atio

n

Displacement (ft)

X-Displacement

Pile 1 (FINAL WLO - 922 U) X-Dis Pile 2 (FINAL WLO - 922 U) X-Dis Pile 3 (FINAL WLO - 922 U) X-Dis

830

835

840

845

850

855

860

865

870

875

880

885

890

895

900

0.00 0.00 0.00 0.00 0.00 0.00 0.00

Elev

atio

n Displacement (ft)

Y-Displacement

Pile 1 (FINAL WLO - 922 U) Y-Dis Pile 2 (FINAL WLO - 922 U) Y-Dis Pile 3 (FINAL WLO - 922 U) Y-Dis

830

835

840

845

850

855

860

865

870

875

880

885

890

895

900

-10,000 0 10,000 20,000

Elev

atio

n

Moment (lb-ft)

Moment

Pile 1 (FINAL WLO - 922 U) Mom Pile 2 (FINAL WLO - 922 U) Mom Pile 3 (FINAL WLO - 922 U) Mom

830

835

840

845

850

855

860

865

870

875

880

885

890

895

900

-100,000 0 100,000

Elev

atio

n

Axial Force (lbs)

Axial Force

Pile 1 (FINAL WLO - 922 U) Axial Force Pile 2 (FINAL WLO - 922 U) Axial Force Pile 3 (FINAL WLO - 922 U) Axial Force

830

835

840

845

850

855

860

865

870

875

880

885

890

895

900

-2,500 -2,000 -1,500 -1,000 -500 0 500 1,000

Elev

atio

n

Shear (lbs)

Shear

Pile 1 (FINAL WLO - 922 U) Shear Pile 2 (FINAL WLO - 922 U) Shear Pile 3 (FINAL WLO - 922 U) Shear

830

835

840

845

850

855

860

865

870

875

880

885

890

895

900

-25 -20 -15 -10 -5 0 5 10 15 20 25 30

Elev

atio

n

Displacement (ft)

Pile Locations

Pile 1 (FINAL WLO - 922 U)

Pile 2 (FINAL WLO - 922 U)

Pile 3 (FINAL WLO - 922 U)

First Pile - Segments

Second Pile - Segments

Third Pile - Segments

X-Location magnified 10.00

830

835

840

845

850

855

860

865

870

875

880

885

890

895

900

-0.20 -0.15 -0.10 -0.05 0.00

Elev

atio

n

Displacement (inches)

X-Displacement

Pile 1 (FINAL WLO - 922 U) X-Dis (inches) Pile 2 (FINAL WLO - 922 U) X-Dis (inches) Pile 3 (FINAL WLO - 922 U) X-Dis (inches)

Page 136: Attachment D-6: FLAC Analysis · (FLAC) 7.0 by Itasca Consulting Group, Inc was used to complete the numerical analysis of the T-wall. Conventional LEM slope stability analysis and

Pile Graphs File: T-Wall_FINAL_WLO Bending Moment: Axial Force:Save State: 20_Flood_Step_17.sav Positive Bending Moment indicates U/S side of pile is in compression and D/S side is in tension Positive axial force indicates compression

FINAL WLO - 926 U Negative Bending Moment indicates D/S side is in compression and U/S side is in tension.

830

835

840

845

850

855

860

865

870

875

880

885

890

895

900

-0.02 -0.01 -0.01 0.00

Elev

atio

n

Displacement (ft)

X-Displacement

Pile 1 (FINAL WLO - 926 U) X-Dis Pile 2 (FINAL WLO - 926 U) X-Dis Pile 3 (FINAL WLO - 926 U) X-Dis

830

835

840

845

850

855

860

865

870

875

880

885

890

895

900

-0.01 -0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Elev

atio

n Displacement (ft)

Y-Displacement

Pile 1 (FINAL WLO - 926 U) Y-Dis Pile 2 (FINAL WLO - 926 U) Y-Dis Pile 3 (FINAL WLO - 926 U) Y-Dis

830

835

840

845

850

855

860

865

870

875

880

885

890

895

900

-5,000 0 5,000 10,000 15,000

Elev

atio

n

Moment (lb-ft)

Moment

Pile 1 (FINAL WLO - 926 U) Mom Pile 2 (FINAL WLO - 926 U) Mom Pile 3 (FINAL WLO - 926 U) Mom

830

835

840

845

850

855

860

865

870

875

880

885

890

895

900

-100,000 0 100,000

Elev

atio

n

Axial Force (lbs)

Axial Force

Pile 1 (FINAL WLO - 926 U) Axial Force Pile 2 (FINAL WLO - 926 U) Axial Force Pile 3 (FINAL WLO - 926 U) Axial Force

830

835

840

845

850

855

860

865

870

875

880

885

890

895

900

-2,000 -1,500 -1,000 -500 0 500 1,000

Elev

atio

n

Shear (lbs)

Shear

Pile 1 (FINAL WLO - 926 U) Shear Pile 2 (FINAL WLO - 926 U) Shear Pile 3 (FINAL WLO - 926 U) Shear

830

835

840

845

850

855

860

865

870

875

880

885

890

895

900

-25 -20 -15 -10 -5 0 5 10 15 20 25 30

Elev

atio

n

Displacement (ft)

Pile Locations

Pile 1 (FINAL WLO - 926 U)

Pile 2 (FINAL WLO - 926 U)

Pile 3 (FINAL WLO - 926 U)

First Pile - Segments

Second Pile - Segments

Third Pile - Segments

X-Location magnified 10.00

Page 137: Attachment D-6: FLAC Analysis · (FLAC) 7.0 by Itasca Consulting Group, Inc was used to complete the numerical analysis of the T-wall. Conventional LEM slope stability analysis and

Pile Graphs File: DIS_T-Wall_FINAL Bending Moment: Axial Force:Save State: 30_Flood_Step_11.sav Positive Bending Moment indicates U/S side of pile is in compression and D/S side is in tension Positive axial force indicates compression

FINAL WLO - 922 D Negative Bending Moment indicates D/S side is in compression and U/S side is in tension.

830

835

840

845

850

855

860

865

870

875

880

885

890

895

900

-0.03 -0.03 -0.02 -0.02 -0.01 -0.01 0.00

Elev

atio

n

Displacement (ft)

X-Displacement

Pile 1 (FINAL WLO - 922 D) X-Dis Pile 2 (FINAL WLO - 922 D) X-Dis Pile 3 (FINAL WLO - 922 D) X-Dis

830

835

840

845

850

855

860

865

870

875

880

885

890

895

900

-0.01 0.00 0.00 0.00 0.00 0.00 0.01 0.01

Elev

atio

n Displacement (ft)

Y-Displacement

Pile 1 (FINAL WLO - 922 D) Y-Dis Pile 2 (FINAL WLO - 922 D) Y-Dis Pile 3 (FINAL WLO - 922 D) Y-Dis

830

835

840

845

850

855

860

865

870

875

880

885

890

895

900

-10,000 -5,000 0 5,000 10,000 15,000 20,000

Elev

atio

n

Moment (lb-ft)

Moment

Pile 1 (FINAL WLO - 922 D) Mom Pile 2 (FINAL WLO - 922 D) Mom Pile 3 (FINAL WLO - 922 D) Mom

830

835

840

845

850

855

860

865

870

875

880

885

890

895

900

-200,000 -100,000 0 100,000

Elev

atio

n

Axial Force (lbs)

Axial Force

Pile 1 (FINAL WLO - 922 D) Axial Force Pile 2 (FINAL WLO - 922 D) Axial Force Pile 3 (FINAL WLO - 922 D) Axial Force

830

835

840

845

850

855

860

865

870

875

880

885

890

895

900

-4,000 -3,000 -2,000 -1,000 0 1,000

Elev

atio

n

Shear (lbs)

Shear

Pile 1 (FINAL WLO - 922 D) Shear Pile 2 (FINAL WLO - 922 D) Shear Pile 3 (FINAL WLO - 922 D) Shear

Page 138: Attachment D-6: FLAC Analysis · (FLAC) 7.0 by Itasca Consulting Group, Inc was used to complete the numerical analysis of the T-wall. Conventional LEM slope stability analysis and

830

835

840

845

850

855

860

865

870

875

880

885

890

895

900

-0.06 -0.05 -0.04 -0.03 -0.02 -0.01 0.00

Elev

atio

n

Displacement (ft)

X-Displacement

Pile 1 (FINAL WLO - 922 D) X-Dis Pile 2 (FINAL WLO - 922 D) X-Dis Pile 3 (FINAL WLO - 922 D) X-Dis Pile 1 (FINAL - 922 U) X-Dis Pile 2 (FINAL - 922 U) X-Dis Pile 3 (FINAL - 922 U) X-Dis

830

835

840

845

850

855

860

865

870

875

880

885

890

895

900

-0.01 -0.01 0.00 0.01 0.01

Elev

atio

n

Displacement (ft)

Y-Displacement

Pile 1 (FINAL WLO - 922 D) Y-Dis Pile 2 (FINAL WLO - 922 D) Y-Dis Pile 3 (FINAL WLO - 922 D) Y-Dis Pile 1 (FINAL - 922 U) Y-Dis Pile 2 (FINAL - 922 U) Y-Dis Pile 3 (FINAL - 922 U) Y-Dis

830

835

840

845

850

855

860

865

870

875

880

885

890

895

900

-20,000 -10,000 0 10,000 20,000 30,000

Elev

atio

n

Moment (lb-ft)

Moment

Pile 1 (FINAL WLO - 922 D) Mom Pile 2 (FINAL WLO - 922 D) Mom Pile 3 (FINAL WLO - 922 D) Mom Pile 1 (FINAL - 922 U) Mom Pile 2 (FINAL - 922 U) Mom Pile 3 (FINAL - 922 U) Mom

830

835

840

845

850

855

860

865

870

875

880

885

890

895

900

-200,000 -100,000 0 100,000

Elev

atio

n

Axial Force (lbs)

Axial Force

Pile 1 (FINAL WLO - 922 D) Axial Force Pile 2 (FINAL WLO - 922 D) Axial Force Pile 3 (FINAL WLO - 922 D) Axial Force Pile 1 (FINAL - 922 U) Axial Force Pile 2 (FINAL - 922 U) Axial Force Pile 3 (FINAL - 922 U) Axial Force

830

835

840

845

850

855

860

865

870

875

880

885

890

895

900

-4,000 -3,000 -2,000 -1,000 0 1,000 2,000 3,000

Elev

atio

n

Shear (lbs)

Shear

Pile 1 (FINAL WLO - 922 D) Shear Pile 2 (FINAL WLO - 922 D) Shear Pile 3 (FINAL WLO - 922 D) Shear Pile 1 (FINAL - 922 U) Shear Pile 2 (FINAL - 922 U) Shear Pile 3 (FINAL - 922 U) Shear

Page 139: Attachment D-6: FLAC Analysis · (FLAC) 7.0 by Itasca Consulting Group, Inc was used to complete the numerical analysis of the T-wall. Conventional LEM slope stability analysis and

830

835

840

845

850

855

860

865

870

875

880

885

890

895

900

-25 -20 -15 -10 -5 0 5 10 15 20 25 30

Elev

atio

n

Displacement (ft)

Pile Locations

Pile 1 (FINAL WLO - 922 D)

Pile 2 (FINAL WLO - 922 D)

Pile 3 (FINAL WLO - 922 D)

Pile 1 (FINAL - 922 U)

Pile 2 (FINAL - 922 U)

Pile 3 (FINAL - 922 U)

First Pile - Segments

Second Pile - Segments

Third Pile - Segments

X-Location magnified 10.00

830

835

840

845

850

855

860

865

870

875

880

885

890

895

900

-0.35 -0.30 -0.25 -0.20 -0.15 -0.10 -0.05 0.00

Elev

atio

n

Displacement (inches)

X-Displacement

Pile 1 (FINAL WLO - 922 D) X-Dis (inches) Pile 2 (FINAL WLO - 922 D) X-Dis (inches) Pile 3 (FINAL WLO - 922 D) X-Dis (inches)

Page 140: Attachment D-6: FLAC Analysis · (FLAC) 7.0 by Itasca Consulting Group, Inc was used to complete the numerical analysis of the T-wall. Conventional LEM slope stability analysis and

Pile Graphs File: DIS_T-Wall_FINAL Bending Moment: Axial Force:Save State: 30_Flood_Step_11.sav Positive Bending Moment indicates U/S side of pile is in compression and D/S side is in tension Positive axial force indicates compression

FINAL WLO - 926 D Negative Bending Moment indicates D/S side is in compression and U/S side is in tension.

830

835

840

845

850

855

860

865

870

875

880

885

890

895

900

-0.03 -0.03 -0.02 -0.02 -0.01 -0.01 0.00

Elev

atio

n

Displacement (ft)

X-Displacement

Pile 1 (FINAL WLO - 926 D) X-Dis Pile 2 (FINAL WLO - 926 D) X-Dis Pile 3 (FINAL WLO - 926 D) X-Dis

830

835

840

845

850

855

860

865

870

875

880

885

890

895

900

-0.01 0.00 0.00 0.00 0.00 0.00 0.01 0.01 0.01

Elev

atio

n Displacement (ft)

Y-Displacement

Pile 1 (FINAL WLO - 926 D) Y-Dis Pile 2 (FINAL WLO - 926 D) Y-Dis Pile 3 (FINAL WLO - 926 D) Y-Dis

830

835

840

845

850

855

860

865

870

875

880

885

890

895

900

-10,000 -5,000 0 5,000 10,000 15,000

Elev

atio

n

Moment (lb-ft)

Moment

Pile 1 (FINAL WLO - 926 D) Mom Pile 2 (FINAL WLO - 926 D) Mom Pile 3 (FINAL WLO - 926 D) Mom

830

835

840

845

850

855

860

865

870

875

880

885

890

895

900

-200,000 -100,000 0 100,000

Elev

atio

n

Axial Force (lbs)

Axial Force

Pile 1 (FINAL WLO - 926 D) Axial Force Pile 2 (FINAL WLO - 926 D) Axial Force Pile 3 (FINAL WLO - 926 D) Axial Force

830

835

840

845

850

855

860

865

870

875

880

885

890

895

900

-3,000 -2,500 -2,000 -1,500 -1,000 -500 0 500 1,000

Elev

atio

n

Shear (lbs)

Shear

Pile 1 (FINAL WLO - 926 D) Shear Pile 2 (FINAL WLO - 926 D) Shear Pile 3 (FINAL WLO - 926 D) Shear

Page 141: Attachment D-6: FLAC Analysis · (FLAC) 7.0 by Itasca Consulting Group, Inc was used to complete the numerical analysis of the T-wall. Conventional LEM slope stability analysis and

830

835

840

845

850

855

860

865

870

875

880

885

890

895

900

-0.08 -0.06 -0.04 -0.02 0.00

Elev

atio

n

Displacement (ft)

X-Displacement

Pile 1 (FINAL WLO - 926 D) X-Dis Pile 2 (FINAL WLO - 926 D) X-Dis Pile 3 (FINAL WLO - 926 D) X-Dis Pile 1 (FINAL - 922 D) X-Dis Pile 2 (FINAL - 922 D) X-Dis Pile 3 (FINAL - 922 D) X-Dis

830

835

840

845

850

855

860

865

870

875

880

885

890

895

900

-0.01 -0.01 0.00 0.01 0.01 0.02

Elev

atio

n

Displacement (ft)

Y-Displacement

Pile 1 (FINAL WLO - 926 D) Y-Dis Pile 2 (FINAL WLO - 926 D) Y-Dis Pile 3 (FINAL WLO - 926 D) Y-Dis Pile 1 (FINAL - 922 D) Y-Dis Pile 2 (FINAL - 922 D) Y-Dis Pile 3 (FINAL - 922 D) Y-Dis

830

835

840

845

850

855

860

865

870

875

880

885

890

895

900

-30,000 -20,000 -10,000 0 10,000 20,000 30,000

Elev

atio

n

Moment (lb-ft)

Moment

Pile 1 (FINAL WLO - 926 D) Mom Pile 2 (FINAL WLO - 926 D) Mom Pile 3 (FINAL WLO - 926 D) Mom Pile 1 (FINAL - 922 D) Mom Pile 2 (FINAL - 922 D) Mom Pile 3 (FINAL - 922 D) Mom

830

835

840

845

850

855

860

865

870

875

880

885

890

895

900

-200,000 -100,000 0 100,000

Elev

atio

n

Axial Force (lbs)

Axial Force

Pile 1 (FINAL WLO - 926 D) Axial Force Pile 2 (FINAL WLO - 926 D) Axial Force Pile 3 (FINAL WLO - 926 D) Axial Force Pile 1 (FINAL - 922 D) Axial Force Pile 2 (FINAL - 922 D) Axial Force Pile 3 (FINAL - 922 D) Axial Force

830

835

840

845

850

855

860

865

870

875

880

885

890

895

900

-4,000 -3,000 -2,000 -1,000 0 1,000 2,000 3,000 4,000

Elev

atio

n

Shear (lbs)

Shear

Pile 1 (FINAL WLO - 926 D) Shear Pile 2 (FINAL WLO - 926 D) Shear Pile 3 (FINAL WLO - 926 D) Shear Pile 1 (FINAL - 922 D) Shear Pile 2 (FINAL - 922 D) Shear Pile 3 (FINAL - 922 D) Shear

Page 142: Attachment D-6: FLAC Analysis · (FLAC) 7.0 by Itasca Consulting Group, Inc was used to complete the numerical analysis of the T-wall. Conventional LEM slope stability analysis and

830

835

840

845

850

855

860

865

870

875

880

885

890

895

900

-25 -20 -15 -10 -5 0 5 10 15 20 25 30

Elev

atio

n

Displacement (ft)

Pile Locations

Pile 1 (FINAL WLO - 926 D)

Pile 2 (FINAL WLO - 926 D)

Pile 3 (FINAL WLO - 926 D)

Pile 1 (FINAL - 922 D)

Pile 2 (FINAL - 922 D)

Pile 3 (FINAL - 922 D)

First Pile - Segments

Second Pile - Segments

Third Pile - Segments

X-Location magnified 10.00