23
Asymptotic theory of quantum channel estimation Sisi Zhou with Liang Jiang arXiv: 2003.10559 Yale University 2021/02/03 QIP 2021

Asymptotictheory of quantum channel estimation

  • Upload
    others

  • View
    4

  • Download
    0

Embed Size (px)

Citation preview

Asymptotic theory of quantum channel estimation

Sisi Zhou with Liang Jiang

arXiv: 2003.10559

YaleUniversity

2021/02/03

QIP 2021

Outline

โ€ข Introduction to quantum metrology

โ€ข Asymptotic quantum channel estimation

โ€ข Examples

9:56 AM2

Classical estimation theory

Estimation precision:

ฮ”๐œ” = ๐”ผ %๐œ” ๐‘ฅ โˆ’๐œ” !"!

For unbiased estimators ๐”ผ %๐œ” ๐‘ฅ = ๐œ”, we have the Cramรฉr-Rao bound:

ฮ”๐œ” โ‰ฅ1

๐‘#$%& โ‹… ๐น(๐‘(๐‘ฅ;๐œ”))

๐‘#$%&: number of experiments

๐น(๐‘(๐‘ฅ;๐œ”)): Fisher information

The bound is saturable asymptotically using the maximum likelihood estimator.

๐œ”

Probing

๐‘(๐‘ฅ; ๐œ”)

Estimator: %๐œ” ๐‘ฅ

๐‘(๐œ”)๐‘(๐œ” + ๐‘‘๐œ”)

๐‘ฅ

๐‘(๐‘ฅ; ๐œ”)

9:56 AM3

Quantum estimation theory

The quantum Cramรฉr-Rao bound:

ฮ”๐œ” โ‰ฅ1

๐‘#$%& โ‹… ๐น(๐œŒ')

๐‘#$%&: number of experiments

๐น(๐œŒ'): quantum Fisher information

๐น ๐œŒ' = max{)!}

๐น(๐‘(๐‘ฅ:๐œ”))

The quantum Cramรฉr-Rao bound is also saturable asymptotically.

๐œ” ๐œŒ!

Probing

๐‘(๐‘ฅ; ๐œ”)

POVM {๐‘€)}

Estimator: %๐œ” ๐‘ฅ

Helstrom 1976, Holevo 1982Braunstein & Caves 1994

9:56 AM4

Quantum Fisher information

Quantum Fisher information (QFI): ๐น ๐œŒ' = max{)!}

๐น(๐‘(๐‘ฅ:๐œ”))

๐น ๐œŒ' = Tr ๐œŒ'๐ฟ'! , +","-,"+"! = ๐œ•'๐œŒ'

โ€ข Faithfulness: ๐น ๐œŒ' โ‰ฅ 0 and ๐น ๐œŒ' = 0 if and only if ๐œ•'๐œŒ' = 0.

โ€ข Monotonicity: ๐น ๐’ฉ(๐œŒ') โ‰ค ๐น ๐œŒ' , ๐’ฉ is an arbitrary CPTP map.

โ€ข Additivity: ๐น ๐œŒ'โŠ—๐œŽ' = ๐น ๐œŒ' +๐น(๐œŽ'). โ€ข Convexity: ๐น ๐‘"๐œŒ' +๐‘!๐œŽ' โ‰ค ๐‘"๐น ๐œŒ' +๐‘!๐น ๐œŽ' .

โ€ข Connection to Fidelity: ".๐น ๐œŒ' ๐‘‘๐œ”! = ๐‘‘/0&#1! ๐œŒ', ๐œŒ'-2' = 2โˆ’ 2๐น๐‘–๐‘‘(๐œŒ', ๐œŒ'-2').

9:56 AM5

Quantum Fisher information

Example 1 (pure state):

๐œŒ' = |๐œ“'โŸฉโŸจ๐œ“'|, ๐œ“' = ๐‘’34'56 ๐œ“7 ,

๐น ๐œŒ' = 4๐‘ก! ฮ”!๐ป = ฮ˜ ๐‘ก! ,

where ฮ”!๐ป = ๐œ“7 ๐ป! ๐œ“7 โˆ’ ๐œ“7 ๐ป ๐œ“7 ! .

โ€ข For a single qubit state, when ๐ป = ๐‘/2, the optimal initial state is

๐œ“7 =0 + 1

2.

9:56 AM6

9:56 AM7

Quantum Fisher information

Example 2 (single-qubit dephasing):๐‘‘๐œŒ๐‘‘๐‘ก = โˆ’๐‘–

๐œ”๐‘2 , ๐œŒ +

๐›พ2 ๐‘๐œŒ๐‘ โˆ’ ๐œŒ

Input state: ๐œ“7 = 0 + 1 / 2.

Noiseless case (๐›พ = 0): ๐น ๐œŒ' ๐‘ก = ๐‘ก! = ฮ˜(๐‘ก!).

Noisy case (๐›พ > 0): ๐น ๐œŒ' ๐‘ก = ๐‘ก!๐‘’3!86.

If we measure and renew the qubit every constant time, we get only QFI= ฮ˜(๐‘ก).

Noiseless๐œ“! ๐œŒ ๐‘ก |๐œ“!โŸฉ

Noisy๐œ“! ๐œŒ ๐‘ก |๐œ“!โŸฉ

Quantum Fisher information

9:56 AM8

Example 3 (๐‘-qubit dephasing):

Input state (GHZ state):

๐œ“7 =0 โŠ—: + 1 โŠ—:

2Noiseless case (ฮณ = 0): ๐น ๐œŒ' ๐‘ก = ๐‘!๐‘ก! = ฮ˜(๐‘!).

Noisy case (ฮณ > 0): ๐น ๐œŒ' ๐‘ก = ๐‘!๐‘ก!๐‘’3!:86.

Average QFI over time: max6;7

๐น ๐œŒ' ๐‘ก /๐‘ก = ๐‘/2๐‘’๐›พ = ฮ˜(๐‘).

Noiseless๐œ“! ๐œŒ ๐‘ก |๐œ“!โŸฉ

Noisy๐œ“! ๐œŒ ๐‘ก |๐œ“!โŸฉ

Quantum Fisher information

In quantum metrology, the resource we care about is the number of channels used๐‘ or the probing time ๐‘ก. There are two types of estimation precision limits:

โ€ข The Heisenberg limit (HL): QFI = ฮ˜(๐‘!) or ฮ˜(๐‘ก!)

โ€” the ultimate estimation precision limit allowed by quantum mechanics.

โ€ข The standard quantum limit (SQL): QFI = ฮ˜(๐‘) or ฮ˜(๐‘ก)

โ€” achievable using โ€œclassicalโ€ strategies (no need to maintain the coherence in & between probes for a long time).

9:56 AM9

Quantum channel estimation

โ„ฐ* ๐œŒ = โˆ‘+,-. ๐พ*,+๐œŒ๐พ*,+0

9:56 AM

Sequential strategy

โŠ†

10

Parallel strategy

Quantum channel estimation

The channel QFI:

๐น โ„ฐ' = max,๐น((โ„ฐ'โŠ—๐•€) ๐œŒ )

The asymptotic channel QFI:

๐น โ„ฐ'โŠ—: โˆ ๐‘!: the Heisenberg limit (HL)

๐น โ„ฐ'โŠ—: โˆ ๐‘: the standard quantum limit (SQL)

The asymptotic channel QFI either follows the HL or the SQL.

Examples: unitary channels, depolarizing noise.

The same is true for ๐น(1#=) โ„ฐ', ๐‘ ----the QFI optimized over all sequential strategies.

9:56 AM11

Fujiwara & Imai 2008, Demkowicz-Dobrzanski et al. 2012Demkowicz-Dobrzanski & Maccone 2014, SZ & Jiang 2020

Necessary and sufficient condition

Theorem 1: The HL is achievable using parallel strategies (or sequential strategies) if and only if the Hamiltonian-not-in-Kraus-Span (HNKS) condition is satisfied:

๐ป(โ„ฐ') โˆ‰ ๐’ฎ(โ„ฐ'),

where

Hamiltonian: ๐ป โ„ฐ' โ‰” ๐‘–โˆ‘4๐พ',4@ ๐œ•'๐พ',4 = ๐‘–๐Š@๏ฟฝฬ‡๏ฟฝ ,

Kraus span: ๐’ฎ(โ„ฐ') = span ๐พ',4@ ๐พ',A, โˆ€๐‘–, ๐‘— .

Remark: For unitary channel ๐‘ˆ' = ๐‘’345', or โ„ฐ' =๐’ฉ โˆ˜๐’ฐ', ๐ป โ„ฐ' = ๐ป.

9:56 AM12

Fujiwara & Imai 2008, Demkowicz-Dobrzanski et al. 2012Demkowicz-Dobrzanski & Maccone 2014, SZ & Jiang 2020

๐Š =๐พ',"โ‹ฎ

๐พ',B

The asymptotic QFI

๐นCD โ„ฐ' = lim:โ†’F

๐น โ„ฐ'โŠ—:

๐‘! , ๐นGHD โ„ฐ' = lim:โ†’F

๐น โ„ฐ'โŠ—:

๐‘Theorem 2: When ๐ป โˆ‰ ๐’ฎ,

๐นCD โ„ฐ' = 4minI

๐›ฝ ! , ๐›ฝ = ๐ป โˆ’๐Š!โ„Ž๐Š.

Theorem 3: When ๐ป โˆˆ ๐’ฎ,

๐นGHD โ„ฐ' = 4 minI:KL7

๐›ผ , ๐›ผ = ๏ฟฝฬ‡๏ฟฝ โˆ’ ๐‘–โ„Ž๐Š 0(๏ฟฝฬ‡๏ฟฝ โˆ’ ๐‘–โ„Ž๐Š).

In particular, ๐นGHD โ„ฐ' = ๐นGHD1#= โ„ฐ' .

9:56 AM13

๐Š =๐พ',"โ‹ฎ

๐พ',B, Hermitian โ„Ž โˆˆ โ„‚Bร—B

Fujiwara & Imai 2008, Demkowicz-Dobrzanski et al. 2012Demkowicz-Dobrzanski & Maccone 2014, SZ & Jiang 2020

min!

๐›ฝ is a distance between ๐ป and ๐’ฎ

Proof of Theorem 2 and 3

๐นCD โ„ฐ' = 4minI

๐›ฝ ! , ๐นGHD โ„ฐ' = 4 minI:KL7

๐›ผ .

๐›ฝ = ๐ป โˆ’๐Š!โ„Ž๐Š, ๐›ผ = ๏ฟฝฬ‡๏ฟฝ โˆ’ ๐‘–โ„Ž๐Š 0(๏ฟฝฬ‡๏ฟฝ โˆ’ ๐‘–โ„Ž๐Š).

โ€ข Upper bounds:

๐น โ„ฐ'โŠ—: โ‰ค 4(๐‘ ๐›ผ +๐‘(๐‘ โˆ’ 1)โ€–๐›ฝโ€–!)

๐น(1#=) โ„ฐ', ๐‘ โ‰ค 4(๐‘ ๐›ผ +๐‘(๐‘ โˆ’ 1) ๐›ฝ ( ๐›ฝ + ๐›ผ + 1))

โ€ข Attainability:

Quantum error correction (QEC) protocols

9:56 AM14

Fujiwara & Imai 2008, Demkowicz-Dobrzanski et al. 2012 Demkowicz-Dobrzanski & Maccone 2014

SZ & Jiang 2020

Hamiltonian estimation in master equationsDemkowicz-Dobrzanski et al. 2017, SZ et al. 2018, SZ & Jiang 2019

SZ, QIP 2018

Attainability: the QEC protocol

9:56 AM15

The Heisenberg limit is recovered.

The optimal SQL coefficient ๐น"#$ โ„ฐ%is achievable.

Attainability: the QEC protocol

โ€ข Step 1: Asymptotic QFIs for dephasing channels

โ€ข Step 2: Reduction to dephasing channels

โ€ข Step 3: Code optimization

Dephasing channels๐’Ÿ':

๐œŒ77 ๐œŒ7"๐œŒ"7 ๐œŒ""

๐’Ÿ" ๐œŒ77 ๐œ‰๐œŒ7"๐œ‰โˆ—๐œŒ"7 ๐œŒ""

When ๐œ‰ = 1, ๐นCD ๐’Ÿ' = ๏ฟฝฬ‡๏ฟฝ !,

When ๐œ‰ < 1, ๐นGHD ๐’Ÿ' = Qฬ‡(

"3 Q (,

9:56 AM16SZ & Jiang 2020

Attainability: the QEC protocol

โ€ข Step 1: Asymptotic QFIs for dephasing channels

โ€ข Step 2: Reduction to dephasing channels

โ€ข Step 3: Code optimization

Two-dimensional code:

Encoding:

0+ = โˆ‘4A ๐ถ7 4A ๐‘– R ๐‘— S) 0 S(, 1+ = โˆ‘4A ๐ถ" 4A ๐‘– R ๐‘— S) 1 S(

Decoding:

โ„› โ‹… = โˆ‘T๐‘…T โ‹… ๐‘…T! , ๐‘…T = ๐‘ƒ 7 *๐‘…T๐‘ƒ 7 +(

+๐‘ƒ " *๐‘…T๐‘ƒ " +(

9:56 AM17

๐’Ÿ7,*

time order

โ„ฐ*

๐•€8

โ„› โ„ฐ9:;

SZ & Jiang 2020

Attainability: the QEC protocol

โ€ข Step 1: Asymptotic QFIs for dephasing channels

โ€ข Step 2: Reduction to dephasing channels

โ€ข Step 3: Code optimization

Two-dimensional code:

Encoding:

0+ = โˆ‘4A ๐ถ7 4A ๐‘– R ๐‘— S) 0 S(, 1+ = โˆ‘4A ๐ถ" 4A ๐‘– R ๐‘— S) 1 S(

Decoding:

โ„› โ‹… = โˆ‘T๐‘…T โ‹… ๐‘…T! , ๐‘…T = ๐‘ƒ 7 *๐‘…T๐‘ƒ 7 +(

+๐‘ƒ " *๐‘…T๐‘ƒ " +(

The optimization of ๐นCD,GHD ๐’Ÿ+,' over ๐ถ7, ๐ถ" and โ„› gives Theorem 2 and 3.

9:56 AM18SZ & Jiang 2020

๐’Ÿ7,*

time order

โ„ฐ*

๐•€8

โ„› โ„ฐ9:;

Example 1: Pauli ๐‘ signal with bit-flip noise

โ„ฐ' ๐œŒ = ๐’ฉ โˆ˜๐’ฐ' ๐œŒ ,

๐’ฉ ๐œŒ = 1โˆ’ ๐‘ ๐œŒ + ๐‘๐‘‹๐œŒ๐‘‹, ๐‘ˆ' = ๐‘’3,"-( ,

๐ป = ๐‘ โˆ‰ ๐’ฎ = span{๐ผ, ๐‘‹}

Optimal code: 0+ = 0 RโŠ— 0 S , 1+ = 1 RโŠ— 1 S.

After error:

(๐‘‹โŠ— ๐ผ) 0+ = 1 RโŠ— 0 S , (๐‘‹โŠ— ๐ผ) 1+ = 0 RโŠ— 1 S.

Recovery:

Measure ๐‘† = ๐‘โŠ—๐‘. If ๐‘† = โˆ’1, flip the probe with ๐‘‹; otherwise do nothing.

199:56 AM

Kessler et al. 2014, Arrad et al. 2014, Dur et al. 2014, Unden et al. 2016

Example 1: Pauli ๐‘ signal with bit-flip noise

โ„ฐ' ๐œŒ = ๐’ฉ โˆ˜๐’ฐ' ๐œŒ ,

๐’ฉ ๐œŒ = 1โˆ’ ๐‘ ๐œŒ + ๐‘๐‘‹๐œŒ๐‘‹, ๐‘ˆ' = ๐‘’3,"-( ,

๐ป = ๐‘ โˆ‰ ๐’ฎ = span{๐ผ, ๐‘‹}

The asymptotic QFI is: ๐นCD โ„ฐ' = 1.

(equal to the ๐นCD ๐’ฐ' )

The single-channel QFI is: ๐น โ„ฐ' = 1.

(equal to the ๐น ๐’ฐ' )

209:56 AM

Kessler et al. 2014, Arrad et al. 2014, Dur et al. 2014, Unden et al. 2016

Example 2: Pauli ๐‘ signal with dephasing noise

๐’Ÿ' ๐œŒ = ๐’ฉ โˆ˜๐’ฐ' ๐œŒ ,

๐’ฉ ๐œŒ = 1โˆ’ ๐‘ ๐œŒ + ๐‘๐‘๐œŒ๐‘, ๐‘ˆ' = ๐‘’3,"-( ,

๐ป = ๐‘ โˆˆ ๐’ฎ = span{๐ผ, ๐‘}

The asymptotic QFI is:

๐นGHD ๐’Ÿ' =1โˆ’ 2๐‘ !

4๐‘ 1 โˆ’ ๐‘ = ๐‘‚ 1/๐‘ .

The single-channel QFI is: ๐น ๐’Ÿ' = 1โˆ’ 2๐‘ ! = ๐‘‚(1).

QEC is not necessary in this case.

21Ulam-Orgikh & Kitagawa 2001, Demkowicz-Dobrzanski et al. 20129:56 AM

Example 3: Pauli ๐‘ signal with depolarizing noise

โ„ฐ' ๐œŒ = ๐’ฉ โˆ˜๐’ฐ' ๐œŒ ,

๐’ฉ ๐œŒ = 1โˆ’ U.๐‘ ๐œŒ + V

.(๐‘‹๐œŒ๐‘‹ + ๐‘Œ๐œŒ๐‘Œ + ๐‘๐œŒ๐‘), ๐‘ˆ' = ๐‘’3

,"-( ,

๐ป = ๐‘ โˆˆ ๐’ฎ = span{๐ผ, ๐‘‹, ๐‘Œ, ๐‘}

The asymptotic QFI is:

๐นGHD โ„ฐ' =2 1โˆ’ ๐‘ !

๐‘(3 โˆ’ 2๐‘) = ๐‘‚ 1/๐‘ .

The single-channel QFI is:

๐น โ„ฐ' =2 1โˆ’ ๐‘ !

2 โˆ’ ๐‘ = ๐‘‚(1).

229:56 AM

SZ & Jiang 2020

Conclusions and outlook

โ€ข The structure of the noise and the Hamiltonian determines the estimation precision limit in quantum metrology.

โ€ข Quantum error correction is powerful โ€“ recovering the HL, achieving the optimal SQL.

โ€ข Future directions: โ€ข parallel strategies vs sequential strategies when the HL is achievable

โ€ข multi-parameter estimation for general quantum channels

โ€ข fault-tolerant QEC for quantum metrology

239:56 AM

Thank you! Liang Jiang