10
Acta Mathematicae Applicatae Sinica, English Series Vol. 30, No. 1 (2014) 65–74 DOI: 10.1007/s10255-014-0268-0 http://www.ApplMath.com.cn & www.SpringerLink.com Acta Mathemacae Applicatae Sinica, English Series © The Editorial Office of AMAS & Springer-Verlag Berlin Heidelberg 2014 Approximation by Complex q -Durrmeyer Polynomials in Compact Disks N.I. Mahmudov 1 , Vijay Gupta 2 1 Department of Mathematics, Eastern Mediterranean University, Gazimagusa, TRNC, Mersin 10, Turkey (Email: [email protected] 2 School of Applied Sciences, Netaji Subhas Institute of Technology, Sector 3 Dwarka New Delhi-110078, India (E-mail: [email protected] Abstract In this paper, the order of approximation and Voronovskaja type results with quantitative estimate for complex q-Durrmeyer polynomials attached to analytic functions on compact disks are obtained. Keywords q-complex Durrmeyer polynomials; q-integers; q-derivatives; Voronovskaja-type asymptotic for- mula 2000 MR Subject Classification 41A25; 30E10 1 Introduction In the recent years the quantitative Voronovskaja-type results for various approximation operators were studied by Gal and collaborators, for ready reference we mention the recent book due to Sorin G. Gal [2] . Also upper quantitative estimates for the uniform convergence were obtained for the first time, by Gal recently in his recent book although Durrmeyer type operators were not studied there. Very recently Mahmudov [5] established quantitative estimates and asymptotic formula for genuine Bernstein polynomials. Anastassiou-Gal [1] established the approximation properties of the complex Bernstein-Durrmeyer operator defined by D n (f,z )=(n + 1) n k=0 p n,k (z ) 1 0 f (t)p n,k (t) dt, z C, (1) where p n,k (z ) := n k z k (1 z ) nk . In the last decade the applications of q calculus in approximation theory was started when Phillips [6] considered the q Bernstein polynomials. Later many researchers studied approxima- tion properties for several other linear positive operators in real domain. Not much work on the q operators is available in the literature, this is the main motivation of the present article to extend the studies and here we study complex q Bernstein Durrmeyer operators. First we mention some basic notations of q calculus. For n N, [n] q := 1 + q + q 2 + ··· + q n1 , [n] q ! := [n] q [n 1] q ··· [1] q , n =1, 2, ··· , 1, n =0. Manuscript received April 12, 2011. Revised February 20, 2012.

Approximation by complex q-Durrmeyer polynomials in compact disks

  • Upload
    vijay

  • View
    213

  • Download
    1

Embed Size (px)

Citation preview

Acta Mathematicae Applicatae Sinica, English Series

Vol. 30, No. 1 (2014) 65–74

DOI: 10.1007/s10255-014-0268-0http://www.ApplMath.com.cn & www.SpringerLink.com

Acta Mathema�cae Applicatae Sinica,English Series© The Editorial Office of AMAS & Springer-Verlag Berlin Heidelberg 2014

Approximation by Complex q-Durrmeyer Polynomialsin Compact DisksN.I. Mahmudov1, Vijay Gupta2

1Department of Mathematics, Eastern Mediterranean University, Gazimagusa, TRNC, Mersin 10, Turkey

(Email: [email protected] of Applied Sciences, Netaji Subhas Institute of Technology, Sector 3 Dwarka New Delhi-110078, India

(E-mail: [email protected]

Abstract In this paper, the order of approximation and Voronovskaja type results with quantitative estimate

for complex q-Durrmeyer polynomials attached to analytic functions on compact disks are obtained.

Keywords q-complex Durrmeyer polynomials; q-integers; q-derivatives; Voronovskaja-type asymptotic for-

mula

2000 MR Subject Classification 41A25; 30E10

1 Introduction

In the recent years the quantitative Voronovskaja-type results for various approximationoperators were studied by Gal and collaborators, for ready reference we mention the recentbook due to Sorin G. Gal[2]. Also upper quantitative estimates for the uniform convergencewere obtained for the first time, by Gal recently in his recent book although Durrmeyer typeoperators were not studied there. Very recently Mahmudov[5] established quantitative estimatesand asymptotic formula for genuine Bernstein polynomials. Anastassiou-Gal[1] established theapproximation properties of the complex Bernstein-Durrmeyer operator defined by

Dn(f, z) = (n + 1)n∑

k=0

pn,k(z)∫ 1

0

f(t)pn,k(t) dt, z ∈ C, (1)

where

pn,k(z) :=(

nk

)zk(1 − z)n−k.

In the last decade the applications of q calculus in approximation theory was started whenPhillips[6] considered the q Bernstein polynomials. Later many researchers studied approxima-tion properties for several other linear positive operators in real domain. Not much work onthe q operators is available in the literature, this is the main motivation of the present articleto extend the studies and here we study complex q Bernstein Durrmeyer operators. First wemention some basic notations of q calculus. For n ∈ N,

[n]q := 1 + q + q2 + · · · + qn−1,

[n]q! :={

[n]q[n − 1]q · · · [1]q, n = 1, 2, · · · ,1, n = 0.

Manuscript received April 12, 2011. Revised February 20, 2012.

66 N.I. MAHMUDOV, V. GUPTA

The q-binomial coefficients are given by[

nk

]

q

=[n]q!

[k]q![n − k]q!, 0 ≤ k ≤ n.

The q-derivative Dqf of a function f is defined by

(Dqf)(t) =f(t) − f(qt)

(1 − q)t, if t �= 0.

The q analogue of the Bernstein Durrmeyer operators was introduced by Gupta[3] and someapproximation properties in real case for these operators were also studied in [4]. In the complexcase for z ∈ C the q-Bernstein Durrmeyer operators for 0 < q < 1, can be defined as

Dn,q(f ; z) = [n + 1]qn∑

k=0

q−kpn,k(q; z)∫ 1

0

pn,k(q; qt)f(t)dqt, (2)

where

pn,k(q; z) =[

nk

]

q

zk(1 − z)n−kq , pn,n(q; z) = zn

with the q-Beta function given by

Bq(m, n) =[m − 1]q[n − 1]q

[m + n − 1]q=

∫ 1

0

tm−1(1 − qt)n−1q dqt

and

(1 − z)mq :=

{(1 − z)(1 − qz) · · · (1 − qm−1z), m = 1, 2, · · · ,1, m = 0.

The present paper deals with the approximation properties of the operators (2), we firstestimate moment estimates, recurrence formula for moments, the upper bound and finally wepresent a quantitative asymptotic formula.

2 Auxiliary Results

In the sequel, we need the following results:

Lemma 1. Dn,q(tm; z) is a polynomial of degree less than or equal to min(m, n) and

Dn,q(tm; z) =[n + 1]q!

[n + m + 1]q!

m∑

s=0

cs(m, q)[n]sqBn,q(ts; z).

where cs(m, q) ≥ 0 are constants depending on m and q and

Bn,q(f ; z) =n∑

k=0

[nk

]zk

n−k−1∏

s=0

(1 − qsz)f([k]q/[n]q

)

denotes the q-Bernstein polynomials.

Proof. By the definition of q-Beta function, we have

Dn,q(tm; z) =[n + 1]qn∑

k=0

q−kpn,k(q; z)∫ 1

0

pn,k(q; qt)tmdqt

=[n + 1]q!

[n + m + 1]q!

n∑

k=0

pn,k(q; z)[k + m]q!

[k]q!.

Summation-integral Type Operators 67

For m = 1, we have

Dn,q(t; z) =[n + 1]q![n + 2]q!

n∑

k=0

pn,k(q; z)[k + 1]q =1

[n + 2]q

n∑

k=0

pn,k(q; z)[n]q1 + q[k]q

[n]q

=1

[n + 2]q

1∑

s=0

[n]sqBn,q(ts; z),

thus the result is true for m = 1 with c0(1, q) = 1 > 0, c1(1, q) = q > 0.For m = 2, we have

Dn,q(t2; z) =[n + 1]q![n + 3]q!

n∑

k=0

pn,k(q; z)[k + 2]q[k + 1]q

=[n + 1]q![n + 3]q!

n∑

k=0

pn,k(q; z)(1 + q + (q + 2q2)[k]q + q3[k]2q)

=[n + 1]q![n + 3]q!

[(1 + q) + (q + 2q2)[n]qBn,q(t; z) + q3[n]2qBn,q(t2; z)]

=[n + 1]q![n + 3]q!

2∑

s=0

cs(2, q)[n]sqBn,q(ts; z),

thus the result is true for m = 2 with c0(2, q) = 1 + q > 0, c1(2, q) = q + 2q2 > 0 andc2(2, q) = q3 > 0. Continuing in this way, the result follows by mathematical induction. �

Also, the following lemma holds.

Lemma 2. For all m, n ∈ N the identity

[n + 1]q![n + m + 1]q!

m∑

s=0

cs(m, q)[n]sq ≤ 1

hold.

Proof. By Lemma 1,

Dn,q(em; 1) =[n + 1]q!

[n + m + 1]q!

m∑

s=0

cs(m, q)[n]sqBn,q(es; 1) =[n + 1]q!

[n + m + 1]q!

m∑

s=0

cs(m, q)[n]sq.

On the other hand,

Dn,q(em; 1) =[n + 1]qpn,n(q; 1)∫ 1

0

pn,n(q; qt)tmdqt

=[n + 1]q∫ 1

0

qntn+mdqt = qn[n + 1]q1

[n + m + 1]q≤ 1.

Lemma 2 implies that for all m, n ∈ N and |z| ≤ r we have(|Bn,q(es; z)| ≤ rs: it is known

68 N.I. MAHMUDOV, V. GUPTA

by Gal (see [2, p.61, Proof of Theorem 1.5.6] (last line)).

∣∣Dn,q(em; z)∣∣ ≤ [n + 1]q!

[n + m + 1]q!

m∑

s=0

cs(m, q)[n]sq |Bn,q(es; z)|

≤ [n + 1]q![n + m + 1]q!

m∑

s=0

cs(m, q)[n]sqrs

≤ [n + 1]q![n + m + 1]q!

m∑

s=0

cs(m, q)[n]sqrm ≤ rm, r ≥ 1.

Notice that if Pm(z) is a polynomial of degree m then by the Bernstein inequality and thecomplex mean value theorem we have

|DqPm(z)| ≤ ‖P ′m‖r ≤ m

r|Pm(z)| . (3)

Lemma 3. For all p ∈ N ∪ {0}, n ∈ N and z ∈ C, we have

Dn,q(ep+1; z) =z(1 − z)

q[n]q + q−p−1[p + 2]qDq(Dn,q(ep; z))

+[n]qz + q−p−1[p + 1]qq[n]q + q−p−1[p + 2]q

Dn,q(ep; z)

=qp+1z(1 − z)[n + p + 2]q

Dq(Dn,q(ep; z)) +qp+1[n]qz + [p + 1]q

[n + p + 2]qDn,q(ep; z).

Proof. By simple calculation we obtain

z(1 − z)Dq(pn,k(q; z)) = ([k]q − [n]qz)pn,k(q; z)

andt(1 − qt)Dq(pn,k(q; qt)) = t(1 − qt)([k]q − [n]qqt).

Using these identities, it follows that

z(1 − z)Dq(Dn,q(ep; z)) =[n + 1]qn∑

k=0

q−k([k]q − [n]qz)pn,k(q; z)∫ 1

0

pn,k(q; qt)tpdqt

=[n + 1]qn∑

k=0

q−kpn,k(q; z)∫ 1

0

([k]q − [n]qqt + [n]qqt)pn,k(q; qt)tpdqt

− z[n]q[n + 1]qn∑

k=0

q−kpn,k(q; z)∫ 1

0

pn,k(q; qt)tpdqt

=[n + 1]qn∑

k=0

q−kpn,k(q; z)∫ 1

0

(Dqpn,k(q; qt))t(1 − qt)tpdqt

+ [n]qqDn,q(ep+1; z) − z[n]qDn,q(ep; z). (4)

Using q-integration by parts, setting

δ(t) =t

q(1 − t)

( t

q

)p

=1

qp+1(tp+1 − tp+2),

Summation-integral Type Operators 69

the q-integral in the above formula becomes∫ 1

0

Dq(f(t))δ(qt)dqt = δ(t)f(t)∣∣01 −

∫ 1

0

f(t)Dqδ(t)dqt.

Thus∫ 1

0

Dq(pn,k(q; qt))t(1 − qt)tpdqt = δ(t)pn,k(q; qt)∣∣10−

∫ 1

0

pn,k(q; qt)Dqδ(t)dqt

= − q−p−1

∫ 1

0

pn,k(q; qt)Dq(tp+1 − tp+2)dqt = −q−p−1[p + 1]q∫ 1

0

pn,k(q; qt)tpdqt

+ q−p−1[p + 2]q∫ 1

0

pn,k(q; qt)tp+1dqt. (5)

Substituting (5) in (4), we get

z(1 − z)DqDn,q(ep; z) = − q−p−1[p + 1]qDn,q(ep; z) + q−p−1[p + 2]qDn,q(ep+1; z)+ [n]qqDn,q(ep+1; z) − z[n]qDn,q(ep; z)

=(q[n]q + q−p−1[p + 2]q)Dn,q(ep+1; z)− (z[n]q + q−p−1[p + 1]q)Dn,q(ep; z),

which implies the recurrence in the statement. �

3 Upper Estimation

In this section we present the following upper estimation:

Theorem 4. Let 1 ≤ r < R. Then for all |z| ≤ r we have

|Dn,q(f ; z)− f(z)| ≤ 1 + r

[n + 1]q

∞∑

p=1

|ap| (p + 1)(p + 2)rp−1.

Proof. From the recurrence formula

Dn,q(ep+1; z) =qp+1z(1 − z)[n + p + 2]q

Dq(Dn,q(ep; z)) +qp+1[n]qz + [p + 1]q

[n + p + 2]qDn,q(ep; z),

Dn,q(ep; z) − ep(z) =qpz(1 − z)[n + p + 1]q

Dq(Dn,q(ep−1; z)) +qp[n]qz + [p]q[n + p + 1]q

(Dn,q(ep−1; z)− ep−1(z))

+qp[n]qz + [p]q[n + p + 1]q

zp−1 − zp

=qpz(1 − z)[n + p + 1]q

Dq(Dn,q(ep−1; z)) +qp[n]qz + [p]q[n + p + 1]q

(Dn,q(ep−1; z)− ep−1(z))

+[p]q

[n + p + 1]qzp−1 − [p]q + qn+p

[n + p + 1]qzp

and the inequality (3) for p ≥ 1 we get

|Dn,q(ep; z) − ep(z)|≤r(1 + r)

[n + 1]qp − 1

r‖Dn,q(ep−1)‖r

70 N.I. MAHMUDOV, V. GUPTA

+ r |Dn,q(ep−1; z) − ep−1(z)| + [p + 1]q[n + 1]q

rp−1(1 + r)

≤ (1 + r)(p − 1)[n + 1]q

rp−1 + r |Dn,q(ep−1; z) − ep−1(z)| + [p + 1]q[n + 1]q

rp−1(1 + r)

≤2(p + 1)(1 + r)[n + 1]q

rp−1 + r |Dn,q(ep−1; z) − ep−1(z)| .

By writing the last inequality for p = 1, 2, · · · , we easily obtain, step by step the following

|Dn,q(ep; z) − ep(z)|≤r

(r |Dn,q(ep−2; z) − ep−2(z)| + 2p

[n + 1]q(1 + r)rp−2

)+ 2(p + 1)

(1 + r)[n + 1]q

rp−1

=r2 |Dn,q(ep−2; z) − ep−2(z)| + 2(1 + r)[n + 1]q

rp−1(p + 1 + p)

≤ · · · ≤ (1 + r)[n + 1]q

(p + 1)(p + 2)rp−1.

Next, we prove that Dn,q(f ; z) =∞∑

p=0apDn,q(ep, z). Indeed denoting fm(z) =

m∑j=0

ajzj,

|z| ≤ r with m ∈ N, by the linearity of Dn, we have

Dn,q(fm, z) =m∑

p=0

apDn,q(ep, z),

and it is sufficient to show that for any fixed n ∈ N and |z| ≤ r with r ≥ 1, we havelim

m→∞Dn,q(fm, z) = Dn,q(f ; z). But this is immediate from limm→∞ ||fm − f ||r = 0, the norm

being the defined as ||f ||r = max {|f(z)| : |z| ≤ r} and from the inequality

|Dn,q(fm; z) − Dn,q(f ; z)| ≤ [n + 1]qn∑

k=0

|pn,k(q; z)|q1−k

∫ 1

0

pn,k(q, qt)|fm(t) − f(t)|dqt

≤Cr,n||fm − f ||r,

valid for all |z| ≤ r, where

Cr,n = (n + 1)n∑

k=0

[nk

]

q

(1 + r)n−krk

∫ 1

0

pn,k(q; qt)dqt.

Therefore we get

|Dn,q(f ; z) − f(z)| ≤∞∑

p=0

|ap| · |Dn,q(ep, z) − ep(z)| =∞∑

p=1

|ap| · |Dn,q(ep, z) − ep(z)|,

as Dn,q(e0, z) = e0(z) = 1. It follows that

|Dn,q(f ; z) − f(z)| ≤∞∑

p=1

|ap| |Dn,q(ep; z)− ep(z)| ≤ 1 + r

[n + 1]q

∞∑

p=1

|ap| (p + 1)(p + 2)rp−1.

Summation-integral Type Operators 71

4 Voronovskaja-Type Result

The following Voronovskaja-type result with a quantitative estimate holds.

Theorem 5. Let 0 < q < 1, R > 1 and suppose that f : DR → C is analytic in DR = {z ∈C : |z| < R} that is we can write f(z) =

∞∑p=0

apzp, for all z ∈ DR. For any fixed r ∈ [1, R] and

for all n ∈ N, |z| ≤ r, we have∣∣∣∣Dn,q(f ; z)− f(z) − z(1 − z)f ′′(z) + (1 − 2z)f ′(z)

[n]q

∣∣∣∣ ≤Mr(f)[n]2q

+ (1 − q)∞∑

p=1

|cp|prp,

where Mr(f) =∞∑

p=1|ap|pFpr

p < ∞ and

Fp = p(p − 1)(p − 2) + 5p3 + 4p2(p + 1) + 4(p − 1)p(p + 1).

Proof. We denote ep(z) = zp, p = 0, 1, 2, · · · and πp,n(q; z) = Dn,q(ep; z). By the proof of

Theorem 4, we can write Dn,q(f ; z) =∞∑

p=0apπp,n(q; z). Also since

z(1 − z)f ′′(z) + (1 − 2z)f ′(z)[n]q

=z(1 − z)

[n]q

∞∑

p=2

app(p − 1)zp−2 +(1 − 2z)

[n]q

∞∑

p=1

appzp−1.

Thus∣∣∣Dn,q(f ; z) − f(z) − z(1 − z)f ′′(z) + (1 − 2z)f ′(z)

[n]q

∣∣∣

≤∞∑

p=1

|ap|∣∣∣πp,n(q; z) − ep(z) − (p2 − p(p + 1)z)zp−1

[n]q

∣∣∣,

for all z ∈ DR, n ∈ N.By Lemma 3, for all n ∈ N, z ∈ C and p = 0, 1, 2, · · ·, we have

Dn,q(ep+1; z) =qp+1z(1 − z)[n + p + 2]q

Dq(Dn,q(ep; z)) +qp+1[n]qz + [p + 1]q

[n + p + 2]qDn,q(ep; z).

If we denote

Ep,n(q; z) = Dn,q(ep; z) − ep(z) − (p(p − 1) − p2z)zp−1

[n]q,

then it is obvious that Ep,n(q; z) is a polynomial of degree less than or equal to p and by simplecomputation and the use of above recurrence relation, we are led to

Ep,n(q; z) =qpz(1 − z)[n + p + 1]q

Dq(Dn,q(ep−1; z) − ep−1(z))

+qp[n]qz + [p]q[n + p + 1]q

Ep−1,n(q; z) + Xp,n(q; z),

72 N.I. MAHMUDOV, V. GUPTA

where

Xp,n(q; z) =zp−2

[n]q[n + p + 1]q

[[p]q(p − 1)(p − 2) + z

(qp[n]q[p − 1]q

+ qp[n]q(p − 1)2 + [p]q[n]q − [p]qp(p − 1) − p2[n + p + 1]q)

+ z2(p(p + 1)[n + p + 1]q − [p]q[n]q − qn+p[n]q

− qp[n]q[p − 1]q − qp[n]qp(p − 1))]

=:zp−2

[n]q[n + p + 1]q(Ap,n(q) + zBp,n(q) + z2Cp,n(q)).

It is clear that|Ap,n(q)| ≤ p(p − 1)(p − 2).

On the other hand

Bp,n(q) =qp[n]q[p − 1]q+ qp[n]q(p − 1)2 + [p]q[n]q − [p]qp(p − 1) − p2[n + p + 1]q= [n]q(qp[p − 1]q + [p]q − qp(1 − 2p))− [p]q(p − 1)2 − p(p − 1)[p]q − p(p − 1)qn+p

and

[n]q(qp[p − 1]q + [p]q − qp(2p − 1)) = [n]q([2p − 1]q − qp(2p − 1))

=[n]q(1 − q)2p−1∑

j=1

[j]qq2p−1−j = (1 − qn)2p−1∑

j=1

[j]qq2p−1−j .

So|Bp,n(q)| ≤ (2p − 1)[2p − 1]q + (p − 1)2[p]q + p(p − 1)[p]q + p(p − 1) ≤ 5p3.

Now we estimate Cp,n(q):

Cp,n(q)=p(p + 1)[n + p + 1]q − [p]q[n]q − qn+p[n]q − qp[n]q[p − 1]q − qp[n]qp(p − 1)=qpp(p + 1)[n]q + p(p + 1)[p]q + qn+pp(p + 1)

− [p]q[n]q − qn+p[n]q − qp[n]q[p − 1]q − qp[n]qp(p − 1)=2qpp[n]q − [p]q[n]q − qn+p[n]q − qp[n]q[p − 1]q + p(p + 1)[p]q + qn+pp(p + 1)=[n]q(2qpp − [p]q − qp[p − 1]q) −−qn+p[n]q + p(p + 1)[p]q + qn+pp(p + 1)=[n]q(qp(2p − 1) − [2p− 1]q) − qp(qn − 1)[n]q + p(p + 1)[p]q + qn+pp(p + 1)

= − (1 − qn)2p−1∑

j=1

[j]qq2p−1−j + qp(1 − qn)[n]q + p(p + 1)[p]q + qn+pp(p + 1).

It follows that

|Cp,n(q)| ≤(2p − 1)[2p − 1]q + (1 − qn)[n]q + 2p2(p + 1)≤4(p + 1)p2 + (1 − qn)[n]q.

Thus

|Xp,n(q; z)| ≤rp−2

[n]2q(p(p − 1)(p − 2) + 5p3r + 4r2p2(p + 1)) +

rp

[n]q(1 − qn)

=rp−2

[n]2q(p(p − 1)(p − 2) + 5p3r + 4r2p2(p + 1)) + rp(1 − q)

Summation-integral Type Operators 73

for all p ≥ 1, n ∈ N and |z| ≤ r.Using the estimate in the proof of Theorem 4, we have

|Dn,q(ep; z) − ep(z)| ≤ (1 + r)[n + 1]q

(p + 1)(p + 2)rp−1

for all p, n ∈ N, |z| ≤ r, with 1 ≤ r. For all k, n ∈ N, p ≥ 1 and |z| ≤ r, it follows

|Ep,n(q; z)| ≤ qpr(1 + r)[n + p + 2]q

|E′p−1,n(q; z)| + qp+1[n]qz + [p + 1]q

[n + p + 2]q|Ep−1,n(q; z)| + |Xp,n(q; z)|.

Sinceqpr(1 + r)[n + p + 2]q

≤ r(1 + r)[n + p + 2]q

andqp+1[n]qz + [p + 1]q

[n + p + 2]q≤ r,

it follows

|Ep,n(q; z)| ≤ r(1 + r)[n + p + 2]q

|Dq(Dn,q(ep−1; z) − ep−1(z))| + r|Ep−1,n(q; z)| + |Xp,n(q; z)|.

Now we shall find the estimation of |E′p−1,n(q; z)| for p ≥ 1. Taking into account the fact that

Dn,q(ep−1; z) − ep−1(z) is a polynomial of degree ≤ p − 1, we have

|Dq(Dn,q(ep−1; z) − ep−1(z))| ≤ |(Dn,q(ep−1; z) − ep−1(z))′|≤p − 1

r||Dn,q(ep−1) − ep−1||r ≤ p − 1

r

(1 + r)[n + 1]q

p(p + 1)rp−2

≤ 2[n + 1]q

(p − 1)p(p + 1)rp−2.

Thusr(1 + r)

[n + p + 2]q|Dq(Dn,q(ep−1; z) − ep−1(z))| ≤ 4(p − 1)p(p + 1)rp

[n]2qand

|Ep,n(q; z)| ≤ 4(p − 1)p(p + 1)rp

[n]2q+ r|Ep−1,n(q; z)| + |Xp,n(q; z)|,

where

|Xp,n(q; z)| ≤rp−2

[n]2q(p(p − 1)(p − 2) + 5p3r + 4r2p2(p + 1)) + rp(1 − q)

≤ rp

[n]2qDp + rp(1 − q)

for all |z| ≤ r, p ≥ 1, n ∈ N, where

Dp = p(p − 1)(p − 2) + 5p3 + 4p2(p + 1).

Thus for all |z| ≤ r, p ≥ 1, n ∈ N,

|Ep,n(q; z)| ≤ r|Ep−1,n(q; z)| + rp

[n]2qFp,r + rp(1 − q),

where Fp,r is a polynomial of degree 3 in p defined as

Fp = Dp + 4(p − 1)p(p + 1).

74 N.I. MAHMUDOV, V. GUPTA

But E0,n(q; z) = 0, for any z ∈ C and therefore by writing last inequality for p = 1, 2, · · ·, weeasily obtain step by step the following

|Ep,n(q; z)| ≤ rp

[n]2q

p∑

j=1

Fj + rpp(1 − q) ≤ prp

[n]2qFp + rpp(1 − q).

We conclude that

∣∣Dn,q(f ; z) − f(z) − z(1 − z)f ′′(z) − zf ′(z)[n]q

∣∣∣

≤∞∑

p=1

|ap||Ep,n(q; z)| ≤ 1[n]2q

∞∑

p=1

|ap|pFprp + (1 − q)

∞∑

p=1

|ap|prp.

As f (4)(z) =∞∑

p=4app(p−1)(p−2)(p−3)zp−4 and the series is absolutely convergent in |z| ≤ r, it

easily follows that∞∑

p=4|ap|p(p−1)(p−2)(p−3)rp−4 < ∞, which implies that

∞∑p=1

|ap|pFprp < ∞.

This completes the proof of theorem. �

Remark. Let 0 < q < 1 be fixed. Since for n → ∞, we have 1[n]q

→ 1 − q, by passing tolimit with n → ∞ in the estimates in Theorem 5 we don’t obtain convergence of the operatorsDn,q(f ; z). But this situation can be improved by choosing 1 − 1

n2 ≤ qn < 1 with qn ↗ 1 asn → ∞. Indeed, since in this case 1

[n]qn→ 0 as n → ∞ and 1 − qn ≤ 1

n2 ≤ 1[n]2qn

from Theorem5, we get

∣∣∣Dn,qn(f ; z) − f(z) − z(1 − z)f ′′(z) + (1 − 2z)f ′(z)[n]qn

∣∣∣ ≤ Mr(f)[n]2qn

+1

[n]2qn

∞∑

p=1

|ap|prp,

that is the order of approximation 1[n]2qn

.

Acknowledgements. The authors are thankful to the referee for valuable suggestions leadingto overall improvements in the paper.

References

[1] Anastassiou, G.A., Gal, G.A. Approximation by complex Bernstein-Durrmeyer polynomials in compactdisks. Mediterr. J. Math., 7(4): 471–482 (2010)

[2] Gal, S.G. Approximation by Complex Bernstein and Convolution-type Operators. World Scientific Publ.Co, Singapore, Hong Kong, London, New Jersey, 2009

[3] Gupta,V. Some approximation properties of q-Durrmeyer operators. Appl. Math. Comput., 197(1):172–178 (2008)

[4] Finta, Z., Gupta, V. Approximation by q-Durrmeyer operators. J. Appl. Math. Comput., 29: 401–415(2009)

[5] Mahmudov, N.I. Approximation by Bernstein-Durrmeyer-type operators in compact disks. Applied Math-ematics Letters, 24(7): 1231–1238 (2011)

[6] Phillips, G.M. Bernstein polynomials based on the q-integers. Ann. Numer. Math., 4: 511–518 (1997)