33
Alain Arneodo Laboratoire Joliot-Curie / Laboratoire de Physique, Ecole Normale Supérieure de Lyon [email protected] Benjamin Audit Françoise Argoul Guillaume Chevereau Zofia Haftek-Terreau Julien Moukhtar Monique Marilley Leonor Palmeira Pascale Milani Philippe StJean Cendrine Moskalenko Cédric Vaillant Lamia Zaghloul Yves d’Aubenton-Carafa CGM, Gif-sur-Yvette, France Claude Thermes Fractales: Application à l’analyse du génome http://www.ens-lyon.fr/PHYSIQUE/index.php?page=equipe5 http://www.ens-lyon.fr/Joliot-Curie/

Annecy LRC 2008 - LAPTh€¦ · Annecy_LRC_2008.ppt Author: Audit Benjamin Created Date: 10/15/2008 7:30:11 PM

  • Upload
    others

  • View
    4

  • Download
    0

Embed Size (px)

Citation preview

  • Alain ArneodoLaboratoire Joliot-Curie / Laboratoire de Physique,

    Ecole Normale Supérieure de [email protected]

    Benjamin Audit Françoise Argoul

    Guillaume Chevereau Zofia Haftek-Terreau

    Julien Moukhtar Monique Marilley

    Leonor Palmeira Pascale Milani

    Philippe StJean Cendrine Moskalenko

    Cédric Vaillant

    Lamia Zaghloul

    Yves d’Aubenton-Carafa CGM, Gif-sur-Yvette, France

    Claude Thermes

    Fractales:Application à l’analyse du génome

    http://www.ens-lyon.fr/PHYSIQUE/index.php?page=equipe5http://www.ens-lyon.fr/Joliot-Curie/

  • DeoxyriboNucleic Acid

    A

    GC

    T

    G C

    T A

    : :

    • Double helix macromolecule

    • Each strand consists of an oriented sequence of fourpossible nucleotides:Adenine, Thymine, Guanine & Cytosine

    • Complementary strands:[A]=[T] & [G]=[C] over the sum of both strands

  • Sequencing projects result in 4 letter texts :

  • Eukaryotic genome context(C. Hermann)

    109

    1010

    108

  • Eukaryotic genome context(C. Hermann)

  • Eukaryotic genome context(C. Hermann)

  • Eukaryotic genome context(C. Hermann)

  • NET RESULT : EACH DNA MOLECULE HAS BEENPACKAGED INTO A MITOTIC CHROMOSOME THAT IS

    50.000x SHORTER THAN ITS EXTENDED LENGTH

    HIERARCHICAL STRUCTUREOF EUCARYOTIC DNA

  • FRACTALS SIGNALS

    Turbulentvelocity signal

    Brownian signal‘‘ 1/f noise’’

    Medical signal

    Financial timeseries

    V(t)

    time

    S(t)

    time

    time

    Heartrate

    days

    Marketprices

    FRACTAL SIGNALS

  • Roughness exponent

    • Root-mean square of the height fluctuations

    W(l) = rms [f(n+l)-f(n)] ~ l H

    H = roughness exponent Df = 2 - H

    l

    • Power spectrum

    Sf (k) ~ k –(2H+1)

    • Correlation function

    Cf(τ) = < Δ1f (n) Δ1f(n+ τ) > - < Δ1f (n) > 2

    ~ τ 2H-2

  • Fractional Brownian motions : BH

    SYNTHETIC DNA WALKS

    H = 0.3 anti-correlated

    H = 0.5 uncorrelated

    H = 0.7 long-range correlated

    H = 0.9 long-range correlated

    n

    Fractal dimension: Df = 2 - HH = roughness exponent

  • WAVELET ANALYSIS OF FRACTAL SIGNALS

    The wavelet transform allows us to LOCATE (b) the

    singularities of f and to ESTIMATE (a) their strength h(x)

    (Hölder exponent)

    Mathematical microscope

    ‘‘ Singularity scanner’’

    g(x) : optics

    b : position

    a-1 : magnification

    a

    b

    Tg (a,b) = g* f(x) dx∫

    x b

    aa

    1

    0.0 x 1.0

    1.58

    W2(x)

    -1.22

  • Sta

    ndar

    d de

    viat

    ion

    of W

    T fl

    uctu

    atio

    ns

    Genomic scale

  • H=0.8

    H=0.5

    Sta

    ndar

    d de

    viat

    ion

    of W

    T fl

    uctu

    atio

    ns

    Genomic scale

  • Presence of LRC in human coding sequencesS

    tand

    ard

    devi

    atio

    n

  • HIERARCHICAL STRUCTUREOF EUCARYOTIC DNA

  • Nucleosome positioninglocal curvature

    Dnase I sensitivityLocal flexibility

  • HIERARCHICAL STRUCTURE OFEUCARYOTIC DNA

  • Uncorrelated DNA

    Long-rangecorrelated

    DNA

    Influence of the DNA sequence on theformation and dynamics of nucleosomes

    H=0.5

    H=0.8

    LDNA = 3000 bp